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Abstract— This manuscript presents a novel distributed greedy
framework applicable to a network of thermostatically controlled
loads (TCLs) to desynchronize the network’s aggregated power
consumption. Compared to the existing literature, our proposed
framework offers two distinct novelties. First, our proposed
algorithm relaxes the restrictive assumptions associated with the
communication graph among TCLs. To elaborate, our algorithm
only requires a connected graph to execute control, a condition
less demanding than its counterpart algorithms that mandate
a star architecture, K -regular graphs, or undirected connected
graphs. Second, a significant novel feature is the relaxation of the
obligation to share private information, such as each unit’s local
power consumption and appliance temperatures, either with a
central coordinator or neighboring TCLs. The findings presented
in this brief are validated through simulations conducted over a
network comprising 1000 TCLs.

Index Terms— Demand response, distributed optimization,
greedy control, multiagent systems, thermostatically controlled
loads (TCLs).

I. INTRODUCTION

POWER networks and microgrids are experiencing a con-
tinuous increase in the installation of renewable energy

sources (RESs). These sources offer significant advantages
in reducing environmental pollution and mitigating climate
change. However, their efficiency in contributing to power
system inertia is limited. Consequently, the vulnerability of
power networks and microgrids to frequency variations rises
as the penetration of RESs increases. Among various strategies
to address this challenge, demand-side response (DSR) appears
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particularly promising [1], [2]. DSR has the potential to offer
cost-effective solutions without causing substantial changes to
the quality of service (QoS).

A significant proportion of residential energy consump-
tion is attributed to thermostatically controlled loads (TCLs),
including electric water heaters, refrigerators, air conditioners,
and more. Consequently, any residential DSR initiative should
strategically consider this substantial potential to achieve its
objectives. Studies conducted on TCL-based DSR programs in
regions such as Germany [3], Great Britain [4], Sardegna [5],
and others underscore the fundamental role TCLs play in the
success of DSR.

TCL-DSR has been a prominent research topic for the past
few decades. The first scheme to harness the potential of
TCLs in DSR was direct load control [6], [7] where utilities
have the ability to remotely manage customers’ TCLs. With
recent advancements in multiagent systems and distributed
control, centralized control frameworks have given way to
distributed control methods. These methods make decisions
in a distributed manner, relying on local measurements and/or
estimations of QoS.

The terms distributed control and multiagent often denote
distributed decision-making in the literature of TCL-DSR.
In this context, each appliance interacts with a central
unit. This central unit collects data and updates local set-
points [8], [9], [10], [11]. However, the requirement of a
central aggregator renders the entire system susceptible to
a single-point denial-of-service (DoS) attack. If the central
aggregator becomes nonoperational, the whole network will
cease functioning. Moreover, customers’ privacy might be
compromised if agents transmit their real-time local and
private power consumption information to a central unit.
To address these limitations, it becomes imperative to elim-
inate the need for an aggregator and instead consider the
adoption of fully distributed algorithms. Such approaches,
as seen in [12], [13], [14], and [15], involve agents solely
exchanging information with their neighboring TCLs.

According to ENTSO-E [16], strategies like those out-
lined in [8], [17], and [18] that involve adjusting the TCLs’
setpoints are no longer considered legit. The remaining feasi-
ble means of control include altering the typical hysteresis
cycle of the appliances’ thermostats while keeping their
setpoints unchanged. This objective can be achieved either
by directly modifying the hysteresis boundaries as proposed
in [11] or by temporarily disconnecting and reconnecting
the TCLs at appropriate intervals, as demonstrated in strate-
gies such as [9] and [14]. However, it is worth noting that
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modifying the hysteresis bounds of commercially available
and preinstalled TCLs is not feasible. Therefore, although this
method aligns with ENTSO-E regulations, it does not appear
practical.

Identifying the dynamics of TCLs using an LTI model is a
common practice in the literature. However, LTI models can
be inaccurate for practical implementation [19] due to distur-
bances like water withdrawal and seasonal changes. To the
best of our knowledge, only a few recent briefs have explored
model-free algorithms, such as those in [9] and [15]. In [9],
a priority-based optimization method is used to desynchronize
power demand by controlling TCLs. The algorithm leverages
data on the TCL temperatures and duty cycles, dispensing
with the explicit use of the temperature model. Subsequently,
each TCL autonomously takes actions based on its score
and the optimization results. In [15], two model-free and
distributed algorithms are proposed for tracking the desired
load. The first algorithm, applicable in K -regular graphs,
involves each agent collecting real-time power consumption
data from its neighbors to make control decisions. The require-
ment of a K -regular graph is subsequently relaxed using
a dynamic consensus protocol, which estimates the mean
network power consumption. In this brief, we also introduce
a model-free scheme. The primary distinctions between this
brief and the approaches presented in [9] and [15] are outlined
below.

1) The algorithm in [9] necessitates an aggregator within
its framework. In contrast, the algorithm proposed in this
article is fully distributed, wherein each agent commu-
nicates solely with its neighboring agents.

2) Both algorithms introduced in [15] require the exchange
of real-time power consumption data among neighboring
agents, potentially raising privacy concerns. In contrast,
our proposed algorithm involves the transfer of only the
Lagrangian multipliers among agents, thus maintaining
the agents’ privacy.

3) Both [9] and [15] assume the availability of temperature
measurements from thermostatically controlled param-
eters for control purposes. This assumption implies a
requirement for smart appliances. As a result, these
algorithms are not suitable for off-the-shelf TCLs.
In contrast, our proposed method eliminates this require-
ment and is compatible with off-the-shelf appliances.

A. Statement of Contributions

In this article, we present a privacy-preserving distributed
greedy algorithm designed to desynchronize power consump-
tion within a network of TCLs. Our model-free approach offers
a straightforward yet highly efficient and practical solution.
The main contributions of this article are as follows.

1) Our proposed algorithm is applicable to off-the-shelf
TCL appliances.

2) We present a novel formulation of the desynchronization
problem for a network of TCLs based on an objective
function only indirectly related to decision-making and
show how the Lagrange multipliers corresponding to
our optimization problem can be used to make control
decisions.

3) The proposed algorithm ensures privacy, i.e., consump-
tion and temperature data are not sent outside the
devices.

4) The approach is fully distributed and based only on
local direct interactions between peer and anonymous
appliances.

B. Structure of the brief

Section II reviews some fundamental concepts in multiagent
systems. The problem statement of this study is presented
in Section III. Section IV details the proposed privacy-
preserving, greedy, and fully distributed TCL-DSR algorithm.
The effectiveness of our proposed scheme is showcased
through simulation results in Section V. Concluding remarks
are provided in Section VI.

II. PRELIMINARIES

Consider a network composed of n TCLs that can interact.
In the remainder of the manuscript, we refer to each TCL
as an agent or node. Let V = {1, 2, . . . , n} represent the
set of agents in the network and E ⊆ {V × V} be the
set of communication links (or edges) among the agents,
i.e., if agent i sends information to j , then (i, j) ∈ E .
Such a network is thus modeled as a graph G = (V, E),
including the sets of nodes V and edges E . We denote the set
of in-neighbors of agent i as N in

i = { j ∈ V \ {i}|( j, i) ∈ E}.
Similarly, the set of out-neighbors of agent i is denoted as
N out

i = { j ∈ V \ {i}|(i, j) ∈ E}. A graph G is called K -regular
if ∀i ∈ V , |N out

i | = |N in
i | = K , i.e. each agent

has K in-neighbors and K out-neighbors. A graph G is
defined undirected if the communication links are bidi-
rectional, i.e., if (i, j) ∈ E implies that ( j, i) ∈ E ,
and is defined directed otherwise. A path πi, j between
nodes i and j is a sequence of consecutive edges, starting
from node i and ending in node j , i.e., it is com-
posed of the edges {(i, v1), (v1, v2), . . . , (vm, j)} ⊂ E , where
{i, v1, v2, . . . , vm, j} ⊂ V . A directed graph G is defined as
strongly connected if there exists a directed path between each
pair of nodes (i, j) in V . In case each edge ( j, i) ∈ E is
associated with a positive weight, ai j > 0, then the graph G
is called weighted. The matrix A = [ai j ] ∈ Rn×n collecting
the weights is defined as adjacency matrix, i.e., ai j > 0 if
( j, i) ∈ E and ai j = 0 otherwise. A square matrix A ∈ Rn×n

with nonnegative entries and with each row (column) summing
to 1 is called row (column) stochastic. Moreover, A is called
doubly stochastic if it is jointly row and column stochastic.
Finally, if the edge weights ai j (k) are time-varying, then
the weighted graph is time-varying as well and is denoted
by G(k) = (V, E(k)). Let EB(k) be the aggregated set of
edges E(k) in the time interval [k0, k0 + B), i.e., EB(k) =

∪
B−1
k=0 E(k0 + k). For k0 ∈ N, a time-varying graph G(k) is

defined as jointly strongly connected if there exists a finite
positive integer B such that the graph (V, EB(k)) is strongly
connected for all finite k0.

III. PROBLEM STATEMENT

Consider a network of TCLs interacting with each other.
Assume that each agent i represents a TCL with its power
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Fig. 1. Reverse hysteretic control of thermostats in TCLs (top), and cycles
of thermostatically controlled temperatures within a bound centered on T set

i
(bottom). Red and blue lines denote ON and OFF conditions, respectively.

outlet plugged into a smart power socket (SPS) adaptor. These
SPSs are equipped with processing units and communication
capabilities. The network topology at each time step tk ∈ R+

can be described by the graph G(tk) = (V, E(tk)), where
E(tk) ⊆ {V × V} represents the set of edges that indicate
interactions among agents.

Each SPS can monitor the active power pi (tk) ∈ R+

consumed by the associated TCL. Additionally, it can control
the power supply to the TCL by manipulating its internal
switch state si (tk) ∈ {0, 1}. For instance, si (tk) = 1 signifies
that the i th TCL is connected to the power supply. Conversely,
si (tk) = 0 indicates that the i th TCL is disconnected, resulting
in pi (tk) = 0. Let Pi ∈ R+ represent the nominal power
of the TCL. Then, the absorbed power at time tk ≥ 0 (with
k ∈ N0) is approximated as

pi (tk) = Pi · si (tk) · hi (tk) (1)

where hi (tk) denotes the internal thermostat state of the i th
TCL. For water heaters and radiators, the thermostat state is
typically updated using a reverse hysteretic control defined as
follows:

hi (tk+1) :=


0, if Ti (tk) > T max

i (2a)
1, if Ti (tk) < T min

i (2b)
hi (tk), otherwise (2c)

where Ti (tk) ∈ R is the temperature of TCL i , and T max
i ≥

T set
i ≥ T min

i > 0 denote the hysteresis window, and T set
i

represents the adjusted setpoint of TCL i as set by its owner.
On the other hand, in refrigerators or cold flow conditioners,
the high and low conditions in (2a) and (2b) are reversed.
Fig. 1 illustrates the hysteresis behavior of the thermostat in
TCLs, as introduced in (2a)–(2c), along with cycles of ther-
mostatically controlled temperatures within a range centered
on T set

i when no control action takes place (i.e., si (tk) = 1 for
all tk ≥ 0). The initial thermostatically controlled temperature,
Ti (0), is lower than T min

i in Fig. 1. Therefore, according to (2b)
and since we assumed si (0) = 1, the TCL consumes its
rated power, Pi , as per (1). The TCL will remain ON until
it reaches the thermostat’s upper limit, T max

i . Subsequently,
the TCL switches off until the temperature drops to T min

i , and
the process repeats.

Fig. 2. Shifting the normal power consumption intervals of Type1 TCLs
(shown by the dashed line) using control signal (3).

If T min
i < Ti (0) < T max

i , the internal thermostat relay state
of the TCL in the first time step after plug-in, denoted as hi (1),
is equal to hi (0). Some TCLs have hi (0) = 1, while others
have hi (0) = 0. We categorize these two types of TCLs as
Type1 (with hi (0) = 1) and Type2 (with hi (0) = 0). This prop-
erty enables a control room to adjust the power consumption
intervals of TCLs by appropriately switching OFF and then ON
the SPS, all while maintaining the thermostatically controlled
temperature within the range [T min

i , T max
i ]. For example, the

control signal

si (tk) =

{
0, if tk = toff

1, otherwise
(3)

could be applied to a Type1 TCL. This control shifts the TCL’s
power consumption, as illustrated in Fig. 2.

For simplicity, let us consider the power consumption
of two TCLs. As depicted in the left column of Fig. 3,
an unfortunate coincidence can occur where these two TCLs
run unnecessarily simultaneously, leading to an increased peak
load. A high peak load is undesirable in power systems as it
necessitates investments in infrastructure, contributes to envi-
ronmental pollution by requiring the operation of inefficient
backup power plants, and raises power costs in the electricity
market, which negatively impacts both residential and indus-
trial customers. Therefore, the preference is to desynchronize
the power consumption of TCLs. This is illustrated in the
second column of Fig. 3, where desynchronizing TCL loads
reduces the peak load.

Now, let us discuss the minimum peak load without
changing the QoS or, equivalently, without altering power
consumption. Consider a sufficiently large time span denoted
by K . Let us define the duty cycle of each TCL i as
dci ∈ [0, 1], representing its ON ratio over the time span K

dci =

∑
k∈K si (tk) · hi (tk)

K
. (4)

Since time shifts generally do not change the duty cycle value,
we choose not to restrict K to a specific time span. However,
it should be sufficiently large to mitigate the effects of noise
and disturbances that might alter the actual duty cycle of an
appliance in short intervals. In this article, we assume that dci

is constant in control. To find dci , the values of si (tk) and hi (tk)
should be measured over a sufficiently large time span K .
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Fig. 3. Individual (top) and aggregated (bottom) power consumption of two TCLs. The left column represents the worst-case scenario where TCLs
simultaneously consume energy within an interval. The second column depicts a favorable scenario in which the power consumption of TCLs does not
overlap. The third column illustrates the best achievable scenario in which the power consumption of TCLs is spread out over the entire time domain.

These measurements are conducted over an uncontrolled
TCL i , as the value of dci is necessary for executing our pro-
posed control algorithm. It is worth mentioning that although
we assume dci to be constant in short horizons, it could be
sensible to update dci occasionally, e.g., every week or month.

From (1), the average power consumption of TCL i over
time span K is∑

k∈K pi (tk)
K

=
Pi ·

∑
k∈K si (tk) · hi (tk)

K
. (5)

Therefore, according to (4), Pi · dci represents the average
power consumption of TCL i over the same time span, K .

As shown in the third column of Fig. 3 in a simple example
of two TCLs, the lowest peak load involves spreading the
power consumption across the entire time domain.

Let us define the total instantaneous absorbed power asso-
ciated with the network of TCLs as

P t(tk) =

n∑
i=1

pi (tk). (6)

In our problem, we assume that switching SPSs ON and
OFF is the only control action. In other words, si (tk) is the
control signal, and our goal is to maintain P t(tk) close to the
desired aggregated power, which leads to the lowest peak load,
given by

P t
d =

n∑
i=1

dci · Pi (7)

while ensuring the privacy of customers.

IV. PRIVACY-PRESERVING DISTRIBUTED GREEDY
CONTROL FRAMEWORK

To obtain the necessary information for implementing our
proposed algorithm, we first introduce a distributed optimiza-
tion problem. The solution of this problem is not going to
be used for resource allocation but rather to determine, in a
distributed and privacy-preserving manner, whether the current
accumulated power consumption of the TCLs’ network is less

than, or greater than P t
d . Consider the following optimization

problem:

minimize
n∑

i=1

(xi − pi (tk))2

s.t.:
n∑

i=1

(xi − dci · Pi ) ≤ 0 (8)

where xi is a virtual decision variable. It is important to
emphasize that xi does not correspond to a physical parameter
of the TCLs. Consequently, there is no need to impose bound-
aries on xi . Problem (8) relates only indirectly to our main
objective, which is finding an appropriate control signal si (tk),
as it does not include si (tk), and in addition, it does not
explicitly address the tracking of the desired aggregated power
in (6). However, we demonstrate how one can determine
whether the current accumulated power consumption of the
TCLs’ network is less than, or greater than P t

d when applying
primal-dual methods to solve (8). Consider the Lagrangian
function as

3
(
x, λ

)
=

n∑
i=1

3i
(
xi , λ

)
=

n∑
i=1

{
(xi − pi (tk))2

+ λ (xi − dci · Pi )
}

(9)

where λ ∈ R+ is the Lagrange multiplier. Therefore, the dual
function is

ϕ
(
λ

)
= min

x∈Rn

{
3

(
x, λ

)}
(10)

where x = [x1, x2, . . . , xn]
T

∈ Rn . Equation (10) can be
written as

ϕ
(
λ

)
=

n∑
i=1

ϕi
(
λ

)
=

n∑
i=1

min
xi ∈R

{
3i

(
xi , λ

)}
. (11)

Therefore, the dual of (8) can be expressed as

max
λ∈R+

min
x∈Rn

3
(
x, λ

)
= max

λ∈R+

n∑
i=1

ϕi
(
λ

)
. (12)
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In this brief, we utilize the constraint-coupled distributed
optimization algorithm introduced in [20], which is based
on dual decomposition, to solve (8). Through this approach,
we determine whether the trivial optimal solution of (8),
xi = pi (tk) for all i ∈ V , satisfies the coupling constraint.
Notably, if the trivial solution meets the coupling constraint
in (8), then by substituting xi with pi (tk) in the coupling
constraint,

∑n
i=1 pi (tk) ≤

∑n
i=1(dci · Pi ), and considering (6)

and (7), it leads to the inequality P t(tk) ≤ P t
d . Conversely,

if
∑n

i=1 pi (tk) >
∑n

i=1(dci · Pi ), then the trivial optimal solu-
tion of (8), xi = pi (tk) for all i ∈ V , is no longer valid.

Let λi (tk) denote the Lagrangian multiplier associated with
agent i at time step tk . By implementing the algorithm
introduced in [20], if λi (tk) converges to 0, agent i can infer
that the coupling constraint is satisfied by the trivial optimal
solution of (8), xi = pi (tk) for all i ∈ V , and consequently,
P t(tk) < P t

d . Otherwise, if λi (tk) > 0, then agent i infers
that the aggregated power consumption exceeds the threshold,
i.e., P t(tk) > P t

d . Thus, intuitively, each agent i takes a control
action (switching on or off the SPS) based on the value of
λi (tk). λi (tk) > 0 indicates that the total aggregated power
consumption exceeds the desired threshold, while λi (tk) = 0
signifies that the total aggregated power consumption is at or
below the desired threshold, as defined in (7).

Remark 1: The convergence rate of the distributed resource
allocation algorithm introduced in [20] is O(log(k)). Several
methods in the literature utilize primal-dual perturbation algo-
rithms to solve (8), such as [21], [22], and [23], which
may exhibit better convergence rates. However, we have
selected [20] for our framework due to the following reasons.

1) In both [21], [22], information related to the primal
problem is exchanged among agents, potentially raising
privacy concerns.

2) In [21] and [22], each agent needs to be aware of the
coupling constraint within the primal problem.

3) The application of algorithms such as [21], [22],
and [23] requires the existence of a known Slater point
known to all agents. In contrast, in [20], only the
existence of such a point is necessary.

4) While the communication network is assumed to be
time-invariant in [23], it can be time-varying in [20]. ■

The distributed resource allocation solver in [20] requires
convexity and zero duality gap, which are satisfied in (8), and
the graph representing the network of TCLs should satisfy the
following necessary assumptions.

Assumption 1: There exists a constant 0 < µ < 1 such that
for all i, j ∈ V and k ≥ 0, ai i (k) ≥ µ and either ai j (k) = 0 or
ai j (k) ∈ [µ, 1). □

Assumption 2: The graph representing the network of TCLs
is jointly strongly connected and its adjacency matrix is doubly
stochastic. □

Algorithm 1 presents our distributed framework for desyn-
chronizing the aggregated power consumption of the network.
First, (8) is solved. Since convergence to the consensus value
of λ is asymptotic, we choose a sufficiently small threshold,
denoted as ϵ > 0, and consider values less than this threshold
as zero. As discussed earlier, the consensus value of λi (tk)
allows us to determine whether P t(tk) < P t

d or P t(tk) > P t
d .

Algorithm 1 (Asynchronously Implemented Within Each
TCL i ∈ V)

Fig. 4. Block diagram of the network connecting TCLs to implement
Algorithm 1.

Next, appropriate control actions are applied. λi (tk) < ϵ,
implies P t(tk) < P t

d . Therefore, if hi (tk) = 0 and λi (tk) < ϵ,
then si (t+

k : tk + γi ) = 0. This indicates that the SPS
disconnects the power for γi seconds in Type 1 TCLs. Here,
γi represents the required time for resetting the internal ther-
mostat. This control action turns ON the Type1 TCLs if Ti (tk)
falls within the range [T min

i , T max
i ].

Elseif λi (tk) > ϵ and hi (tk) = 1, the SPS disconnects
the power of Type2 TCLs for a duration of γi seconds,
as specified in lines 5–7 of Algorithm 1. This action turns
OFF the TCLs if Ti (tk) falls within the range [T min

i , T max
i ].

The block diagram depicting the network connecting TCLs to
implement Algorithm 1 is shown in Fig. 4.

Remark 2: It is important to note that solving (8) using
the algorithm introduced in [20] only requires agents to share
their estimates of Lagrangian multipliers. The Lagrangian
multiplier does not encompass any private details about local
states, power consumption, or appliance temperatures. As a
result, customer privacy is preserved during the execution
of Algorithm 1. Interested readers can refer to [20] for an
in-depth privacy analysis of the distributed resource allocation
solver selected in this article. ■

Remark 3: While security concerns extend beyond the
focus of this work, it is important to acknowledge that adver-
saries or system failures can potentially disrupt distributed
optimization algorithms [24]. It is noteworthy that Algorithm 1
can enhance resilience against cyberattacks or failures affect-
ing a subset of TCLs, particularly when a resilient distributed
resource allocation algorithm, such as the algorithms proposed
in [25] and [26], are employed to solve (8). ■
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In this step, let us discuss and compare the communica-
tion burden and scalability of Algorithm 1 with approaches
like [9], which require a central server to aggregate agent
data. In Algorithm 1, solving (8) to a certain degree using
a distributed resource allocation algorithm is necessary, and
this process inherently demands communication among agents
over iterations.

Let m tk represent the count of iterations needed by the
distributed resource allocation algorithm to address (8) within
the interval (tk−1, tk). Accordingly, the cumulative number
of transmitted data packets for control at tk would be
m tk

∑n
i=1 |N out

i |. In contrast, star networks generally entail
agents only sending information to the central server and
receiving control decisions from it. Hence, the total transmitted
data packets in a single control step amount to 2n. Recall that
for a graph representing the network, strong connectivity is
a requirement. Consequently, |N out

i | ≥ 1 holds for all i ∈ V .
Hence, m tk > 2 indicates that executing Algorithm 1 leads to
a greater overall package transfer compared to typical server-
based methods. However, the advantage of Algorithm 1 lies
in the fact that communication is distributed across all agents
within the network. In Algorithm 1, each agent i is responsible
for compiling |N in

i | data packages per iteration, irrespective
of the total number of agents, denoted by n. Conversely, in a
star-graph topology, a server must receive and analyze n data
packages, which could potentially pose scalability challenges
and result in a substantial communication load concentrated
at a single point.

Subsequently, we present a formal proof that the execution
of Algorithm 1 effectively aids in desynchronizing the power
consumption of appliances.

Theorem 1: Let Assumptions 1 and 2 hold. Let us define
the aggregated absolute desynchronization error by

e(K ) =

K∑
tk=0

∣∣P t(tk) − P t
d

∣∣ (13)

and assume that ec(K ) and eu(K ) represent the desynchro-
nization error in a network controlled by Algorithm 1 and an
uncontrolled network, respectively. Then,

ec(K ) ≤ eu(K ).

Proof: As previously discussed, λi converges to 0 for all
i ∈ V when P t(tk) − P t

d ≤ 0, and λi > 0 for all i ∈ V when
P t(tk) − P t

d > 0. According to line 3 of Algorithm 1, the con-
trol action and activation of the TCLs occur when λi (tk) < ϵ,
which is equivalent to P t(tk) − P t

d < 0.
Applying Algorithm 1 does not alter the network’s energy

demand. Consequently, if Algorithm 1 turns on a TCL during
a period when P t(tk) − P t

d < 0, the corresponding energy
consumption must be offset by reductions from other time
steps, such as tr . When P t(tr ) − P t

d < 0, it does not alter
the desynchronization error. However, if P t(tr ) − P t

d > 0, the
desynchronization error is decreased. This results in

ec(K ) ≤ eu(K ).

A similar argument applies when P t(tr ) − P t
d < 0.

TABLE I
WATER HEATER MODEL PARAMETERS

Fig. 5. Top: Aggregated daily hot water demand for the considered network
of water heaters. Bottom: Daily water demand for a generic water heater.

V. NUMERICAL SIMULATION

To evaluate Algorithm 1, we consider a network of n =

1000 water heaters, whose temperatures Ti (tk) evolve accord-
ing to the model described in [27]

Ti (tk+1) = Ak Ti (tk) + Bk
(
αi T r

i + βi (tk)T in
i + γi hi (tk)si (tk)

)
Ak = e−(αi +βi (tk ))1t , Bk =

(
1 − e−(αi +βi (tk ))1t

)
αi + βi (tk)

(14)

αi =
Si

ρcp Ri Vi
, βi (tk) =

wi (tk)
Vi

, γi =
cp Pi

ρVi
(15)

where si (tk) is the control input designed to desynchronize
the power consumption of TCLs while ensuring that Ti (tk)
remains within the range of T min

i = 50 ◦C and T max
i = 60 ◦C.

T r
i = 20 ◦C represents the room temperature, and wi (tk)

accounts for an unknown disturbance simulating the cold
water refill process within each water heater following water
withdrawal. Additionally, T in

i = 15 ◦C stands for the inlet
cold water temperature. We assume that the graph representing
the communication network of water heaters is directed and
randomly generated 100-regular.

For our simulation, we assume that all water heaters are
identical, sharing the model parameters outlined in Table I.
At the beginning of the simulation, the initial temperatures
TCLs are randomly chosen from the interval [T min

i , T max
i ], with

half of them having an initial thermostat state of hi (0) = 1.
The disturbance wi (tk) is modeled as a specially crafted

stochastic process to replicate increased hot water demand
during peak hours, as depicted in Fig. 5. At last, we model
calls to Algorithm 1 as a Poisson point process with an average
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Fig. 6. Aggregated power consumption of TCLs’ network by implementing
Algorithm 1, priority-based control [9], and uncontrolled network.

Fig. 7. Comparison of the aggregated absolute desynchronization error index
defined in (13) by implementing Algorithm 1, priority-based control [9], and
uncontrolled network.

rate of 20 calls per second. These calls are evenly distributed
between Type1 and Type2 TCLs.

We compare our simulation results with the priority-based
control algorithm introduced in [9] to evaluate our proposed
algorithm. The algorithm proposed in [9] shares similarities
with our approach as it is also model-free and aims to
desynchronize the power consumption of TCLs in a network,
same as the objective of Algorithm 1. However, in the priority-
based control method outlined in [9], all water heaters’ energy
consumption must be transmitted to a central server at each
time step. Consequently, the server can readily determine
whether the aggregated network power consumption surpasses
the average at any given time step. This ease of access enables
the server to apply appropriate control actions effectively.
In contrast, our proposed algorithm equips water heaters with
data from only a limited subset of neighboring appliances as
depicted in Fig. 4. Furthermore, these water heaters do not
receive private information concerning their neighbors’ power
consumption. As a result, an individual water heater cannot
directly ascertain the aggregated energy consumption of the
TCL network.

Given these explanations, we do not anticipate achieving
superior results compared to the priority-based control method.
Our objective, instead, is to present relatively comparable
results while incorporating scalability, privacy preservation,
a fully distributed architecture, and compatibility with existing
appliances. In Fig. 6, a comparison is presented between
the aggregated power consumption of the uncontrolled TCL

network, the TCL network controlled by the priority-based
method, and the network implementing Algorithm 1.

As depicted in Fig. 6, during the time frame from
3 A.M. to 6 A.M., the aggregated power consumption remains
below the average for both the priority-based control and
Algorithm 1. This outcome arises due to the preservation of
customers’ authority to set the temperature of their respective
appliances. Consequently, water heaters avoid increased con-
sumption to avoid violating the upper temperature limit T max

i
during off-peak hours.

Fig. 7 compares the aggregated absolute desynchronization
error index, as defined in (13). It is evident that the imple-
mentation of Algorithm 1 leads to a substantial reduction in
the error index compared to the uncontrolled scenario, and
the reduction is relatively similar to that achieved by the
priority-based control method.

VI. CONCLUSION

This brief introduces a novel model-free, privacy-
preserving, asynchronous greedy control framework designed
to desynchronize the power consumption of TCLs within
a fully distributed architecture. In our framework, agents
exclusively share their Lagrange multiplier estimates, pre-
serving the confidentiality of agents’ private data regarding
power consumption and temperature. We establish a dis-
tributed optimization problem where the consensus value of
the Lagrange multiplier, once solved, provides agents with
meaningful information to guide appropriate control actions.
In the simulation section, we benchmark our proposed method
against a priority-based control approach, feasible only within
a star architecture requiring agents to transmit private data to
a central server. Our simulation results showcase the poten-
tial of achieving comparable outcomes while incorporating
critical attributes such as scalability, privacy preservation,
a fully distributed architecture, and adaptability to off-the-shelf
appliances.
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