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Abstract— Many new methodologies for the control of
large-scale multiagent systems are based on macroscopic rep-
resentations of the system dynamics, in the form of continuum
approximations of large ensembles. These techniques, developed
in the limit case of an infinite number of agents, are usually
validated only through numerical simulations. Here, we introduce
a mixed reality setup for testing swarm robotics techniques,
focusing on the macroscopic collective motion of robotic swarms.
This hybrid apparatus combines real differential drive robots
and virtual agents to create a heterogeneous swarm of tunable
size. We also extend continuification-based control methods for
swarms to higher dimensions and experimentally assess their
validity in the new platform. Our study demonstrates the
effectiveness of the platform for conducting large-scale swarm
robotics experiments, and it contributes new theoretical insights
into control algorithms exploiting continuification approaches.

Index Terms— Autonomous robots, mobile robotics, partial
differential equations (PDEs).

I. INTRODUCTION

SEVERAL new techniques for the analysis and control of
large-scale multiagent systems rely on the assumption that
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the interacting dynamical systems of the ensemble (agents)
are numerous enough to be described in a continuum frame-
work [1], [2], [3], [4], [5]. Such an assumption paves the
way for recasting many traditional microscopic agent-based
formulations, based on large sets of ordinary differential equa-
tions (ODEs), into smaller sets of partial differential equations
(PDEs) for a macroscopic representation of their collective
behavior. For instance, it can be advantageous to study the
spatio-temporal dynamics of a large group of mobile agents
in terms of their density, rather than keeping track of the
motion of each of the agents [1], [2], [3], [6], [7]. In so doing,
one can address the curse of dimensionality of microscopic
representations by formulating control algorithms at the scale
where the collective behavior emerges [8]. Suitable applica-
tions include, but are not limited to, multirobot systems [7],
[9], [10], traffic control [11], [12], cell populations [13], and
human networks [14].

Recasting these systems into continuum formulations offers
new opportunities in the analysis and design of novel con-
trol approaches to tame collective dynamics. Pressing open
challenges are as follows: 1) to find agile methods to inform
and experimentally validate the synthesis of control algo-
rithms developed in a continuum framework [15] and 2) to
design new strategies for controlling the collective behavior
of large-scale multiagent systems, such as those in swarm
robotics, that exploit their macroscopic approximation in terms
of PDEs [16].

Regarding the first challenge, full-scale experiments about
the control of large-scale multiagent systems have been
recently carried out [17], [18], [19], [20]. However, the major-
ity of the existing control solutions have been tested only using
computer simulations due to practical limitations. In this brief,
we present a novel mixed reality environment where some
real mobile robots interact among themselves and with other
virtual agents. We bring settings as that in [21] and other recent
mixed reality platforms [22], [23] to large-scale scenarios.
In so doing, we integrate insights from disability studies [24],
[25] and animal behavior research [26], [27], [28], [29] where
digital twins of patients or animals are often utilized for testing
new strategies in virtual reality settings. Our setup let the
user choose the size of the ensemble to study, avoiding the
bottleneck of extreme time cost and resources of experiments
of large-scale systems. Moreover, in our setting, the specific
model for the virtual agents can be chosen by the designer
and is not constrained to a specific commercial robot. The
whole apparatus is easy to implement and can be realized,
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Fig. 1. Continuification control scheme (inspired by [3]). The scheme
describes all the stages of the solution: 1) continuification; 2) macroscopic
control design; and 3) discretization.

for example, by adapting other existing facilities, such as the
Robotarium at GeorgiaTech [30]. Relevant previous work in
the field of swarm robotics includes the use of augmented
reality for providing simple testbed agents, such as kilobots,
with augmented sensing capabilities [31], [32].

To tackle the second challenge highlighted above,
we address the theoretical problem of extending the
continuification-based control approach presented in [1] and
[2] to higher dimensions. Upon deriving a PDE describing the
emergent collective behavior of the swarm we wish to control
(continuification), we design a macroscopic control action that
ensures convergence to a desired density. Such a control is then
discretized to obtain deployable control inputs for the agents
in the swarm (see Fig. 1). We emphasize that the transition
from the 1D case discussed in [1] to the broader theoretical
framework in higher dimensions is nontrivial from the techni-
cal viewpoint, as detailed in Section III-D. Specifically, during
the discretization process, new degrees of freedom emerge and
technical advancements are needed to ensure well posedness
and, eventually, fulfill additional control requirements. Finally,
the proposed platform is used to validate experimentally the
theoretical framework that we developed.

The rest of this brief is organized as follows. In Section II,
we describe the experimental platform. Specifically,
in Section II-A, we focus on the mobile robots we designed,
and then, in Section II-B, we focus on the platform itself.
In Section III, we derive the theoretical extension to higher
dimensions of the continuification-based control approach
that is validated experimentally in Section IV to demonstrate
the use of the platform. We discuss results and conclusions
in Sections IV-B and V, respectively.

II. EXPERIMENTAL MIXED REALITY ENVIRONMENT

Here, we detail our experimental apparatus for the design
of experiments about the coordination of hybrid large swarms
of real robots and virtual agents. We first present the mobile
robotic agents and their kinematics. Then, we describe the
integration of these robots with the virtual agents in the overall
mixed reality platform.

A. Differential Drive Robots

We built four differential drive robots, as the one ren-
dered in Fig. 2(a). These robots featured a 3D-printed

Fig. 2. (a) Render of a differential drive robot. (b) Inner view of the robot.

PLA frame (Polylite, Polymaker) printed on a Bambu Lab
X1C (CAD model available at https://github.com/Dynamical-
Systems-Laboratory/ContinuificationControl). The sizes of the
robot are such that it can be schematized as a rectan-
gle 11.5 × 9.5 cm. Each robot was equipped with an
ESP32 microcontroller, operating two continuous rotation
servo motors (FS90R, Feetech) directly connected to 56-mm
wheels. In addition, an omnidirectional wheel was attached
at the front-bottom of the robot. Power was supplied to each
robot through an off-the-shelf power bank (Attom, Ultra Slim
3000 mAh). We show the real robot, with sizes and hardware
in Fig. 2(b). In the absence of a load, the motors are able
to rotate at approximately 14 rad/s and provide a torque of
1.5 kg·cm. Taking into account the wheel radius, the maximum
linear speed that can be achieved by the robot is approximately
0.8 m/s (when both wheels are rotating in the same direction
at full speed).

The i-th differential drive robots is characterized by the
following nonholonomic kinematic behavior:

żR
i = R(θi ) uR

i (1)

for i = 1, . . . , 4. In particular, zR
i = [xR

i , θi ]
T is the state of

the i-th differential drive robot, where xR
i = [x R

i,1, x R
i,2]

T is its
position in a Cartesian coordinate framework and θi ∈ [−π, π]

its orientation. Moreover,

R(θ) =

cos θi 0
sin θi 0

0 1

 (2)

and uR
i = [Vi , ωi ]

T is the vector of the control variables, with
Vi being the instantaneous velocity of the midpoint between
the robots’ wheels and with ωi being its angular velocity.

B. Mixed Reality Environment

We built the setup shown in Fig. 3(a), comprising a team of
differential drive robots moving on the ground and an overhead
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Fig. 3. Experimental platform. (a) Render of the real setup, with four robots
moving in the arena. (b) Sketch of the platform, assuming virtual agents to
be the black dots and real robots to be concentric circles.

camera (16 MP wide-angle camera—Arducam, placed at 1 m
height). The camera was placed, so that the robots could
move in an area of approximately 2 × 2 m. Aruco markers
were attached to the robots, so that they could be easily
tracked by the camera and perform their pose estimation.
A Python program using OpenCV was developed to estimate
the robots’ pose in each frame. The video feed, with all
the estimated robots’ positions, was given to the central
station of the platform, a Dell Aurora (13th Gen Intel1 i9
13900KF, 64 GB of DDR5 RAM NVIDIA1 GeForce RTX
4090). Such a machine was also provided with the positions
(and eventually velocities) of a user-defined number of virtual
agents. In principle, one can choose the specific mathematical
model for the virtual agents. Based on the literature about the
control of large-scale mobile agents, a reasonable choice is
to select their dynamics as that of single or double integrator
without any kinematic constraint [6], [33]. Using the available
information (robots’ positions and virtual agents’ positions,
at least), the central station was in charge of controlling the
hybrid swarm of real and virtual agents, according to some
user-definable algorithm. Such a control algorithm should be
chosen, so that the needed information could be estimated by
tracking the real robots with a camera, since robots were not
equipped with any specific sensor.

The application of any control strategy consists of the
following: 1) updating the positions of the virtual agents,
based on the specific dynamical model that is assumed for
them, and 2) computing the control inputs for the real robots
and sending them trough a TCP client/server communication
protocol on the local Wi-Fi. The idea is sketched in Fig. 3(b).
Since collective motion techniques are typically developed
for kinematically unconstrained agents, a low-level trajec-
tory tracking control is needed for the robots. We used the
input/output feedback linearization technique that is proposed
in [34, Ch. 11.6].

We remark that the setup we propose is versatile, as it could
account for various constraints that can be chosen by the user,
like, for instance, limited sensing and obstacles.

III. HIGH-DIMENSIONAL CONTINUIFICATION-
BASED CONTROL

We now present the theoretical expansion of our 1D
study [1] to higher dimensional periodic domains. We consider

1Registered trademark.

a group of interacting agents, whose dynamics are detailed
in Section III-B, within the context of a density control
problem, that is formally given in Section III-C. Specifically,
by appropriately choosing their control inputs, we want them
to displace according to a desired density. The control solution,
described in detail in Section III-D, follows a continuification
scheme as the one depicted in Fig. 1. First, we provide some
useful notation.

A. Mathematical Preliminaries

Here, we give some mathematical definitions and concepts
that will be used throughout this brief. We define � :=

[−π, π]
d , with d = 1, 2, 3 the periodic cube of side 2π . The

case d = 1 coincides with the unit circle, d = 2 with the
periodic square, and d = 3 with the periodic cube. We denote
by ∥h(·, t)∥ the L2 norm of the function h : � × R≥0 → R,
with respect to its first variable. For brevity, we also call the
norm as ∥h∥, without explicitly indicating the dependencies.
We denote with “∗” the convolution operator. When referring
to periodic functions and domains, the convolution needs
to be interpreted as its circular version [35]. When one of
the functions involved in the convolution is vector valued,
the operator is interpreted as the multidimensional (circular)
convolution. For PDEs, we denote with (·)t and (·)x first-order
time and space partial derivatives. We use ∇ for vectorial
differential operators. Specifically, given a vector valued func-
tion h, we denote its gradient as ∇h, its divergence as ∇ · h,
its curl as ∇ × h, and its Laplacian as ∇

2h. We denote by
n = (n1, . . . , nd) the d-dimensional multi-index, consisting in
the tuple of dimension d, with ni ∈ Z. Thus, n = [n1, . . . , nd ]

is the row vector associated with n.

B. Model

We consider N dynamical systems moving in �. The
agents’ dynamics are modeled using the kinematic assump-
tion [6], [33] (i.e., neglecting acceleration and considering a
drag force proportional to the velocity), and assuming that
the agents are not subject to any nonholonomic constraint.
Specifically, we set

ẋi =

N∑
k=1

f
(
{xi , xk}

)
+ ui , i = 1, . . . , N (3)

where xi ∈ � is the i-th agent’s position, {xi , xk} is the relative
position between agent i and k, wrapped to have values in
� (see [1] for the explicit expression in 1D), f : � → Rd

is a periodic velocity interaction kernel modeling pairwise
interactions between the agents, and ui is a velocity control
input designed as to fulfill some control problem. Furthermore,
we assume f(z) = −∇F(z), where F : Rd

→ R is a soft-
core potential, meaning that f(0) = 0. The Morse potential,
vastly used in the literature [6], [36], is a choice of this kind.
We remark that, in the absence of control, agents subject to a
repulsive kernel will spread in � until reaching an equilibrium
configuration. Agents subject to a Morse-like kernel (long-
range attraction and short-range repulsion) will reach an
aggregated compact formation (see [6] for a comprehensive
description of the uncontrolled problem with 1D examples).
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Assuming N is sufficiently large, we describe the system’s
collective behavior in terms of the spatio-temporal evolution
of the swarm’s density. Hence, we define the density at time
t as the scalar function ρ : � × R≥0 → R≥0, such that∫
�

ρ(x, t) dx = N , and the integral over a subset of � returns
the number of agents in it.

C. Problem Statement

The problem is to select a set of distributed control inputs
ui acting at the microscopic, agent level, allowing the agents
to organize into a desired macroscopic configuration on �.
Specifically, given some desired periodic smooth density pro-
file, ρd(x, t), associated with the target agents’ configuration,
the problem can be reformulated as that of finding a set of
distributed control inputs ui , i = 1, 2, . . . , N in (3), such that

lim
t→∞

∥ρd(·, t) − ρ(·, t)∥ = 0 (4)

for agents starting from any initial configuration
xi (0) = xi0, i = 1, 2, . . . , N . This problem is a nontrivial
extension to higher dimensions of the 1D problem discussed
in [1].

D. Control Design

We adopt a continuification approach [1], [2], [3], consisting
in the following steps that are briefly discussed in Section I.

1) Continuification: In the limit case of an infinite number
of agents, we recast the microscopic dynamics of the agents (3)
as the mass balance equation [1], [2]

ρt (x, t) + ∇ · [ρ(x, t)V(x, t)] = q(x, t) (5)

where

V(x, t) =

∫
�

f
(
{x, z}

)
ρ(z, t) dz = (f ∗ ρ)(x, t) (6)

represents the characteristic velocity field encapsulating the
interactions between the agents in the continuum. The scalar
function q represents the macroscopic control action. It is
written as a mass source/sink for simplifying derivations, but
will be recast as an additional velocity field.

For (5) to be well posed, we require the periodicity of
ρ(x, t) on ∂� ∀t ∈ R≥0 and that ρ(x, 0) = ρ0(x). We remark
that V is periodic by construction, as it comes from a circular
convolution. Thus, the periodicity of the density is enough to
ensure mass is conserved when q = 0, i.e.,

(∫
�

ρ(x, t) dx
)

t =

0 (using the divergence theorem and exploiting the periodicity
of the flux).

Remark 1: We do not assume the agents’ dynamics to be
linear and interactions to take place on a spatially invariant
lattice as done in [3], where some useful heuristics extensions
to nonlinear systems and different topologies are presented.

2) Macroscopic Control Design: We hypothesize that the
desired density profile obeys to the mass conservation law

ρd
t (x, t) + ∇ ·

[
ρd(x, t)Vd(x, t)

]
= 0 (7)

where

Vd(x, t) =

∫
�

f
(
{x, z}

)
ρd(z, t) dz = (f ∗ ρd)(x, t). (8)

Periodic boundary conditions and initial condition for (7) are
imposed similar to those of (5). Furthermore, we define the
error function e(x, t) := ρd(x, t) − ρ(x, t).

Theorem 1 (Macroscopic Convergence): Choosing

q(x, t) = Kpe(x, t) − ∇ ·
[
e(x, t)Vd(x, t)

]
− ∇ ·

[
ρ(x, t)Ve(x, t)

]
(9)

where Kp is a positive control gain and Ve(x, t) = (f∗e)(x, t),
the error dynamics globally asymptotically converges to 0

lim
t→∞

e(x, t) = 0 ∀ e(x, 0). (10)

Proof: We compute the error dynamics by subtracting (5)
from (7), resulting in

et (x, t) + ∇ ·
[
ρd(x, t)Vd(x, t)

]
− ∇ · [ρ(x, t)V(x, t)] = −q(x, t). (11)

The error function e(x, t) is periodic on ∂� ∀t ∈ R≥0 and
e(x, 0) = ρd(x, 0) − ρ(x, 0). Then, taking into account that
ρ = ρd

− e, and V = Vd
− Ve, we rewrite (11) as follows:

et (x, t) + ∇ ·
[
e(x, t)Vd(x, t)

]
+ ∇ ·

[
ρ(x, t)Ve(x, t)

]
= −q(x, t). (12)

Plugging in (9), we get

et (x, t) = −Kpe(x, t). (13)

Since Kp > 0, (10) holds.
3) Discretization and Microscopic Control: In order to

discretize the macroscopic control action q, we first recast
the macroscopic controlled model as follows:

ρt (x, t) + ∇ · [ρ(x, t)(V(x, t) + U(x, t))] = 0 (14)

where U is a controlled velocity field, in which we want
to incorporate the control action. Equation (14) is equivalent
to (5), if

∇ · [ρ(x, t)U(x, t)] = −q(x, t). (15)

In contrast to the case where d = 1 discussed in [1], (15) is
insufficient to uniquely determine U from q, since it represents
only a scalar relationship (as the divergence returns a scalar
function). Hence, we define the flux w(x, t) := ρ(x, t)U(x, t),
and close the problem by adding an extra differential constraint
on the curl of w. Namely, we consider the set of equations{

∇ · w(x, t) = −q(x, t)
∇ × w(x, t) = 0.

(16)

For problem (16) to be well posed, we require w(x, t) to be
periodic on ∂�. Notice that (16) is a purely spatial problem,
as no time derivatives are involved. We also remark that
the choice of closing the problem using the irrotationality
condition is arbitrary, and other closures can be considered.
This specific one allows not to introduce vorticity into the
velocity field we are seeking. Since � is simply connected,
and ∇ × w = 0, we can express w using the scalar poten-
tial ϕ. Specifically, we pose w(x, t) = −∇ϕ(x, t), making
the zero-curl condition always fulfilled. Then, substituting this
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into the divergence relation in (16), we can recast (16) as the
Poisson equation

∇
2ϕ(x, t) = q(x, t). (17)

Problem (17) is characterized by the periodicity of ∇ϕ(x, t)
on ∂�. We wish to remark the analogy with the derivation
of the Poisson equation in the context of the electrostatic
field [37]. Equation (17), together with its boundary condi-
tions, defines ϕ up to a constant C . Since we are interested in
computing w = −∇ϕ, the value of C is irrelevant. We solve
the Poisson problem (17) in � using the Fourier series. Then,
writing the Fourier series of ϕ in �, we get

ϕ(x) =

∑
m∈Zd

γm e jm·x
+ C (18)

where m is a multi-index, m is its associated row vector, γm
is the m-th Fourier coefficient, j is the imaginary unit, and
x is assumed to be a column. Given this expression for the
potential, we write its Laplacian as follows:

∇
2ϕ(x) =

∑
m∈Zd

γm∥m∥
2e jm·x. (19)

Next, we can apply Fourier series to the function q, resulting
in

q(x) =

∑
m∈Zd

cm e jm·x (20)

where, since, at time t , the function q is known, we can also
express the coefficients as follows:

cm =
1

(2π)d

∫
�

q(x)e− jm·x dx. (21)

Then, recalling (17), we can express the coefficients of the
Fourier series of the potential ϕ as follows:

γm = −
cm

∥m∥2 . (22)

Hence, w = −∇ϕ, and, consequently, U = w/ρ. Such
derivations need to take place at each t . From the imple-
mentation viewpoint, when computing ϕ and, consequently,
w, we approximate it only considering the first M (with M
sufficiently large) terms of the infinite summations in (18).

Finally, we can compute the microscopic control inputs for
the discrete set of agents by spatially sampling U(x, t), that
is,

ui (t) = U(xi , t), i = 1, 2, . . . , N . (23)

Notice that our discretization procedure is different from the
one that is proposed in [3].

Remark 2: The macroscopic control action q is based on
nonlocal terms, such as Vd and Ve, making the control action
exerted at x depending on the error everywhere else in �. The
input ui can be approximated in terms of local information,
since the assumption of unlimited sensing is practically mit-
igated by assuming a vanishing interaction kernel. We refer
to [2] and [38] for analytical results about limited sensing.

Remark 3: The macroscopic velocity field U is well defined
only when ρ ̸= 0. This is indeed a fair assumption as we will
estimate the density by the agents’ position with an estimation

kernel of our choice. Moreover, as U will be sampled at the
agents locations, i.e., where the density is different from 0,
we know U is well defined where it is needed.

Remark 4: The proposed technique differs from its 1D
counterpart in [1] for the steps following (15). In particular,
if d = 1, (15) can be spatially integrated to uniquely determine
U (1D version of U) from q.

IV. VALIDATION OF THE CONTROL APPROACH VIA THE
NEW EXPERIMENTAL PLATFORM

Next, we experimentally validate the higher dimensional
continuification control strategy proposed in Section III-D to
steer the collective behavior of a swarm of robots in the plane.
In so doing, we also demonstrate the use of our experimental
platform for evaluating the performance of control algorithms.
To this aim, we fix d = 2, making � the periodic square. For
modeling pairwise interactions between the agents, we choose
a periodic soft-core repulsive kernel, based on its nonperiodic
version

f(x) =

{
x

∥x∥
e−

∥x∥

L , if ∥x∥ ̸= 0
0, otherwise.

(24)

The periodization of the kernel consists in an infinite series
extending the nonperiodic kernel in every direction [39]. Since
no closed form was found, we approximate it by truncating
the series. Moreover, we fix L = 1.

In what follows, we always refer to a Cartesian coordinate
system, such as the one considered for the individual kinemat-
ics. For each experimental trial, we consider that agents start
on a perfect square lattice, meaning that the initial density
is constant and, in particular, ρ(x, 0) = N/(2π)2. As for
the desired density to achieve, we choose the 2D von Mises
function

ρd(x) = Z exp
{
kT c1(x, µ, ν) + c2(x, µ, µ) I2 cT

2 (x, ν, ν)
}

(25)

where k = [k1, k2]
T is the vector of the concentration

coefficients, µ and ν are the means along the two directions,
c1(x, a, b) = [cos(x1 − a), cos(x2 − b)] and c2(x, a, b) =

[cos(x1 −a), sin(x2 −b)] (with a, b ∈ �), where x1 and x2 are
the components of x in the Cartesian coordinate system, and
I2 is the second-order identity matrix. Z is a normalization
coefficient, to allow ρd to sum to the total number of agents
N . To assess performance in different scenarios, we also take
into account the case where the desired density is multimodal,
that is, the combination of several densities, such as (25).
To address tracking scenarios, we study the case where the
means, µ and ν, in (25) are time varying. We remark that the
scenarios we consider mimic more classical microscopic prob-
lems of spatial organization. For instance, density regulation
to Gaussian-like profiles can be seen as rendez-vous prob-
lems [40], while tracking cases as formation control ones [41].

The overall control scheme for the hybrid swarm is shown
in Fig. 4. Specifically, while virtual agents’ positions can be
updated purely using the technique described in Section III, for
the differential drive robots, that are kinematically constrained
(see Section II-A), such a method needs to be integrated with
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Fig. 4. Control scheme for robot i . By measuring the overall density of the
swarm, the continuification control inputs can be used to give the robots a
desired position and velocity to track.

an ad hoc controller for tracking problems. As previously
mentioned, we used the input/output feedback linearization
technique in [34, Ch. 11.6]. The integration is performed
by using the continuification method to compute the desired
position and velocity of the robot, that is then tracked with
its embedded controller. In the case where only real robots
are present, the blocks regarding virtual agents in the scheme
in Fig. 4 shall be omitted. To adapt the assumption on the
periodicity of the domain to the experiments and avoid real
robots to try to cross the domain’s boundaries, we defined a
fictitious periodic extended domain (double sized with respect
to the effective arena where robots move). The arena where
agents move is the inner part of such an extended domain.
To avoid agents to go out of the arena (that is the inner part
of the domain), the desired density is set as the actual one in
the inner part of the domain and is then extended to be almost
zero elsewhere (i.e., in the arena fictitious extension).

We characterize experimental observations by recording
∥e∥2 in time. Specifically, the performance of each trial is
assessed in terms of the percentage error

Ē(t) =
∥e(·, t)∥2

maxt ∥e(·, t)∥2 100. (26)

The value of Ē at the end of the trial is the remaining percent-
age L2 error. Trials are also scored using the Kullback–Leibler
(KL) divergence, as often done for density control prob-
lems [42].

For each trial, we considered a sample of N = 100 agents
(96 virtual agents and 4 real robots), and we discretized (3)
(modeling the motion of the virtual agents and the desired
positions for the robots) using forward Euler with a non-
dimensional time step 1t = 0.01. This corresponds to the
camera frame rate of 20 frames per second (FPS) in the exper-
iments, at which the control algorithm is running. Thus, the
unit non-dimensional time in any of our graphs corresponds
to 5 s. The spatial domain is discretized into a regular mesh
of 200 × 200 cells. We remark that virtual agents are indeed
not constrained to move on such a mesh, and that it is only
used for defining functions, such as the desired and effective
density of the swarm. We also remark that spatial measures are
adapted to consider that the region where robots are moving
coincides with the definition of �.

A. Experimental Trials

Here, we detail our experiments, whose videos are
available on GitHub at https://github.com/Dynamical-Systems-
Laboratory/ContinuificationControl.git.

Fig. 5. Monomodal regulation. (a) Desired density. (b) Steady-state configu-
ration of the swarm. (c) Percentage error in time. (d) KL divergence in time.

Fig. 6. Multimodal regulation. (a) Desired density. (b) Steady-state configu-
ration of the swarm. (c) Percentage error in time. (d) KL divergence in time.

1) Monomodal Regulation: We want the hybrid swarm to
start from an initial constant density and aggregate toward
the von Mises function that is depicted in Fig. 5(a), which is
characterized by µ = ν = 0 and κ1 = κ2 = 1.5 [see (25)].
Such a desired configuration consists in a clustered formation
about the origin of �. The final formation that is achieved by
the swarm is reported in Fig. 5(b), while the time evolution of
Ē is shown in Fig. 5(c). We record a steady-state value of Ē ,
that is, the residual percentage L2 error, of approximately 2%.
In Fig. 5(d), we report the time evolution of the KL divergence.

2) Multimodal Regulation: We consider the swarm to start
from an initial constant density and aggregate toward the
combination of four von Mises functions as the one in (25) (see
Fig. 6(a) for a graphical representation). The concentration
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Fig. 7. Tracking experiments. (a) Time evolution of the means of the monomodal time-variant desired density to track. (b) Percentage error in time during
the monomodal tracking trial. (c) Time evolution of the means of the two modes of the desired von Mises functions in the multimodal tracking trial (first
mode blue and orange, and second mode yellow and purple). (d) Percentage error in time during the multimodal tracking trial.

coefficients of all the modes are set to 2, and the mean values
are µ1 = µ2 = −π/2, µ3 = µ4 = π/2, ν1 = ν2 = π/2, and
ν3 = ν4 = π/2. This desired density consists of four clusters
of agents symmetrically displaced around the origin. The final
formation is reported in Fig. 6(b), while the time evolution of
Ē is shown in Fig. 6(c). The final value of Ē is below 30%.
In Fig. 6(d), we show the time evolution of the KL divergence.

3) Monomodal Tracking: We focus on a monomodal track-
ing scenario, where the desired density is a 2D von Mises
function, whose means are time varying; see (25). Specifically,
we consider µ(t) and ν(t) behaving as in Fig. 7(a), while the
concentration coefficients are kept constant and equal to 1.
Such a desired density is centered at the origin for t ≤ 1.
Then, it starts moving at constant velocity toward a side of
the domain and then on the circle of radius π/2. We report
the results of the trial in Fig. 7(b), where the evolution of Ē is
shown. Specifically, its steady-state value is below 50%. For
brevity, we do not report the KL divergence in time, which
remains below 0.25.

4) Multimodal Tracking: We consider a multimodal track-
ing case, where two von Mises functions with the constant
concentration coefficients of 2.2 arbitrate on the circle of
radius 2π/3, after remaining still at two sides of the domain
for t ≤ 1. Specifically, µ1(t), ν1(t) and µ2(t), ν2(t), the means
of the two von Mises functions, evolve as in Fig. 7(c). Such
a desired behavior consists of two clusters of agents orbiting
on a circle. Results are reported in Fig. 7(d), where the time
evolution Ē is also shown. After an initial transient, Ē settles
to approximately 50%. For brevity, we omit the KL divergence
in time, which remains below 0.3.

B. Results and Discussion

We considered a hybrid swarm of four differential drive
robots and 96 virtual agents, interacting through a repulsive
kernel. Assuming the group to start on a perfect square lattice
(initial constant density), we tasked the swarm to aggregate
according to four different desired densities, under a new 2D
continuification control action. Specifically, we presented a
monomodal and multimodal regulation case, where the means
of the von Mises functions to achieve are time-invariant, and a
monomodal and multimodal tracking case, where, instead, the
means of the von Mises functions to achieve are time-variant.

We characterized the performance of each trial using
the time evolution of the normalized L2 error, namely, Ē .
Although the correct formation was attained in each of the

trials, we obtained our best results in the regulations scenarios
(monomodal and multimodal), where the steady-state residual
percentage error went below 10% and 30%, respectively
(Figs. 5 and 6). Concerning the tracking cases performance
was less remarkable, with Ē being around 50%, in both the
monomodal and multimodal cases (see Fig. 7).

While the prescribed formation was always attained (see
Figs. 5 and 6, and available videos for the tracking cases),
the asymptotic convergence that is prescribed by the theory
(see Section III) was not accomplished. This is due to two
main factors. First, we adapted the theoretical framework to
experiments to cope with the periodicity assumption about the
domain and with the constrained kinematic of the differential
robots. Second, the inherent uncertainties and noise of the
experimental setup need also to be considered. Note that,
another source of performance degradation is the finite size
of the swarm. Specifically, our convergence guarantees hold
in the limiting case of infinite agents. Indeed, should we
numerically integrate (5), for an infinite number of agents,
we would be able to reduce ∥eF

∥
2
2 to 0 (see [38], and available

videos of continuous simulations).

V. CONCLUSION

We developed a new mixed reality, flexible, experimental
environment for large-scale swarm robotics experiments with
small time and resources demand, and we presented the exten-
sion to higher dimensions of the continuification-based control
strategy proposed in [1]. Our approach leveraged swarms of
differential drive robots and virtual agents, making the size of
the swarm easily scalable by the user. We demonstrated the
applicability and effectiveness of our setup for the experimen-
tal validation of the continuification-based control of swarming
robots in the plane.

When experimentally implementing a macroscopic control
technique with the assumption of an infinite number of agents,
we reported a performance degradation, even if convergence
is theoretically ensured. This is due to both implementation
problems and theoretical drawbacks of the strategy. In partic-
ular, performance degradation is due to the following: 1) the
experimental setup, 2) the necessary adaptation of the control
strategy to the kinematic constraints of the real robots and the
periodicity of the domain, and 3) the inherent approximation
introduced by the continuum hypothesis. Current work seeks
to build more robots to asses how the ratio between real robots
and virtual agents influences the effectiveness of the platform,
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and rephrase the theoretical framework to reduce the number
of adaptations to go from theory and simulations to reality.
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