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Novel Augmented Quaternion UKF for Enhanced
Loosely Coupled GPS/INS Integration
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Abstract— This article presents a novel direct filtering
approach for loosely coupled global positioning system (GPS) and
inertial navigation system (INS) integration. The proposed model
is established based on utilizing the full nonlinear INS state equa-
tions in a direct configuration while including vehicle orientation
through a unit-quaternion representation. A novel augmented
quaternion unscented Kalman filter (AQUKF) is developed and
proposed to address the direct nonlinear estimation of vehicle
states for outdoor vehicle localization while preserving the
non-Euclidean geometry of unit-quaternions. The proposed filter
is experimentally validated under full GPS coverage as well as
prolonged GPS outages. Results obtained in this article show
that the proposed filter outperforms other existing solutions in
various experimental testing scenarios.

Index Terms— Global positioning system (GPS)/inertial nav-
igation system (INS), Kalman filter (KF), navigation, outdoor
localization, sensor fusion, unit-quaternion.

I. INTRODUCTION

ACCURATE vehicle localization is crucial for the nav-
igation of unmanned ground vehicles (UGVs) and

unmanned aerial vehicles (UAVs) [1], [2], [3]. It is the
process by which instantaneous vehicle states such as position,
velocity, and attitude are estimated based on the information
available from onboard sensors. Vehicles used for outdoor
applications rely on outdoor localization strategies for their
navigation. The global positioning system (GPS) is a com-
monly used sensor for accurate vehicle positioning from which
other vehicle states are derived. However, despite its high
accuracy, the sensor typically has a low sampling rate, and
its signal is easily interrupted by structures which decreases
the GPS reliability for continuous vehicle localization [4], [5].
Alternatively, an inertial measurement unit (IMU) with a high
sampling frequency is used to measure a vehicle’s acceleration
and angular velocities which are recursively integrated in time
with known initial conditions to provide a continuous estimate
of vehicle states. This recursive algorithm is known as dead
reckoning (DR) [6], [7] and will often lead to a diverging
solution from accumulating error due to the time integral of
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noisy inertial sensor measurements. Together the IMU and
the DR algorithm make up the inertial navigation system
(INS) which is a very common approach used for vehicle
localization due to its high sampling rate and continuous
state estimation. However, the INS requires an aiding system
with accurate localization information to periodically reset
the initial conditions used by the DR algorithm to improve
estimation accuracy. Therefore, a GPS/INS coupling is used
to overcome the limitations of each standalone system and
deliver an accurate localization solution for outdoor navigation
applications.

The GPS/INS coupling requires a sensor fusion algorithm
that mathematically combines their individual solutions
together. The most common GPS/INS sensor fusion approach
found in literature is the discrete-time Kalman filter (KF)
[8]; particularly, the extended KF (EKF) variant which is
extended to include the fusion of nonlinear systems [9]. The
EKF uses a first-order Taylor series expansion to linearize
nonlinear system equations around the current state estimate.
Therefore, to use the EKF for GPS/INS fusion, researchers
developed an indirect estimation strategy that linearizes the
INS kinematic equations into an error model. In this approach,
the difference in the INS solution and the GPS measurements
is used to estimate the INS error, which is then used to correct
the INS solution, hence the name indirect estimation. This
form of EKF-based indirect fusion is the most reported in
the literature for GPS/INS integration [10], [11], [12], [13],
[14], [15], [16], [17]. However, the EKF only works well
in the region where the first-order linearization sufficiently
approximates the nonlinear function, which is not always the
case in practice [18].

Alternatively, the unscented KF (UKF) [19], [20] was devel-
oped to overcome the EKF’s need for system linearization.
Instead, the UKF uses a deterministic sampling technique
known as the unscented transformation (UT) through which
a finite number of weighted sigma points are propagated
through the nonlinear system models to provide a better
approximate of the state’s probability distribution rather than
approximating the nonlinear function. The UKF is well stud-
ied and is proven to yield high-accuracy state estimates
in many applications [21], [22], [23] including GPS/INS
fusion [24], [25]. However, Zhang and Li [24] and Hu et al.
[25] chose to use indirect GPS/INS integration which does
not take advantage of the UKF’s full potential in handling
nonlinear systems. Therefore, this article intends to use a
direct GPS/INS fusion algorithm based on the UKF to avoid
system linearization and utilize the full nonlinear INS state
model.
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The use of a direct estimation strategy for GPS/INS inte-
gration is not an entirely new concept and was first introduced
in [26] using a linear state model utilizing INS acceleration as
input to the filter. Another study [27] uses an EKF to directly
estimate the INS states based on linearized state equations.
Recently a direct UKF that uses the INS nonlinear kinematic
model was proposed in [28] which delivers promising results.
However, the authors represent vehicle attitude using Euler
angles which are known to occasionally run into singularities
that may lead to inaccurate representation of vehicle orienta-
tion. Furthermore, the Euler representation is computationally
intensive due to the use of trigonometric functions in their
rotation matrix parametrization [29]. Therefore, there is room
for improving attitude estimation and the computational cost
of direct GPS/INS integration that were not addressed in [28].

A more computationally efficient and singularity-free
approach to representing vehicle attitude is the use of unit-
quaternions. However, unit-quaternions do not pertain to the
Euclidean vector space and do not obey traditional mathemat-
ical operations [30], [31]. This creates a challenge in using a
UKF for the direct estimation of unit-quaternions due to its
UT equations. Hence, if left untreated, the added uncertainty
in the direct estimation of unit-quaternions using a traditional
UKF will lead to a suboptimal GPS/INS state estimate.
Therefore, this article proposes a novel direct GPS/INS fusion
algorithm that uses nonlinear INS kinematic model augmented
with unit-quaternion states named the augmented quaternion
UKF (AQUKF). The proposed filter is intended to overcome
the linearization and indirect estimation limitations of EKF
based fusion while simultaneously addressing the concerns
associated with quaternion estimation of a traditional UKF.
Table I compares the proposed work to existing literature and
highlights the key contributions of this article. These can be
summarized as follows.

1) Develop a direct nonlinear GPS/INS fusion approach
based on the UKF algorithm that overcomes the limi-
tations of the linearized error model EKF.

2) Address the issues with Euler-based GPS/INS fusion by
developing an augmented quaternion GPS/INS model
for enhanced fusion accuracy based on a newly proposed
AQUKF. The AQUKF is developed to take care of non-
Euclidean unit-quaternions mathematics for improved
attitude estimation.

3) Experimentally validate the proposed GPS/INS fusion
approach under real-world trajectory with simulated
GPS outages and noisy low-cost IMU.

The rest of this article is organized as follows: Section II,
provides a detailed description of the GPS/INS integration
in terms of system kinematic and measurement models.
Section III outlines the formulation of the proposed filtering
algorithm. In Section IV, the experimental setup is high-
lighted, and the obtained results are presented and discussed
in Section V. Finally, the findings of this article are concluded
in Section VI.

II. GPS/INS INTEGRATION

A GPS/INS-based integration relies on the use of GPS
measurements to correct the diverging INS solution. In the

proposed direct fusion approach, we model the system kine-
matics using INS equations augmented with quaternion states
for improved estimation accuracy. Meanwhile, the measure-
ment model is constructed using GPS output information.

A. INS Kinematic Model

The INS used in this article consists of a strapdown IMU
attached to the vehicle’s body. The IMU uses three mutu-
ally orthogonal accelerometers and gyroscopes for measuring
vehicle’s acceleration and angular velocity, respectively. All
measurements are made with respect to the Earth-centered
inertial (ECI) frame and resolved in the body frame. A mech-
anization algorithm is used to transform IMU measurements
into position, velocity, and attitude information. IMU measure-
ments are obtained as three specific body frame specific forces
F B and three body frame angular velocities ωB

I B that measure
the vehicle’s rotation with respect to the ECI frame. The
letters B and I are used to denote the body and ECI frames,
respectively. IMU measured output is modeled as follows:

F̄ B
= F B

+ bB
a (1)

ω̄B
I B = ωB

I B + bB
g (2)

where F̄B and ω̄B
I B are the IMU bias corrupted measurements.

Meanwhile, bB
a and bB

g are body frame accelerometer bias and
gyroscope drift, respectively, modeled as a first-order Gauss-
Markov process described by the following equations [32]:

ḃB
a = −βabB

a +

√
2βaσ 2

agwa (3)

ḃB
g = −βgbB

g +

√
2βgσ 2

g wg (4)

where β is the reciprocal of the correlation time process,
w is a zero-mean uncorrelated Gaussian noise vector, and
σ 2 is the variance of the white noise associated with the
random process. Please note that all variables are denoted
with subscripts a and g for accelerometer and gyroscope,
respectively.

Since the body frame is attached to the vehicle, the INS
mechanization is performed with respect to another fixed
computational frame, which is chosen as the Earth-centered-
Earth-fixed (ECEF) and is denoted by the letter E . Gyroscope
measurements are used to define the orientation of the body
frame with respect to the computational ECEF frame at any
given time. Such orientation is defined by a rotation matrix that
transforms any physical quantity from the body frame to the
ECEF frame and is denoted by C E

B . Therefore the following
equation is used to propagate this rotation matrix in time using
gyroscopic measurements:

Ċ E
B = C E

B �B
E B (5)

where �B
E B is the 3 × 3 skew-symmetric matrix of ωB

E B =

[ωx ωy ωz]
T. The latter is the angular velocity of the body

frame with respect to the ECEF frame resolved in the body
frame and calculated according to the following equation:

ωB
E B = ωB

I B − C ET

B ωE
I E (6)

where ωB
I B is the gyroscope measurement vector and ωE

I E =

[0 0 ωE ]
T is the Earth’s angular velocity vector with respect
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TABLE I
COMPARISON OF COMMON LOOSELY COUPLED GPS/INS FUSION TECHNIQUES FOUND IN LITERATURE

to the ECI frame resolved in the ECEF frame with ωE being
the Earth’s rotation rate.

Equation (6) cannot be solved in a closed form and requires
numerical integration which is achieved by parametrizing the
rotation matrix. The three most common methods are Euler
angles, direction cosine matrices (DCMs), and unit-quaternion
parametrization. The unit-quaternion approach is considered
the most effective way of parametrizing the rotation matrix due
to its low computational cost and ability to provide singularity
free solution at all possible orientations [32].

A unit-quaternion describing the rotation between the body
frame and the ECEF frame q E

B = [q0 q1 q2 q3]
T is constrained

to a nonlinear Riemannian manifold inside a 4-D unit sphere.
Such constraint is described mathematically according to the
following equation:

q2
0 + q2

1 + q2
2 + q2

3 = 1. (7)

The unit-quaternion q E
B is used to parametrize the rotation

matrix C E
B as follows:

C E
B =

 q2
o +q2

1 −q2
2 −q2

3 2(q1q2−q0q3) 2(q1q3+qoq2)

2(q1q2+qoq3) q2
o −q2

1 +q2
2 −q2

3 2(q2q3−qoq1)

2(q1q3−qoq2) 2(q2q3+qoq1) q2
o −q2

1 −q2
2 +q2

3

.

(8)

The quaternion parameters are a function of time and are
propagated dynamically accordingly

q̇ E
B =

1
2
�̄B

E Bq E
B (9)

where �̄B
E B is the 4 × 4 skew-symmetric matrix of ωB

E B written
in the following form:

�̄B
E B =


0 −ωB

E Bx
−ωB

E By
−ωB

E Bz

ωB
E Bx

0 ωB
E BZ

−ωB
E By

ωB
E By

−ωB
E BZ

0 ωB
E Bx

ωB
E BZ

ωB
E By

−ωB
E Bx

0

. (10)

In this article, we use (9) instead of (5) to represent vehicle
orientation at all times to simplify and improve the GPS/INS
integration.

The vehicle’s measured specific force is integrated to obtain
the vehicle’s translational states which consist of its position
and velocity. The vehicle’s acceleration is derived in the ECEF
frame as follows [10]:

V̇ E
= C E

B F B
− 2�E

I E V E
− �E

I E
2
P E

+ G E (11)

where �E
I E is the 3 × 3 skew-symmetric matrix of ωE

I E and
G E is the gravitational vector in the E-frame [10].

The vehicle’s velocity V E is obtained by integrating (11)
which is integrated further to obtain the vehicle’s position P E

represented as follows:

Ṗ E
= V E . (12)

The full INS state vector, (13) consists of the orientation
between the body frame and the ECEF frame described by
a unit-quaternion, the vehicle’s position, and velocity in the
ECEF frame, and the sensors bias. Therefore, the nonlinear
state equations are summarized by the following equation (14):

xt =
[
q E

B V E P E bB
a bB

g

]T
(13)

q̇ E
B

V̇ E

Ṗ E

ḃB
a

ḃB
g

 =



1
2
�̄B

E Bq E
B

C E
B F B

− 2�E
I E V E

− �E
I E

2 P E
+ G E

V E

−βabB
a

−βgbB
g



+


04x1
03x1
03x1√
2βσ 2

ba√
2βσ 2

bg

w. (14)

Equation (14) is a continuous time process model described
as follows:

ẋ t = 8(xt ) + 0wt (15)

where xt and wt are continuous-time state vectors and process
noise, respectively. 8(.) is a nonlinear continuous-time state-
transition function and 0 is process noise distribution vector.
However, to use a KF-based GPS/INS fusion algorithm a
discretization step is necessary, using sensor sampling time
1T to get the system in the following equation:

xk+1 = f (xk) + 01T wk (16)

where xk and wk are discrete-time state vector and process
noise, respectively, observed at discrete-time step k. f (.) in
this case is a discrete-time nonlinear function derived from
8(.) of (14) using improved Euler discretization [33].

In contrast to other existing GPS/INS models [11], [13],
[14], [15], [16], [34], [35], the proposed approach aug-
ments the vehicle’s attitude as unit-quaternion within the
INS equations, allowing for its direct estimation at a lower
computational cost alongside position, velocity, and sensor
bias states for improved estimation accuracy.
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B. Measurement Model

The GPS position and velocity measurements in the ECEF
frame are used for KF-based fusion. The following equation
below describes the discrete-time measurement vector zk used
in this article:

zk =

[
V E

Gps

P E
GPS

]
. (17)

By considering the state and measurement vectors of (13)
and (17), respectively, a discrete-time measurement model is
constructed as follows:

zk = Hk xk + vk (18)

where Hk = [06×4, I 6×6, 06×6] is a constant linear observation
matrix and vk ∈ Rm is uncorrelated zero-mean Gaussian white
measurement noise with covariance matrix E[vkv

T
k ] = Rk .

III. PROPOSED FILTER FORMULATION

In this article, a UKF is chosen for the purpose of improving
GPS/INS fusion accuracy by avoiding system linearization.
However, many studies [36], [37] show that a traditional UKF
is not suitable for the nonlinear estimation of unit-quaternion
states that are augmented in the proposed novel direct non-
linear INS model of (14). This is due to the fact that
UKF does not consider the non-Euclidean geometry of a
constrained unit-quaternion. Therefore, we propose a parallel
fusion scheme that incorporates a quaternion-based UKF to
simultaneously satisfy the unit-quaternion geometry constraint
while staying relevant to the nonquaternion states and mea-
surements involved in the proposed GPS/INS direct fusion
model presented earlier.

The unit-quaternion mathematical operations are to be intro-
duced initially before the formulation of the proposed AQUKF
filtering model.

A. Unit-Quaternion Operations

Unit-quaternions have a unique set of mathematical relations
and operations due to them being constrained to a 4-D
Riemannian manifold. Therefore, it is important to establish
the mathematics necessary to constraint the equations of a
traditional UKF for the nonlinear filtering of unit-quaternions.

Given qa = (va, na) and qb = (vb, nb) as two different
unit-quaternions where v and n are real and imaginary compo-
nents, respectively, their product is described as follows [30]:

qa ⊗ qb =
[
vavb − nT

a nb, vanb + vbna + na × nb
]

(19)

where × denotes the cross-product operator.
Meanwhile, quaternion subtraction is defined as their con-

jugate multiplication

qa ⊖ qb = qa ⊗ q−1
b (20)

where q−1
= (v, −n).

A unit-quaternion q defines a rotation θ along an axis e of
unit norm used to express the quaternion’s real and imaginary
components as follows:

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
e
]
. (21)

Following the definition in (19) a mapping between a
unit-quaternion in a 4-D Riemannian manifold and a rotation
vector in the 3-D Euclidean tangent space can be established.
A mapping from a rotational vector r to a unit-quaternion is
defined as follows:

q =


(

cos
(

∥r∥

2

)
, sin

(
∥r∥

2

)
r

∥r∥

)
, if ∥r∥ ̸= 0

(1, [0]3×1), if ∥r∥ = 0.

(22)

Equation (22) is denoted by r2q(.) operator for brevity.
Such mapping is quite essential as it will be used as the
basis for modifying UKF based equations to account for direct
quaternion estimation. It is important to note that (19)–(22)
will serve as the basis for developing the proposed AQUKF
in Section III-B.

B. Augmented Quaternion UKF

The proposed nonlinear augmented quaternion INS state
vector presented by (13) offers the flexibility of partitioning the
states in to x1 = q E

B and x2 = [V E P E bB
a bB

g ]
T representing

the constrained and unconstrained states, respectively. There-
fore, a partitioned continuous-time process model is proposed
as follows:

q̇ E
B =

1
2
�̄B

E Bq E
B (23)

V̇ E

Ṗ E

ḃB
a

ḃB
g

 =


C E

B F B
− 2�E

I E V E
− �E

I E
2 P E

+ G E

V E

−βabB
a

−βgbB
g

. (24)

Equations (23) and (24) are converted into their
discrete-time equivalent as presented earlier to be used by the
proposed AQUKF algorithm{

x1k+1 = f1(x1k ) + 011T w1k

x2k+1 = f2(x2k ) + 021T w2k

(25)

where x1k ∈ Rl and x2k ∈ Rn are the constrained and uncon-
strained state vectors, respectively, at discrete-time step k;
w1k ∈ Rl and w2k ∈ Rn are uncorrelated zero-mean Gaussian
white process noise with covariance matrices E[w1k w

T
1k

] =

Q1k and E[w2k w
T
2k

] = Q2k ; f1,2(.) is the discrete-time nonlin-
ear process model.

Similar to a traditional UKF, the proposed AQUKF
algorithm uses the UT approach to carefully select a set of
deterministic sigma points based on the a priori mean and
covariance of the given state under the Gaussian random vari-
able (GRV) assumption. Computed sigma points are directly
propagated through the nonlinear system model to provide
a more accurate estimate of the state’s posteriori mean and
covariance.

However, since constrained and unconstrained states are
involved in the filtering process, the partitioned models
of (23)–(25) are used to create a parallel algorithm that
allows for the simultaneous independent UT of constrained
and unconstrained states followed by a parallel prediction
and finally an augmented correction. The proposed model
not only guarantees the accurate estimation of constrained
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states by conserving their norm unity but also cuts down on
computational time by running a parallel UT and prediction
scheme.

The AQUKF framework involves the recursion of the fol-
lowing steps.

Step 1: Given a posteriori state and state covariance esti-
mates, x̂k|k =

[
x̂1k|k

x̂2k|k

]
and P̂k|k =

[
P̂1k|k 0

0 P̂2k|k

]
, respectively,

obtained from the previous estimation step, a parallel sigma
point transformation is performed using quaternion UT (QUT)
and traditional UT, defined by (26) and (27), respectively.
QUT is formulated using constrained quaternion operations
introduced earlier in (19)–(22) as follows:

χ1i,k|k = x̂1k|k , i = 0

χ1i,k|k = x̂1k|k ⊗ r2q
(√

(l + λ )P̂1k|k

)
i
, i = 1, . . . , l

χ1i,k|k = x̂1k|k ⊗ r2q
(√

(l + λ )P̂1k|k

)−1
, i = l + 1, . . . , 2 l

(26)

where x̂1k|k ∈ Rl and χ1k|k ∈ R2l+1 are the a priori
unit-quaternion state vector and sigma points, respectively,
while P̂1k|k is the a priori state covariance associated
with the unit-quaternion state vector. Furthermore, λ is
a scaling parameter usually chosen in the range [0, 1]
while (((l + λ )P̂1k|k )

1/2)i is the i th column of the matrix
((l + λ )P̂1k|k )

1/2 computed using lower triangular Cholesky
decomposition and is taken as a rotational vector. Hence,
the r2q() mapping is used to convert this state into a
unit-quaternion where simple quaternion addition and subtrac-
tion are represented by quaternion product [38]. It is important
to note that having unit-quaternion sigma points is highly
important for the accurate estimation of unit-quaternion states
and the overall filter’s stability.

Meanwhile, the UT of nonquaternion states is performed as
follows:

χ2i,k|k = x̂2k|k , i = 0

χ2i,k|k = x̂2k|k +

(√
(n + κ)P̂2k|k

)
i
, i = 1, . . . , n

χ2i,k|k = x̂2k|k −

(√
(n + κ)P̂2k|k

)
i
, i = n + 1, . . . , 2 n

(27)

where x̂2k|k ∈ Rn and χ2k ∈ R2n+1 are the nonquaternion
state vector and sigma points, respectively, while P̂2k|k is the
state covariance associated with the nonquaternion state vector.
Furthermore, κ is a scaling parameter usually chosen in the
range [0, 1] while (((n + κ)P̂2k|k )

1/2)i is the i th column of
the matrix ((n + κ)P̂2k|k )

1/2 computed using lower triangular
Cholesky decomposition.

Step 2: A priori state estimates x̂k+1|k and state covariances
P̂k+1|k are predicted by propagating the sigma points of (26)
and (27) as follows:

χ1i,k+1|k = f1
(
χ1i,k|k

)
, i = 0, 1, . . . , 2l (28)

x̂1k+1|k =

∑2l
i=0 W 1

i χ1i,k+1|k∣∣∣∑2l
i=0 W 1

i χ1i,k+1|k

∣∣∣ (29)

where

{
W 1

i = (λ/(l + λ )), i = 0
W 1

i = (λ/(2(l + λ ))), i = 1, . . . , 2l

P̂1k+1|k =

2l∑
i=0

W 1
i

(
χ1i,k+1|k ⊖ x̂1k+1|k

)(
χ1i,k+1|k ⊖ x̂1k+1|k

)T
+ Q1

(30)

χ2i,k+1|k = f2
(
χ2i,k|k

)
, i = 0, 1, . . . , 2n (31)

x̂2k+1|k =

2n∑
i=0

W 2
i χ2i,k|k (32)

where

{
W 2

i = (λ/(n + λ )), i = 0
W 2

i = (λ/(2(n + λ ))), i = 1, . . . , 2n

P̂2k+1|k =

2n∑
i=0

W 2
i

(
χ2i,k+1|k − x̂2k+1|k

)(
χ2i,k+1|k − x̂2k+1|k

)T
+ Q2.

(33)

It is important to note that (28)–(30) are referred to as the
constrained prediction defined exclusively for constrained unit-
quaternion states. Meanwhile, (31)–(33) are the unconstrained
prediction equations used for regular nonquaternion states.
Accordingly, a priori state estimate x̂k+1|k and state covariance
P̂k+1|k are augmented as indicated by (34) and (35) which are
then used for the last step of the proposed algorithm AQUKF
known as the augmented correction

x̂k+1|k =

[
x̂1k+1|k

x̂2k+1|k

]
(34)

P̂k+1|k =

[
P̂1k+1|k 0

0 P̂2k+1|k

]
. (35)

Step 3: A posteriori state estimate x̂k+1|k+1 and state covari-
ance P̂k+1|k+1 are updated in an augmented correction step
using newly obtained GPS measurements according to the
discretized measurement model of (18).

Since the measurement model of (18) is linear and the
measurements are unconstrained, the basic KF equations are
used for this step to reduce the computational cost without any
tradeoff in accuracy as shown in the following equations:

ẑk+1|k = Hk x̂k+1|k (36)

Sk+1 = Hk P̂k+1|k H T
k + Rk (37)

Tk+1 = P̂k+1|k H T
k (38)

Kk+1 = Tk+1S−1
k+1 (39)

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk − ẑk+1|k

)
(40)

P̂k+1|k+1 = P̂k+1|k − Kk+1S−1
k+1 K T

k+1 (41)

where S and T are the innovation covariance and cross
covariance, respectively, and K is the Kalman gain.

A summary of the proposed AQUKF algorithm is illustrated
in Fig. 1.

IV. EXPERIMENTAL VALIDATION

The proposed algorithm is validated experimentally using
low-cost strapdown IMU and GPS units mounted onto a
passenger vehicle as shown in Fig. 2. The sensors used for this
experimental work are a part of the Xsens MTi-G-710 series
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Fig. 1. Proposed AQUKF algorithm.

Fig. 2. Experimental setup. (a) IMU. (b) GPS receiver.

TABLE II

IMU SPECIFICATIONS [39]

manufactured by Movella and their technical specifications are
summarized in Tables II and III. The IMU and GPS sensors
are sampled at 400 and 4 Hz, respectively, which shows
the significant difference in sampling frequency between the
sensors. Therefore, this article intends to study the impact of
the sampling ratio between the two sensors on fusion accuracy.
To do so, a predefined trajectory is generated by driving a
passenger vehicle around Sharjah University City to validate
the proposed algorithm’s performance under different driving
conditions and maneuvers. Fig. 3 shows the GPS data of the
chosen trajectory.

In addition, a GPS outage with varying lengths is simulated
on the collected data at the 100 s mark of the field experiment
to test the proposed solution’s performance in the absence

TABLE III
GPS RECEIVER SPECIFICATIONS [39]

Fig. 3. Experimental vehicle trajectory without GPS outage.

of GPS signal as illustrated on Fig. 4. This experimental
environment, with the simulated GPS outages, will ensure an
extensive evaluation of the performance and robustness of the
proposed sensor fusion algorithm under real-world scenarios
and practical conditions.

V. RESULTS AND DISCUSSION

The estimation accuracy of the proposed GPS/INS fusion
algorithm is evaluated against the solution provided by the
Xsens MTi-G-710 unit taken as the benchmark for this article
due to its maturity. Similarly, the performance of the most
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Fig. 4. Experimental vehicle trajectory with simulated GPS outage of 20 s
duration.

TABLE IV
STATISTICAL ANALYSIS OF POSITION ESTIMATION ERROR

TABLE V
STATISTICAL ANALYSIS OF VELOCITY ESTIMATION ERROR

cited indirect EKF [10], [11], [12], [13], [14], [15], [16], [17]
as well as a traditional UKF based on the proposed direct
INS are evaluated using the same reference. Qualitative and
quantitative analysis of vehicle state estimates are used to
carefully compare the performance of the three algorithms to
study the improvements made to the GPS/INS fusion accuracy
by the proposed AQUKF algorithm.

Figs. 5 and 6 provide a graphical illustration of the esti-
mation accuracy in position and velocity, respectively, along
the ECEF x- and y-directions without simulated GPS outage.
Furthermore, Tables IV and V support the graphical findings of
Figs. 5 and 6 by providing a statistical analysis in terms of the
mean and standard deviation (STD) of the estimation errors in
position and velocity, along the three orthogonal ECEF axes.

In addition, graphical representations of the attitude errors in
pitch, roll, and yaw estimates representing vehicle’s orientation
with respect to the East North Up (ENU) navigation frame are
demonstrated in Fig. 7. The mean and STD corresponding to
the estimation errors of Fig. 7 are summarized in Table VI.
The angular rate measurements of the low-cost gyroscope
used in this article are plotted on Fig. 8 to indicate the
level of noise and uncertainty handled in the fusion process.
By initial inspection of the obtained results without simulated
GPS outage, we can draw a conclusion that indirect EKF and
traditional UKF are no contenders to the proposed AQUKF

Fig. 5. ECEF position estimate versus time. (a) x-direction and
(b) y-direction (without GPS outage).

which outperforms them in the estimation of all vehicle states
as demonstrated graphically by Figs. 5–7 and statistically
supported by Tables IV–VI. The AQUKF is shown to maintain
mean and STD values that are within satisfactory practical
accuracy. An extended study is performed to measure the level
of improvement in estimation accuracy provided by the UKF
and AQUKF using the indirect EKF as the baseline due to
being the worst performing filter out of the three. The findings
of this extended study are summarized graphically in Figs. 9
and 10 to provide a visual demonstration of the improvements
obtained in the error mean and STD, respectively, of the posi-
tion, velocity, and attitude estimates. A negative percentage
indicates a drop in performance in comparison to the EKF
algorithm.

The estimation performance of the direct Euler UKF [28]
is highlighted in Tables IV–VI as well as Figs. 11 and 12
without simulated GPS outages. It is found that although the
Euler direct UKF has a better estimation performance than
the traditional indirect EKF and UKF, it still underperforms in
comparison to the proposed AQUKF. Furthermore, the average
computational time of the traditional indirect EKF, UKF, direct
Euler UKF [28], and the proposed AQUKF are found to be
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Fig. 6. ECEF velocity estimate versus time (a) x-direction and (b) y-direction
(without GPS outage).

Fig. 7. Body frame to ENU attitude estimate errors versus time (without
GPS outage).

1.72, 1.89, 2.52, and 2.34 ms, respectively, per iteration. It is
important to note that for this real-time consideration, the

TABLE VI
STATISTICAL ANALYSIS OF ATTITUDE ESTIMATION ERROR

Fig. 8. Gyroscope angular rate of turn (RoT) measurements versus time.

Fig. 9. Percentage improvement in error mean with respect to the EKF.

computational time per iteration has to fall below the sampling
time of the IMU which is 2.50 ms for this work. Therefore, the
direct Euler UKF is not practically fit for real-time estimation
using a high sampling IMU.

The position estimation accuracy in the ECEF x- and
y-directions during GPS outage with varying length is pre-
sented graphically in Figs. 13 and 14, respectively. In addition,
Fig. 15 illustrates the statistical mean absolute error (MAE)
associated with the estimation errors of Figs. 13 and 14.
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Fig. 10. Percentage improvement in error variance with respect to the EKF.

Fig. 11. ECEF position estimate comparison (without GPS outage).

Once more, the obtained results show that the AQUKF is
capable of significantly minimizing INS errors in contrast to
the indirect EKF and traditional UKF during GPS outages.
This effect is more significant as the outage period increases
indicating the importance of high accuracy estimates between
successive GPS measurements used to correct IMU sensor bias
and minimize INS divergence.

The presented results align with the proposed theoretical
premise that direct filtering approaches that utilize the full
nonlinear dynamics of GPS/INS fusion are superior to ones
that rely on model linearization. This can be strictly observed
in the poor performance of an indirect EKF in contrast
to direct traditional UKF and the proposed direct AQUKF
model. In addition, this article was presented on the basis
that the accuracy of vehicle attitude information is vital for
high accuracy vehicle localization. This statement is supported
by the discrepancy in estimation accuracy observed between
the traditional UKF and the proposed AQUKF given that

Fig. 12. ECEF velocity estimate comparison (without GPS outage).

Fig. 13. ECEF x-position estimate during GPS outage of varying duration.

Fig. 14. ECEF y-position estimate during GPS outage of varying duration.

both use the same model with the only difference being
how quaternions are propagated within the UKF equations.
The results show that a direct traditional UKF can perform
worse than the EKF in some cases due to the increased
uncertainty in quaternion propagation as indicated by Fig. 15,
further highlighting the contribution of the proposed AQUKF
algorithm.
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Fig. 15. MAE values in position estimates during GPS outage with varying
duration.

All the obtained results indicate that the proposed AQUKF
algorithm provides a high-level estimation accuracy for
outdoor vehicle localization using low-cost loosely coupled
GPS/INS that holds true during prolonged GPS outages.

VI. CONCLUSION

This article proposes a new direct filtering approach for
low-cost loosely coupled GPS/INS. The contribution of this
article is that a direct INS kinematic model is established
which augments vehicle orientation through a unit-quaternion
format. In addition, a UKF is used to utilize the full nonlin-
earity of the proposed direct model which is further modified
to account for quaternion non-Euclidean mathematics through
a novel AQUKF algorithm.

The proposed AQUKF is validated experimentally for out-
door vehicle localization of a passenger vehicle mounted with
low-cost strapdown IMU and GPS sensors. The difference in
sampling frequencies between the two sensors and a simulated
GPS outage with varying lengths were used to evaluate the
performance of the proposed solution and compare it to that
of an indirect EKF and a direct traditional UKF. The obtained
results support that the proposed AQUKF outperforms other
alternative fusion models in all given scenarios, implying
the importance of direct fusion models and uncertainty-free
quaternion propagation for accurate GPS/INS fusion. It is
worth noting that the proposed AQUKF is developed based on
the assumption that the GPS/INS measurements are Gaussian
with known covariance which is not always true in practice.
Therefore, to further improve the results of this work, it is rec-
ommended to use an adaptive variant of the proposed AQUKF
to handle Gaussian noise with time-variant covariance and/or
non-Gaussian noise, which will be the scope of our future
work. Furthermore, future research may include expanding the
findings of this work to the detection of noncooperative targets
with unknown positions utilizing more than two sensors.
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