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Abstract— In this article, we consider a dc microgrid composed
of distributed generation units (DGUs) trading energy among
each other, where the energy price depends on the total current
generated by all the DGUs. We then use a Cournot aggregative
game to describe the self-interested interaction among the DGUs,
where each DGU aims at minimizing the deviation with respect
to the given reference signals and maximizing the revenue
from the sale of the generated power. Thus, we design a
fully distributed continuous-time equilibrium-seeking algorithm
to compute the generalized Nash equilibrium (GNE) of the
game. We interconnect the designed decision-making algorithm
with the dynamics of the microgrid in a passive way, and,
by leveraging passivity theory, we prove the convergence of the
closed-loop system trajectory to a feasible operating point that
is also a Nash equilibrium of the collective aggregative game.
Finally, we present extensive simulation results that validate the
proposed distributed optimal control scheme, showing excellent
performance.

Index Terms— DC microgrids, distributed optimization, energy
trading, game theory, passivity.
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NOMENCLATURE

Ii Output current.
ui Voltage control input.
Vi Load voltage.
Ri , L i Filter resistance, inductance.
Ci Shunt capacitor.
IL ,i , ZL ,i Load current, impedance.
Rl,k, Ll,k Line resistance, inductance.
Il,k Line current.

I. INTRODUCTION

NOWADAYS, the increasing spread of energy commu-
nities, which influence and in turn are influenced by

the energy trading market, gives rise to a complex net-
worked power system requiring the design of a holistic
control framework that encompasses both the physical and the
decision-making systems. More precisely, a suitable control
system should not only make the physical system operate
safely and efficiently, but also embed economic-aware and
cost-effective control policies [2]. In fact, the lack of a
holistic approach may drive the overall system to a suboptimal
operating point. On the other hand, developing such a holistic
framework to control and optimize the whole system increases
considerably the complexity of its design and analysis.

In this article, we consider a dc microgrid, whose dynam-
ics are subject to physical and economic constraints that
ensure its feasibility and economic operation [3]. For such
a heterogeneous and possibly large-scale system, a centralized
control scheme is not suitable since the required computa-
tional and communication resources would be prohibitive.
This problem can be overcome by designing fully distributed
control schemes [4]. Therefore, to increase the effectiveness
of the energy dispatch in dc microgrids, it is of paramount
importance to design an optimal distributed control scheme
that incorporates the market trading mechanism.

A. Literature Overview

In the past decade, advanced control strategies have been
designed to stabilize and optimize dc microgrids (see [5], [6],
and the references therein). More precisely, to guarantee a
proper and safe functioning of the devices connected to the
microgrid, and prevent the overstressing of any source, the
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main control goals in dc microgrids are voltage regulation and
fair current sharing. To achieve these objectives, decentralized
and distributed control schemes have been proposed in the lit-
erature (see [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
and the references therein). In [17], [18], [19], [20], and [21],
distributed optimal control algorithms have been proposed to
achieve the aforementioned objectives and, at the same time,
solve an optimization problem such as the minimization of the
generation costs and power losses and/or the maximization of
a utility function. In particular, the growing need to optimize
power dispatch and active participation in the energy markets
is attracting more and more researchers’ attention toward the
design of adequate decision-making systems.

Based on distributed optimization [22], the research on dis-
tributed decision-making systems can be roughly divided into
two categories: discrete-time and continuous-time algorithms.
Nedic et al. [23] and Liu et al. [24] propose discrete-time
algorithms converging with a linear rate to the consensual min-
imizer. On the other hand, tools from nonsmooth analysis have
been exploited in [25] and [26] to develop continuous-time
algorithms converging to the consensual minimizer. Moreover,
when the agents are noncooperative, then the decision-making
process can be cast as a game. Also, in this case the literature
is divided into two categories: discrete- and continuous-
time algorithms. Using results from operator theory, several
discrete-time distributed equilibrium-seeking algorithms have
been proposed for aggregative games [27], [28], [29]. Sim-
ilarly, continuous-time Nash equilibrium-seeking algorithms
based on projection dynamics have been developed in [30],
[31], [32], [33], and [34]. Bianchi and Grammatico [35, Sec. 6]
propose a similar algorithm for heterogeneous multi-integrator
dynamics, where the game is assumed unconstrained. These
decision systems have been successfully applied to a plethora
of applications such as tertiary control of power systems [6],
charging of electric vehicles [36], [37], and Cournot market
competition [29].

B. Article Contribution

In summary, research on both dc microgrid control and
distributed decision-making systems is abundant. However,
there is a lack of results that integrate both topics to develop
a holistic framework. Our work aims at bridging this gap.
More precisely, inspired by Cucuzzella et al. [20], we design a
fully distributed continuous-time control scheme ensuring the
stability and economically efficient operation of the microgrid.

The decision-making system is based on an energy trading
market mechanism and is modeled as an aggregative game
among all the distributed generation units (DGUs). To the
best of our knowledge, this is the first work that uses passivity
theory to interconnect a continuous-time fully distributed Nash
equilibrium-seeking algorithm with the dynamics of a dc
microgrid. The use of operator theory allows us to study the
resulting interconnected closed-loop system and prove that the
corresponding trajectory converges to a desired equilibrium
for a suitable choice of the controller gains, for which explicit
tuning rules are provided. Compared with [20], in this work,
we include the energy trading mechanism, which leads to a

collection of interdependent optimization problems, where the
couplings arise in both the objective function and constraints.
Moreover, differently from [20], we interconnect the dc micro-
grid and the decision-making system in such a way that the
steady-state value of the interconnection port is equal to zero,
thereby not altering the desired equilibrium point.

Compared with the preliminary results of this work that
appeared in [1], the major advantages of this article rely on
the following: 1) employing projection dynamics to satisfy
local constraints; 2) using monotonicity to analyze the closed-
loop convergence; and 3) interconnecting the microgrid and
the decision system in a suitable way that does not affect the
solution of the optimization problem.

C. Article Organization

In Section II, we introduce the microgrid model and its
stability properties. In Section III, we formulate the problem
and explain the control objectives. In Section IV, we analyze
the problem formulated in Section III. In Section V, we design
a distributed control strategy and discuss its convergence prop-
erties. We show and discuss simulation results in Section VI.
Conclusions and directions for future works are gathered in
Section VII. Finally, the reader can find in the Appendix the
preliminaries on the projection operator and the proofs of all
the results.

D. Notation and Preliminaries

1) Notation: 0, 1, 0, and I represent 0-vector, 1-vector,
0-matrix, and the identity matrix with appropriate dimen-
sions, respectively. Rn denotes the n-dimensional Euclidean
space, and Rn

+ denotes the n-dimensional non-negative orthant.
Given a vector [x⊤

1 , . . . , x⊤
n ]

⊤, we compactly denote it by
col(x1, . . . , xn) or col(xi )i∈(1,...,n). For convenience, we define
x−i = col(x1, . . . xi−1, xi+1, . . . , xn). The dimension of a
vector x or the cardinality of a set N is denoted by |x | and
|N |, respectively. diag(Ai )i∈(1,...,n) denotes the matrix whose
i th diagonal block is Ai ∈ Rp×q . The Cartesian product is
denoted by

∏
, and

∏n
i=1 �i ≜ �1 × · · · × �n . Note that,

for the sake of clarity, most of the time, we denote diagonal
matrices by D. {A}i, j represents the element that is located in
the i th row and j th column of the matrix A. {x}i represents
the i th element of the vector x . A ≻ 0 (⪰ 0) means that A is
symmetric positive (semi) definite. ⊗ denotes the Kronecker
product, and ◦ denotes the Hadamard product. ∥x∥ represents
the Euclidean norm of x . ∥x∥G denotes the G-norm of x ,
where G can be a positive definite or semidefinite matrix, and
∥x∥G =

√
x⊤Gx . span(x) denotes the generating subspace of

x . Let bnd(�) and int(�) represent the boundary and interior
of the closed set �, respectively. zer(A) represents the set of
zeros of the operator A. Given a signal x , throughout this
article we use the following notation.

1) x̂ denotes the decision variable associated with x .
2) xr denotes the reference value for x .
3) xne and x∗ denote the generalized Nash equilibrium

(GNE) and the equilibrium of x , respectively.
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2) Preliminaries: The solution of a variational inequality
VI(F, �) corresponds to a vector x satisfying

x ∈ �, ⟨y − x, F (x)⟩ ≥ 0 ∀y ∈ � (1)

where � ∈ Rn and F : � ⇒ Rn is a set-value map. For
convenience, we use SOL(F, �) to represent the solution of
the VI(F, �). Moreover, N�(x) denotes the normal cone of
the set � at x ∈ �, andN�(x) = {z | z⊤(x−y) ≤ 0, ∀y ∈ �}.
According to [38, eq. (1.1.3)], it follows that x ∈ � solves
the VI(F, �) if and only if it satisfies F(x) ∈ −N�(x). The
notation P� denotes the projection operator on the set �, and
P�(x) = arg min y∈� ∥x − y∥. The function T�(x, F(x)) is
equivalent to projecting the vector F(x) onto the tangent cone
of � at x , i.e.,

T� (x, F (x)) = lim
ξ→0

P� (x + ξ F (x)) − x
ξ

. (2)

Additional preliminaries on the projection operator are
reported in Appendix A.

II. DC MICROGRID MODEL

In this section, we introduce the microgrid dynamics and
its properties. Following [12] and the references therein,
we consider an islanded dc microgrid consisting of n DGUs,
each of which supplies a “ZI” load, where “Z” and “I”
represent the constant impedance and current components of
the load, respectively. The DGUs are interconnected through
m transmission lines. We use the index sets N ≜ {1, . . . , n}

and E ≜ {1, . . . , m} for the DGUs and the transmission lines,
respectively. We assume that each DGU is responsible for
satisfying the physical constraints of one or more transmission
lines connected to it [39], [40]. Yet, each transmission line is
managed by only one DGU.1 We use Ei ⊆ E to represent the
index set containing all the transmission lines managed by the
DGU i ∈ N . Therefore, E1, . . . , En represent a partition of E
satisfying ⋂

i∈N
Ei = ∅,

⋃
i∈N

Ei = E . (3)

Fig. 1 depicts the equivalent circuit of the DGU i ∈ N
and transmission line k ∈ Ei ⊆ E ; see also Nomenclature
for the explanation of the physical meaning of the used
symbols. We model the interconnections among the DGUs as
a (arbitrary oriented) connected undirected graph G(N , E).

Then, based on the Kirchhoff laws, the dynamics of the
considered dc microgrid are as follows:

L İ = −V − RI + u (4a)

CV̇ = I + B Il − Z−1
L V − IL (4b)

Ll İl = −Rl Il − B⊤V (4c)

where L , C , R, ZL ∈ Rn×n and Ll , Rl ∈ Rm×m are diagonal
positive definite matrices, e.g., L ≜ diag(L i )i∈N . Moreover,
u, I, V ∈ Rn and Il ∈ Rm denote, respectively, the vectors
collecting all the nodes and edges components, e.g., u ≜
col(u1, . . . , un). Moreover, B ∈ Rn×m is the incidence matrix

1Providing a systematic procedure to select the partition of the transmission
lines is out of the scope of this article and left as a future work.

Fig. 1. Electrical scheme of the DGU i ∈ N and the transmission line k ∈ E .

associated with G(N , E). We refer the interested reader to [12]
for further model details. Now, for convenience, we define
xi ≜ col(Ii , Vi , Ic,i ) ∈ R2+|Ei | to represent the state vector of
the DGU i ∈ N , where Ic,i ≜ col(Il,k)k∈Ei ∈ R|Ei |. Moreover,
let x ≜ col(xi )i∈N . Then, the dynamics in (4) can be rewritten
compactly as follows:

Dx ẋ = H x + Qu + d (5)

where Dx , H , and Q are matrices appropriately defined, di =

col(0, IL ,i , 0), and d ≜ col(di )i∈N . More precisely, Dx ≻

0 is diagonal and H can be shown to be full rank. In the
following lemma we recall from [11, Proposition 5] that (5)
is shifted passive, see [41, Definition 2] for the definition of
shifted passivity.

Lemma 1 (Shifted Passivity of (5)): The dynamical sys-
tem (5) is shifted passive with supply rate (u − u∗)⊤(I − I ∗)

and storage function

E (x) =
1
2

∥∥x − x∗
∥∥

Dx
. (6)

Proof: The proof is reported in Appendix B.

III. PROBLEM FORMULATION

In this section, we design a Cournot aggregative game [42,
Definition 1], which has as Nash equilibrium a desired (safe
and optimal) operating point of the microgrid dynamics (5).
Specifically, every DGU i ∈ N has to satisfy the following
local constraints:

Vi + Ri Ii − ui = 0 (7a)

V min
i ≤ Vi ≤ V max

i (7b)

I min
c,i ≤ Ic,i ≤ I max

c,i (7c)

where (7a) comes from (4a) in steady state, and the super-
scripts “min” and “max” in (7b) and (7c) denote the minimum
and maximum allowed values for the corresponding variable,
respectively. Therefore, the local feasible region is defined as
follows:

�i ≜
{
(ui , xi ) ∈ R3+|Ei | | (7) is satisfied

}
. (8)

To guarantee feasible steady-state operating conditions of the
microgrid, the following set of coupling constraints also needs
to be satisfied:

K ≜

(u, x) ∈ Rm+3n

∣∣∣∣∣∣∣
I + B Il − Z−1

L V = IL
Rl Il + B⊤V = 0

−I ⊤

l B⊤V r
≤ Pmax

loss

 (9)
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where the first two equality constraints come from (4b)
and (4c) in the steady state. Also, the term I ⊤

l B⊤V r in (9)
represents an approximation2 of the steady-state total power
loss in the transmission lines, and Pmax

loss > 0 denotes the cor-
responding upper bound. Note that col(Ic,i )i∈N is effectively
a permutation of Il used to ease the notation.

Now, for the sake of simplicity, we rewrite the set (9) in
the following compact form:

K =

{
(u, x) ∈ Rm+3n

| Ax − b ≤ 0
}

(10)

where A ∈ R(2m+2n+1)×(m+2n) and b ∈ R2m+2n+1 are
appropriately defined to rearrange the order of the constraints
in (9). Moreover, A in (10) is composed of n blocks, i.e.,
A = [A1, . . . , An], with Ai ∈ R(2m+2n+1)×(2+|Ei |) for all
i ∈ N . Consequently, Ax ≤ b can be written as follows:

n∑
i=1

Ai xi − bi ≤ 0

where bi ∈ R2m+2n+1 for all i ∈ N . Therefore, the feasible
decision set of each DGU i ∈ N reads as

πi (x−i ) =

{
(ui , xi ) ∈ �i | Ai xi − bi +

∑
j ̸=i

A j x j − b j ≤ 0
}

while the collective feasible set is K� ≜ K ∩ �, where � =∏
i∈N �i . We can now introduce the main goal of this article,

which can be formulated as an aggregative game problem, i.e.,

∀ i ∈ N ,

{
min
ui ,xi

fi (ui , xi , σI )

s.t. (ui , xi ) ∈ πi (x−i )
(11)

with

fi (ui , xi , σI ) = f1,i (xi , ui ) − f2,i (xi , σI ) (12a)

f1,i (ui , xi ) ≜
αui

2
(ui − ur

i )
2
+

1
2
∥xi − xr

i ∥
2
Wi

(12b)

f2,i (xi , σI ) ≜ ( p̄ − prσI ) V r
i Ii (12c)

where σI ≜
∑n

i=1 Ii is the aggregative variable representing
the total current generated by all the DGUs in the microgrid.
The function f1,i (ui , xi ) represents the cost associated with the
input and state deviation of the DGU i ∈ N with respect to the
corresponding references, αui ∈ R+, and the constant matrix
Wi ≜ diag(αIi , αVi , diag(αIl,k )k∈Ei ) ≻ 0 is tuning parameters.
On the other hand, f2,i (xi , σI ) is a concave function based
on the Cournot model (see [43], [44], [45]) and represents an
approximation1 of the profit obtained by DGU i ∈ N from
selling the (approximated) generated power V r

i Ii at the price
( p̄ − prσI ), with p̄, pr ∈ R+. The constant parameters ur

i , xr
i ,

αui , and Wi are associated with the nominal set points and
desired performance of the DGU i ∈ N . In such a setting,
each DGU can be considered a player in a game describing the
energy trading among the DGUs. The trading price ( p̄− prσI )

is an aggregative quantity involving all the DGUs’ decision
states.

2The approximation comes from considering the voltage V to be equal to
its reference value V r . Since the proposed control scheme aims to regulate
the microgrid voltage toward its desired reference [see (11) and (12b)], this
is a reasonable approximation.

Remark 1: In practice, based on the specific energy market,
the value of p̄ in (12c) is chosen as the maximum energy price,
while pr is chosen depending on how quickly the price of
energy changes in response to variations of the total generation
σI (see [46] for more details). Since the quantity ( p̄ − prσI )

can become negative for large values of σI , which would
be unreasonable in practice, then, by inspecting the equality
constraints in (9), the following assumption guarantees that
the energy price is positive for all the feasible choices of σI
and I .

Assumption 1 (Positive Cournot Price): Let the following
inequality

n∑
i=1

(
V max

i
ZL ,i

+ IL ,i

)
<

p̄
pr

(13)

hold for all i ∈ N , i.e., p̄ − prσI > 0 for all x ∈ �.

IV. PROBLEM ANALYSIS

This section derives the Karush–Kuhn–Tucker (KKT) con-
ditions for the problem (11), which will be used in Section V to
design the distributed decision-making system. First, to ensure
the solvability of (11), we introduce the following assumption,
which is common in the literature (see [38], [47]).

Assumption 2 (Nonempty Feasible Set): The collective fea-
sible set is nonempty, i.e., K� ̸= ∅.

The above assumption directly implies that πi (x−i ) satisfies
the Slater constraint qualification (SCQ) [38, Sec. 3.2] for all
i ∈ N and (u, x) ∈ K�. Now, let the collective strategy
(une, xne) denote the GNE of (11), which is defined as follows
(see [48, Sec. 5.2.3]).

Definition 1 (GNE): The couple (une, xne) ∈ K� is a GNE
of (11) if and only if the following inequality holds for all
i ∈ N :

fi
(
une

i , xne
i , σ ne

I
)

≤ fi (ui , xi , σ̄i ) ∀ (ui , xi ) ∈ πi
(
xne
−i

)
(14)

where σ̄i = Ii +
∑

j ̸=i I ne
j .

Note that Assumption 2 also implies that the duality gap is
equal to zero [48, Sec. 5.2.3]. According to [49, Sec. 2], the
GNE (une, xne) of the problem (11) and its dual solution λ ne

∈

R2m+2n+1
+ are the solution to the following set of inclusions:

∀i ∈ N ,


−Fi (ui , xi , σI ) − Ã⊤

i λi ∈ N�i (ui , xi )
n∑

i=1

Ai xi − bi ∈ NR2m+2n+1
+

(λi )
(15)

where Ãi ≜ [0, Ai ], and

Fi (ui , xi , σI ) =

[
∇ui fi (ui , xi , σI )

∇xi fi (ui , xi , σI )

]
(16)

represents the pseudo gradient associated with the objective
function (12a) of the DGU i ∈ N . Now, note that the solution
to (15) is not unique, and in turns the GNE of (11) may
also be not unique [49, Sec. 3]. Then, to make the problem
tractable, we focus on a subset of GNEs, called normalized
Nash equilibrium (NNE) [49, Definition 3.2], which can be
characterized as the solution set of a VI. Since the feasible
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set K� is a polyhedron, the NNE of (11) can be sought in
a distributed way (see [50]). For the reader’s convenience,
we introduce now the definition of NNE.

Definition 2 (NNE): A GNE (une, xne) ∈ K� is an NNE
associated with r ∈ Rn

+ if and only if the triplet (une, xne, λ ne)

satisfies (15) and the following condition

r1λ
ne
1 = · · · = rnλ

ne
n . (17)

According to [49, Proposition 3.2], any NNE (une, xne) ∈

K� associated with r ∈ Rn
+ can be cast as a solution of the

VI(Fr , K�), where Fr ≜ col(ri Fi )i∈N . From [38, Th. 2.3.3],
it follows that the NNE is unique if and only if Fr is strongly
monotone. As shown in the following lemma, we can ensure
that Fr is strongly monotone by suitably tuning the (controller)
parameter αIi for all i ∈ N , appearing in Wi in (12b).

Lemma 2 (Strong Monotonicity): For a given r ∈ Rn
+, if αI

satisfies

αIi +

(
(6 − n) pr V r

i
2

−
1

2ri

n∑
j=1

r j pr V r
j

)
> 0 ∀i ∈ N

(18)

then Fr is strongly monotone on K�.
Proof: The proof is reported in Appendix C.

Let Gc(N , Ec) denote the graph associated with the com-
munication network among the DGUs. For the sake of
simplicity in the exposition and without loss of generality,
we assume hereafter that the communication graph is the
same as G(N , E), while in general E and Ec can be different,
provided that Gc satisfies the following assumption.

Assumption 3 (Graph): The graph Gc(N , Ec) is undirected
and connected.

Under Assumption 3, the Laplacian matrix Lc associated
with the communication graph Gc is positive semidefinite. For
convenience, we define Lc ≜ Lc ⊗ I to denote the extended
Laplacian matrix with suitable dimensions. Next, following
steps similar to those in [50], we endow the KKT conditions
in (15) with an auxiliary variable θi for each DGU i ∈ N ,
and use all of them to force the dual variables λ1, . . . , λn to
reach the weighted consensus (17) at the equilibrium. Then,
we can obtain the following optimal conditions:

Fr (u, x, σI 1) + Ã
⊤

Dr λ ∈ −N� (u, x) (19a)

Dr
(
Lc Dr λ + Lcθ − Ax + b

)
∈ −NRn(2m+2n+1)

+

(
λ

)
(19b)

−Lc Dr λ = 0 (19c)

where Ã = diag( Ãi )i∈N , A = diag(Ai )i∈N , b = col(bi )i∈N ,
and Dr ≜ diag(ri I)i∈N . Note that we can rewrite the KKT
conditions associated with the decision system (19) in the
following compact form:

Gr (z) ∈ −NU (z) (20)

where U ≜ � × Rn(2m+2n+1)
+ × 0, Gr denotes the map on

the left-hand side of (19), and z ≜ col(u, x, λ , θ). The next
lemma ensures that a solution of (19) is an NNE satisfy-
ing (17).

Lemma 3 (Uniqueness): If Assumptions 2 and 3 and (18)
hold, then the following statements are equivalent.

1) The GNE (une, xne) is the unique NNE of (11) associ-
ated with r ∈ Rn

+.
2) There exist λ ne

∈ Rn(2m+2n+1)
+ and θne

∈ Rn(2m+2n+1)

such that the quadruple zne
= (une, xne, λ ne, θne)

solves (19).
3) zne

∈ zer(Gr +NU ), i.e., zne
∈ SOL(Gr , U ).

Proof: The proof follows similar steps to the ones in [50,
Th. 2] adapted to a setup akin to [28, Lemma 1].

Based on the results of Lemma 3, we can rely on the
well-established field of zero-finding algorithms to compute
an NNE of the original game (11) (see [51, Sec. 2]).

Remark 2: Since Dr Lc is not full rank, then a fea-
sible point satisfying (17) does not meet the strict
Mangasarian–Fromovitz constraint qualification [38, Sec. 3.2].
Consequently, the dual solution θne is not unique [38, Propo-
sition 3.2.1]. If V r /∈ span(1n), and thus all the rows of A
are linearly independent [see the inequality (9)], then we can
deduce that the linear independence constraint qualification
holds for all (u, x) ∈ K� and thus (une, xne, λ ne) satisfy-
ing (19) is unique.

V. CONTROLLER DESIGN AND CONVERGENCE ANALYSIS

In this section, we first design a distributed decision system
for the microgrid and then interconnect it with the microgrid
dynamics in a passive way. Based on passivity, projection
dynamics, and Lyapunov theory, we then analyze the conver-
gence of the resulting interconnected system.

A. Feedback Interconnection and Estimation of σI

1) Interconnection of the Physical and Decision System:
The decision system we propose is composed of two sub-
systems. One is used to seek a solution solving (19), while
the other estimates in a distributed manner the aggregative
quantity σI appearing in the objective function of each DGU
i ∈ N , viz. (12c). Note that in the following we denote by
x̂ the decision variables (primal variables) associated with the
state of the corresponding microgrid dynamics (5).

Now, using Lemma 2 and the steps akin to those in [29,
Sec. 3.2], we can characterize the monotonicity properties of
Gr in (20).

Proposition 1 (Monotonicity of Gr ): If Assumptions 2
and 3 and (18) hold, then Gr in (20) is (maximal) monotone
in U .

Proof: The proof is reported in Appendix D.
Furthermore, from Lemma 3 and [38, Th. 2.3.5], it follows

that the solution set of (20) is convex and compact. These
two features will be the keystone for the development of our
algorithm. Starting from (20), we design the following pro-
jection dynamics converging to a solution of the VI(Gr , U ),
i.e.,

˙̂z = TU
(
ẑ, −Gr

(
ẑ
)
− ϵ1ẑeI

)
, eI ≜ I − Î (21)

where ϵ > 0 is a suitable feedback gain, ẑ ≜ col(u, x̂, λ , θ),
and the diagonal matrix 1⋆ is a constant matrix defined as
{1⋆}i i = 1, if {∇u(⋆)}i = 1, and {1⋆}i i = 0, otherwise. The
number of rows of 1⋆ coincides with the dimension of the
associated subscript ⋆, e.g., in (21) 1ẑ has as many rows as
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the dimension of ẑ, while the number of columns coincides
with the dimension of eI . Note that 1⋆ is used to make the
error eI affect only the dynamics of u.

2) Local Estimation of the Aggregate Quantity: In practice,
the aggregative quantity σI in Gr (ẑ) depends on the global
information, thus it prevents the implementation of a fully
distributed algorithm. To overcome such a problem, we design
a distributed estimator converging asymptotically to the actual
value of σI . Next, we introduce such a distributed system with
the state variables η, ν ∈ Rn , i.e.,

η̇ = −η−Lcη − Lcν + n Î

ν̇ = Lcη. (22)

For each DGU i ∈ N , ηi represents the local estimation of
σI while the auxiliary variable νi is used to reach consen-
sus among all the other estimations. Next, we analyze the
steady-state properties of (22). Letting η̇ = ν̇ = 0, it follows,
for all i ∈ N , that

Lcη = 0, 1⊤(η + Lcν − n Î ) = 0, ηi =

n∑
i=1

Îi . (23)

Exploiting (23), we are now ready to complete the design of
the distributed decision system and interconnect it with the
physical system (5). Let qi ≜ col(ui , x̂i ) and q = col(qi )i∈N ,
then the closed-loop dynamics read as follows:

Dx ẋ = H x + Qu + d (24a)

εη̇ = −η−Lcη − Lcν + n Î (24b)
εν̇ = Lcη (24c)

κ q̇ = T�(q, −Fr (q, η) − Ã
⊤

Dr λ − ϵ1qeI ) (24d)

κλ̇ = TR2m+2n+1
+

(
λ , Dr

(
Ax̂−b − Lc Dr λ − Lcθ

))
(24e)

κθ̇ = Lc Dr λ (24f)

where the constants ε > 0 and κ > 0 are tuning parameters.
The function Fr (q, η) corresponds to the pseudo gradient (16),
where the aggregative quantity σI , appearing in the gradient
of each objective function fi (qi , σI ), is replaced by its local
estimation ηi for all i ∈ N . Hence, it follows that Fr (q, η) =

col(ri Fi (qi , ηi ))i∈N , where

Fi (qi , ηi ) = ∇qi f1,i (qi ) +

 0
(prηi + pr Îi − p̄)V r

i
0

 .

Note that the interconnected system (24) is composed of
three subsystems. Specifically, the subsystem (24a) represents
the microgrid dynamics. The subsystem (24b) and (24c)
represents the distributed estimation scheme of σI . Finally,
the subsystem (24d)–(24f) represents the decision system,
where (24d) are the dynamics of the primal variables, (24e) are
the dynamics of the dual variables, and (24f) is used to achieve
the weighted consensus (17). The interconnection between
these three subsystems is depicted in Fig. 2, which also shows
that each agent communicates only with its neighbors, and
the topology of the communication network is described by
the Laplacian matrix Lc. Thus, the proposed framework (24)
is fully distributed. Moreover, (24d)–(24f) arise directly from

Fig. 2. Graphical representation of the interconnections among the subsys-
tems in (24).

the dynamics (21) and, together with (24b) and (24c), compose
the fully distributed control system dynamics whose role is to
compute the control input u for the system (24a), from which
it receives 1qeI as feedback (see [20]).

Remark 3: Calculating the value of a projection function is
generally difficult, especially for continuous-time dynamical
systems [52]. However, in our case, the projections in (24b)–
(24f) are on the positive quadrant or on a low-dimensional
hyperplane, which makes the computation easier.

Remark 4: The decision system can be implemented as a
circuit system [53] and interconnected in parallel with the
DGUs. In such a scenario, the decision system becomes robust
with respect to the load changes. In other words, once the
load changes, the decision system can steer the DGUs to a
new equilibrium without changing any system parameter. As
the number of the DGUs and transmission lines increases, the
dimension of the decision system of each DGU also increases.
Therefore, for a large-scale microgrid, it might be convenient
to divide the whole network into smaller clusters containing
a reasonable number of DGUs and transmission lines such
that the dimension of the decision system does not become
too large. Then, each cluster cooperates with the others in a
higher level than that of the DGUs.

B. Deviation and Convergence Analysis

Let us denote the collective state of the decision system
by s ≜ col(η, ν, q, λ , θ) and Uds ≜ R2n

× U . Then, similar
to (21), we can compactly rewrite the dynamics (24b)–(24f)
as follows:

Ds ṡ = TUds (s, −Gds (s) − ϵ1seI ) (25)

where Ds ≜ diag(ε I, κ I) and Gds can be easily attained
by the inspection of (24b)–(24f). The following proposition
characterizes the uniqueness of the equilibrium of (24) and
also shows that x∗

= x̂∗.
Proposition 2 (Unique Equilibrium): Let Assumptions 2

and 3 and (18) hold. Moreover, let (x∗, s∗) be an equilibrium
of (24). Then, the following statements hold.

1) x∗ and q∗ are unique and satisfy u∗
= une and x∗

=

x̂∗
= x̂ne. If V r /∈ span(1n), λ ∗ is also unique and

satisfies λ ∗
= λ ne.
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2) s∗
∈ SOL(Gds, Uds).

Proof: The proof is reported in Appendix E.
Now, assuming that the trajectory of (24) converges to

s∗
∈ SOL(Gds, Uds), which will be proved in Theorem 2,

we introduce a corollary that elaborates on the results of
Proposition 2.

Corollary 1 (Equilibrium Equivalence): Let the assump-
tions of Proposition 2 hold. If the trajectory of (24) converges
to s∗

∈ SOL(Gds, Uds), given the initial condition θ(t0), then
θ∗ is unique.

Proof: The proof is reported in Appendix F.
The following proposition introduces a condition for tuning

the controller parameters.
Proposition 3 (Monotonicity Condition): If the condition

∀ i ∈ N ,


4
√

c
(
riαIi + ri pr V r

i
)

>

∣∣∣∣nκ−ri pr V r
i ε

√
εκ

∣∣∣∣
2
√

r2
i αui (1 − c)

(
αIi + pr V r

i
)

> ϵ

(26)

holds, where 0 < c < 1, the function D−1
s (Gds(s) + ϵ1seI )

is monotone with respect to s.
Proof: The proof is reported in Appendix G.

Remark 5: The controller in (24) is fully distributed. How-
ever, according to (26), the tuning of its parameters has to
be done in a centralized way (once and offline). This is due
to the fact that, for notation simplicity, we have preferred
to choose ε, κ , and ϵ as scalars. Nevertheless, the tuning
procedure can be made distributed by choosing different εi ,
κi , and ϵi for each DGU i ∈ N , and paying attention to
preserve the monotonicity of D−1

s (Gds(s) + ϵ1seI ), where
ϵ = diag(ϵi )i∈N . Such distributed conditions can be derived
from Appendix G; however, it is outside of the scope of this
article. Moreover, (26) is associated only with the parameters
of the DGU i ∈ N and 0 < ci < 1.

It is worth noting that (26) is only a sufficient condition
for (41) in Appendix G. Moreover, different settings of ε

and κ may cause a time separation between the subsystems
in (24), and (24) can be considered as a singular perturbation
system [54, Sec. 11]. Nevertheless, in this work, by virtue of
the monotonicity of D−1

s (Gds(s) + ϵ1seI ), we do not need
to invoke singular perturbation theory to analyze the stability
of (24).

In the following two theorems, we present the major results
of this article. Specifically, Theorem 1 establishes the conver-
gence of s to s∗, and the passivity property of (25) with input
ϵ1seI .

Theorem 1 (Passivity and Convergence of (25)): Let
Assumptions 2 and 3 hold. Given (25) and the storage function
W (s) =

1
2∥s − s∗

∥
2, if ε, κ, ϵ > 0 satisfy the condition (26),

and s(t0) ∈ Uds, then it follows that s(t) ∈ Uds for all t ≥ t0
and the system (25) is shifted passive with respect to W (s)
and supply rate −(ϵ/κ)(u − u∗)⊤(I − I ∗).

Proof: The proof is reported in Appendix H.
Note that setting ϵ = 0 in (24d) implies that (24)

becomes an open-loop system. In such a case, the decision
system (24d)–(24f) does not receive any feedback from the
physical system (24a), thus losing robustness. Moreover, it is

TABLE I
PARAMETERS FOR EACH DGU

in general desired to select a relatively small κ to endow the
trajectory of the controller dynamics with a faster convergence.
However, the condition (26) in Proposition 3 shows that
selecting a larger ϵ shrinks the feasible range for κ and ε,
which may increase the convergence rate of the trajectory of
the dynamics (24).

Now, by exploiting the passive interconnection of the phys-
ical and decision system, the next theorem establishes that the
trajectory of (24) converges to (x∗, s∗).

Theorem 2 (Convergence of (24)): Let Assumptions 2
and 3 and (18) hold, and let ε, κ, ϵ > 0 satisfy the
condition (26). Then, the trajectory of (24) converges to the
desired equilibrium (x∗, s∗) satisfying x∗

= x̂∗
= x̂ne and

s∗
∈ SOL(Gds, Uds). Moreover, s(t) ∈ Uds for all t ≥ t0.

Proof: The proof is reported in Appendix I.
The above result concludes the convergence analysis.

In fact, it shows that the physical system reaches an equi-
librium, and such equilibrium is an NNE of the aggregative
game solved by the proposed decision system, see Proposi-
tion 2. Thus, at the equilibrium, every DGU cannot obtain a
decrement of its cost by unilaterally changing its state while
satisfying the constraints.

Remark 6: Note that Proposition 2 and Theorem 1 show,
respectively, that the state of the decision system (24d)–(24f)
satisfies the coupling constraints in (9) at the steady state
and the local constraints in (7) for all the time. Hence, the
microgrid (4) in steady state satisfies both the local and
coupling constraints in (7) and (9), while during transients
they might be violated. However, we show in Section VI that
when deviations occur, they remain within acceptable and safe
ranges.

VI. SIMULATION

In this section, we test the proposed control framework in
two different simulation scenarios. The first scenario consists
of a four-DGU microgrid and is used to show the effectiveness
and performance of the proposed scheme. The second scenario
consists of a 16-DGU microgrid implemented by using the
Simscape Electrical toolbox of MATLAB Simulink to model
and simulate all the electrical and electronic components of
a realistic microgrid. Therefore, this scenario aims at testing
the scalability of the proposed framework in a large-scale and
realistic microgrid.

A. Scenario 1: Four-DGU Microgrid

In this section, we consider a microgrid with n = 4 DGUs in
a ring topology. Thus, E is composed of m = 4 transmission
lines. The values of the parameters of each DGU and line
are mainly taken from [12, Tables II and III]. Without loss
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of generality, we set the reference values I r , I r
l , and ur

equal to 0, and V r
= col(380.16, 381.21, 380.08, 380.13) [V]

was randomly drawn within the interval [380, 381.5]. The
minimum and maximum voltages for each DGU i ∈ N are set
as V min

i = 377 [V] and V max
i = 383 [V], respectively, while

for each transmission line k ∈ E we select I min
l,k = −20 [A]

and I max
l,k = 20 [A]. The incidence matrix B ∈ R4×4 and

Laplacian matrix Lc ∈ R4×4 are as follows:

B =


1 0 0 1

−1 1 0 0
0 −1 1 0
0 0 −1 −1



Lc = 200


2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

 .

Also, we select E1 = {1, 4}, E2 = {2}, E3 = {3}, and E4 = ∅.

The values of the parameters of the objective function (12)
of each DGU satisfy (18) and are reported in Table I. Fur-
thermore, we set the parameters of the Cournot game as
pr = 0.005 [$/(W · A)] and p̄ = 2.5 [$/W], which satisfy
Assumption 1. All the Lagrange multipliers’ initial values
are non-negative, and the maximum transmission line power
loss is selected as Pmax

loss = 35 [W]. Moreover, we choose
ϵ = 2, ε = 0.02, and κ = 0.1. Then, (26) is satisfied for
c = 0.9. Let the microgrid initial conditions be within the
feasible set. Then, at t = 5 s, each current-type load IL ,i and
resistance-type load ZL ,i are decreased by three units for all
i ∈ N . Note that the reduction of the impedance-type load
implies that the load demand increases.

Remark 7: Theorem 2 ensures that the trajectory of (24)
converges to (x∗, s∗). However, Theorem 2 does not guarantee
any transient performance. Indeed, during transients, oscilla-
tions may arise. Then, to reduce such oscillations, we inject a
dynamic damping term that is equal to zero at the steady state
(see [14, eq. (8)]), thus not affecting the KKT conditions (19).
Then, according to [14, eq. (8)], (24) can be modified as
follows:

Dx ẋ = H x + Qu + αw Q (w − I ) + d (27a)
Dwẇ = I − w (27b)

εη̇ = −η−Lcη − Lcν + n Î (27c)
εν̇ = Lcη (27d)

κ q̇ = T�(q, −Fr (q, η) − Ã
⊤

Dr λ − ϵ1qeI ) (27e)

κλ̇ = TR2m+2n+1
+

(
λ , Dr

(
Ax̂−b − Lc Dr λ − Lcθ

))
(27f)

κθ̇ = Lc Dr λ (27g)

where αw > 0, w ∈ Rn , and Dw ∈ Rn×n is a diagonal positive
definite matrix. Note that the interconnection between (27a)
and (27b) preserves the skew symmetry of the system, and
the equilibrium is not affected. Moreover, the dynamics (27c)–
(27g) are the same as (25), which implies that the convergence
of the trajectory of (27) can be easily confirmed by using the

Fig. 3. (a)–(d) Comparison of the voltages V1, . . . , V4 with the corresponding
decision variables V̂1, . . . , V̂4 generated by the decision system.

following Lyapunov function3

Se (x, s, w) = S(x, s) +
αw

2

∥∥w − w∗
∥∥2

Dw
. (28)

In simulation, we select αw = 0.8 and Dw = 0.01I .
In Fig. 3, for each DGU i ∈ N , we observe that when

the load components Zl,i and IL ,i have a step change, the
voltage Vi remains stable and converges, after a short transient
period, to the desired voltage value V̂i generated by the
decision system (27c). We also note that the voltage Vi of
the DGU i ∈ N tracks very well the voltage reference V̂i
generated by the decision system, which evolves within the
feasible interval [377, 383] [V] for all the time. Moreover,
we observe that when the microgrid voltages deviate from the
corresponding references, they remain within acceptable and
safe ranges. Specifically, they are within 5% of the nominal
voltages V r

1 , . . . , V r
4 , fulfilling, for instance, the standards for

dc microgrids used as uninterruptible power supply systems
for telecommunication applications [55].

In Fig. 4, for each DGU i ∈ N , we observe that the
current Ii has a similar transient as the voltage Vi , and then
converges to the desired current value Îi generated by the
decision system (27c).

Fig. 5 shows that the line current Il,i is stable and converges
to the desired value Îl,i generated by the decision system (27c)
for each DGU i ∈ N , and remains within the feasible interval
[−20, 20] [A].

In Fig. 6, we show that the state of the decision system
satisfies the local constraints in (8) all the time. In contrast,
during transients, the state of the decision system might violate
the coupling constraints in (9), as shown in Fig. 7(c) and (e).
For the sake of completeness, in Fig. 7(b), (d), and (f),

3Note that the convergence analysis of the trajectory of (27) to a desired
Nash equilibrium is similar to that in Section V-B. Also, the analysis of the
damping dynamics (27b) is the same as in [14]. Since the main object of this
article is to steer the considered dc microgrid to a desired Nash equilibrium,
to prevent to divert the readers’ attention from the main contribution of this
article, then we prefer to not include the convergence analysis for (27).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



FU et al.: DISTRIBUTED CONTROL OF ISLANDED DC MICROGRIDS: A PASSIVITY-BASED GAME THEORETICAL APPROACH 9

Fig. 4. (a)–(d) Comparison of the currents I1, . . . , I4 with the corresponding
decision variables Î1, . . . , Î4 generated by the decision system.

Fig. 5. (a)–(d) Comparison of the line currents Il,1, . . . , Il,4 with the
corresponding decision variables Îl,1, . . . , Îl,4 generated by the decision
system.

we show the time evolutions of the right-hand sides of (4),
which express how much the microgrid state violates the
constraints in (8) and (9). We can observe that the violation is
very small and appears only during the transients to inevitably
obey the physics dynamics in (4).

Moreover, in Fig. 7(a) we compare the estimation values
η1, . . . , η4 of the sum of the total generated current and its
actual value σI , the effectiveness of the tracking depends on
the choice of ε.

Fig. 8(a) shows the time evolution of the control
inputs u1, . . . , u4, while in Fig. 8(b) we observe that the
injected damping I − w converges to 0, as explained in
Remark 7. The power loss in the transmission lines is within
the predefined range, and its approximation I ⊤

l B⊤V r well
describes its actual value I ⊤

l B⊤V (see Fig. 9).

Fig. 6. (a)–(d) Trajectories of the decision system evolving on the local
feasible set (8), i.e., V̂ + R Î − u = 0.

Fig. 7. (a) Comparison of the estimations of the total generated current
η1, . . . , η4 with its actual value σI . (b) Time evolution of the quantity
V + RI − u. (c) Time evolution of the quantity − Î − B Îl + Z−1

L V̂ + IL .
(d) Time evolution of the quantity −I − B Il + Z−1

L V + IL . (e) Time evolution
of the quantity Rl Îl + B⊤V̂ . (f) Time evolution of the quantity Rl Il + B⊤V .

The simulation results in Figs. 3–9 confirm all the theoret-
ical findings presented in Section V-B. Furthermore, the fast
convergence of the closed-loop system trajectory indicates that
the DGUs and decision system can reach a new NNE (e.g.,
associated with a load variation) within a relatively short time
interval (in our case study less than 0.5 [s]).
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Fig. 8. (a) Control inputs u1, . . . , u4. (b) Injected damping I −w [see (27)].

Fig. 9. (a) Comparison between the total approximated power loss and its
actual value. (b) Approximated power loss in each line.

Fig. 10. (a) Estimation error. (b) Microgrid state error. Cases I, II, and III
are in blue, red, and yellow, respectively.

In Fig. 10, we show the system evolution for different values
of ε and κ , while keeping all the other parameters unchanged.
Specifically, we consider the following three cases: 1) ε =

0.05 and κ = 0.04; 2) ε = 0.10 and κ = 0.02; and 3) ε =

0.20 and κ = 0.01. We observe that choosing a relatively
small κ does not always lead to a faster convergence rate (see
the paragraph below Theorem 1).

B. Scenario 2: 16-DGU Microgrid

In this section, we consider a dc microgrid contain-
ing 16 DGUs and 20 transmission lines. To simulate as much
as possible a realistic microgrid, we have used the Simscape
Electrical toolbox of MATLAB Simulink, and for the readers’
convenience we have uploaded all the simulation files in [56].
Due to the page limit, we omit the details about the microgrid
parameters and topology, which can be found in [56]. As in
Scenario 1, we assume that each current-type load IL ,i and
resistance-type load ZL ,i are increased by three units for all
i ∈ N at t = 5 s.

Moreover, to show the effectiveness of the proposed control
approach, we compare our results with those obtained by a
modification of our controller, i.e., we replace the projection

dynamics q̇ (which is a component of ṡ) in the decision
system (27e) by conventional primal–dual dynamics (see [57],
[58]), i.e.,

κ q̇ = −Fr (q, η) − Ã
⊤

Dr λ − qζ,µ (29a)

κζ̇ = V̂ + R Î − u, (29b)

κµ̇1 = TRn
+
(V̂ , V min

− V̂ ) (29c)

κµ̇2 = TRn
+
(V̂ , V̂ − V max) (29d)

κµ̇3 = TRm
+
( Î , I min

l − Îl) (29e)

κµ̇4 = TRm
+
( Î , Îl − I max

l ) (29f)

where µ1, µ2 ∈ Rn , µ3, µ4 ∈ Rm , and ζ ∈ Rn are the
Lagrange multipliers of the local constraints in (7), and

qζ,µ ≜ col




−ζi − ϵ(Ii − Îi )

Riζi
µ2,i − µ1,i + ζi

µ4,i − µ3,i




i∈N

.

For convenience and with a slight abuse of notation, the
dynamics consisting of (27a)–(27d), (29), (27f), and (27g) will
be denoted by (29) in the following.

Remark 8: Note that one can use the Lyapunov function

Sp (x, s, w, ζ, µ) = Se (x, s, w) +
1
2
∥ζ − ζ ∗

∥
2

+
1
2
∥µ − µ∗

∥
2

where µ ≜ col(µ1, . . . , µ4), to analyze the trajectory conver-
gence of (29).

Due to the page limit, we show only the trajectories of
DGU 1 (the trajectories of the other DGUs are similar).
Fig. 11(a) and (b) shows the control inputs generated by (27)
and (29), respectively. By comparing Fig. 11(a) and (b), we can
observe that (27) generates a much smoother control input
than (29). Intuitively, such a result can be explained by the
fact that the projection operator in the decision dynamics (27)
constrains its trajectories to evolve within a manifold, thereby
preserving the local constraints in (7). The same can be
concluded from 11(c) and (d) for the microgrid voltages.
Moreover, comparing Figs. 3 and 11(c), we observe that
the scale of the microgrid does not significantly affect the
convergence rate of the voltage trajectories, thus implying
that our scheme has the potential to be used in large-scale
microgrids.

Fig. 12 shows the deviation from the equilibrium of both
the state of the microgrid and the state of the decision
system, respectively, within the time interval [4.5, 5.5] s.
We can observe that the trajectories obtained by implementing
both (27) and (29) converge to the equilibrium after a short
transient due to the loads step change. Comparing the blue
trjactories with the red ones, we can conclude that the trajecto-
ries obtained by implementing (27) have a faster convergence
rate than the ones obtained by implementing (29).

In conclusion, the simulation results in Figs. 11 and 12
show that employing in the decision system the projection
dynamics instead of the primal–dual ones does not affect the
convergence value but improves the transients in terms of
faster convergence rate and less/smaller oscillations.
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Fig. 11. (a) Control input generated by (27) based on projection dynamics.
(b) Control input generated by (29) based on primal–dual dynamics. (c) Volt-
ages of DGU 1 controlled by (27). (d) Voltages of DGU 1 controlled by (29).

Fig. 12. (a), (c), and (e) Deviations of the microgrid states from the desired
GNE (NNE). (b), (d), and (f) Deviations of the decision system states from the
desired GNE (NNE). The blue trajectories are obtained by implementing (27),
the red ones by implementing (29).

VII. CONCLUSION

We have formulated the electricity trading problem in dc
microgrids as a Cournot GNE game subject to the microgrid
dynamics. Then, employing concepts from projection dynam-
ics and shifted passivity, we have developed a fully distributed
continuous-time algorithm that solves the game and is able

to drive the dc microgrid to an NNE satisfying predesigned
objectives. Extensive and realistic numerical simulations show
excellent performance of the designed control scheme.

From an energy management system viewpoint, the frame-
work proposed in this article offers a solution to locally
aggregate and consume the distributed generated energy. How-
ever, several avenues for future research remain unexplored.
One potential direction for future work is to develop a
discrete-time version of the proposed controller, e.g., build-
ing on the results in [59], to establish stronger robustness
properties. Additionally, investigating the impact of distributed
storage units on the energy trading could contribute to a more
comprehensive understanding of the energy market dynam-
ics. Finally, investigating a systematic procedure to select a
suitable partition of the transmission lines could enhance the
practical application of the proposed approach.

APPENDIX

A. Projection Operator

In this appendix, we introduce some properties of the
projection operator. As in [51, eq. (2.13)], we denote the set
of the inward normals at x ∈ � by

N ⋆
� (x) = {y ∈ −N� (x) | ∥y∥ = 1} (30)

and Y (x) = arg maxy∈N ⋆
�(x){y⊤F(x)}. Thus, (2) satisfies

T� (x, −F (x)) = −F (x) + Q (x) Y (x) (31)

where Q(x) = max{0, (Y (x))⊤F(x)}. From (2), the following
equality holds for the projection on the tangent cone:

T� (x, −F (x)) = PT�(x) (−F (x)) (32)

where T�(x) represents the tangent cone of � at x ∈ �. If
T�(x, −F(x)) = 0 for x ∈ �, then it follows that{

F (x) = 0, if x ∈ int (�)

F (x) = Q (x) Y (x) , if F (x) ∈ −N� (x) .
(33)

Hence, if � is a convex polyhedron, the solution x solving
T�(x, −F(x)) = 0 coincides with the solution of the VI(F, �)

[51, Th. 2.4].

B. Proof of Lemma 1

By taking the time derivative of (6) along the trajectory
of (5), it follows

Ė (x) =
(
x − x∗

)⊤ (
H x + Hu − H x∗

+ Hu∗
)

≤
(
u − u∗

)⊤ (
I − I ∗

)
(34)

where the last inequality uses the fact that H is the difference
between an antisymmetric matrix and a diagonal positive
definite matrix.
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C. Proof of Lemma 2

According to [38, Proposition 2.3.2.c], Fr is strongly mono-
tone if and only if its Jacobian JFr (u, x, σI 1) ≻ 0. For each
DGU i ∈ N , fi in (12) is linear-quadratic [see (12b)], and thus
strongly convex with respect to all arguments (xi , ui ) except
for Ii , due to (12c). From this and the given particular form
of (12), proving that Fr is strongly monotone reduces to show
that

y⊤

I
∂ Fr (u, x, σI 1)

∂ I
yI = y⊤

I SyI > 0 (35)

holds for all yI ∈ Rn , where S represents the symmetric part
of ∂ Fr (u, x, σI 1)/∂ I , which reads as

S ≜


r1αI1 + 2r1 pr V r

1 · · ·
1
2

(
r1 pr V r

1 + rn pr V r
n
)

...
. . .

...

1
2

(
rn pr V r

n + r1 pr V r
1
)

· · · rnαIn + 2rn pr V r
n

 .

The inequality (18) implies that the following inequality

riαIi + 2ri pr V r
i −

n − 1
2

ri pr V r
i −

1
2

∑
j ̸=i

r j pr V r
j > 0

holds for all i ∈ N , which implies that S is a symmetric
diagonally dominant matrix with positive entries. Hence, S ≻

0, which concludes the proof.

D. Proof of Proposition 1

From the definition in (19), we can rewrite Gr as the sum
of two operators

A : z 7→

 Fr (q, σI 1)

Dr Lc Dr λ − b
0



B : z 7→

 0 Ã
⊤

Dr 0

−Dr A 0 Dr Lc

0 −Lc Dr 0

 z.

Since Dr is positive definite, we can follow the same steps as
in [29, Lemma 1] to prove that B is maximally monotone
and A is cocoercive and thus maximally monotone [60,
Example 20.31]. Since the sum of two maximally monotone
operators is maximally monotone, this concludes the proof.

E. Proof of Proposition 2

The proof of each statement of Proposition 2 is reported in
the following.

1) Note that (u∗, x̂∗) ∈ K� implies that H x̂∗
+ Qu∗

+d =

0. Then, since H in (5) is full rank, we can deduce that

H x∗
+ Qu∗

+ d = H x̂∗
+ Qu∗

+ d = 0 (36)

which implies that x∗
= x̂∗ and thus I ∗

= Î ∗. According
to (23), it follows that η∗

i =
∑n

i=1 Î ∗

i ≜ σ ∗

I holds for all

i ∈ N . By substituting these equalities in (24d), we can
deduce that

Fr
(
q∗, η∗

)
= Fr (q∗, σ ∗

I 1), TU (ẑ∗, −Gr
(
ẑ∗

)
) = 0.

(37)

By combining Lemma 3 with the analysis in [51,
Th. 2.4], it follows that ẑ∗ solves the VI(Gr , U ), and
x∗

= x̂∗
= xne, u∗

= une, and λ ∗
= λ ne. Using the

assumption that V r /∈ span{1} and following a reasoning
akin to that in Remark 2, we confirm that (u∗, x∗, λ ∗)

is unique.
2) Based on the above equalities, we can deduce that

TUds

(
s∗, −Gds

(
s∗

)
− ϵ1s∗e∗

I
)

= TUds

(
s∗, −Gds

(
s∗

))
= 0 (38)

where e∗

I = I ∗
− Î ∗. The above equality (38) confirms

that s∗
∈ SOL(Gds, Uds).

F. Proof of Corollary 1

Multiplying both sides of (24f) by 1⊤
⊗ I , it follows that

the following equalities

(1⊤
⊗ I) θ̇ = 0, (1⊤

⊗ I) θ∗
= (1⊤

⊗ I) θ (t0) (39)

hold if the trajectory of (24) converges to s∗
∈ SOL(Gds, Uds).

Recall that s∗
∈ SOL(Gds, Uds) implies that s∗ is the solution

of the KKT condition (19). Based on the Lagrange dual theory
[48, Sec. 5], s∗ is the solution of the following augmented dual
problem:

max
θ

min
λ∈R2m+2n+1

+

n∑
i=1

ri

(
− f ∗

i (A⊤

i λi ) + λ
⊤

i bi

)
+ θ⊤Lc Dr λ +

1
2∥Dr λ∥

2
Lc

(40)

where for all i ∈ N

f ∗

i ( − A⊤

i λi ) = max
(ui ,xi )∈�i

− fi (ui , xi , σ̄i ) − λ
⊤

i Ai xi

denotes the conjugate of fi (see [61, Sec. A]), and σ̄i is defined
below (14). Employing [61, Proposition 12.60], it follows that
the objective function of (40) is strongly convex with respect
to Dr Lcθ . Hence, Dr Lcθ

∗ has a unique value. Since Dr Lc +

1⊤
⊗ I is full rank, θ∗ satisfying (39) is unique.

G. Proof of Proposition 3

Let ŝ ≜ col(η, ν, u, x̂, λ , θ). Compared with s, ŝ sim-
ply rearranges the components of s. Following the proof in
Lemma 2, D−1

s (Gds(s) + ϵ1seI ) is monotone with respect to
s if and only if the following condition

y⊤

ŝ Aŝ yŝ ≥ 0, Aŝ ≜ D−1
s

∂ (Gds (s) + ϵ1seI )

∂ ŝ
(41)

holds for all yŝ ∈ R|ŝ|. Since we have

1
2
(Aŝ + A⊤

ŝ ) =


Ao 0 0

0
1
κ

Dr Lc Dr 0

0 0 0



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



FU et al.: DISTRIBUTED CONTROL OF ISLANDED DC MICROGRIDS: A PASSIVITY-BASED GAME THEORETICAL APPROACH 13

then we can deduce that the symmetric part of Aŝ is positive
semidefinite if the following matrix

Ao ≜



1
ε

(I + Lc) 0 −
n
ε

∂ Î
∂ x̂

0
1
κ

∂ Fr (q, η)

∂u
−

ϵ

κ

∂ Î
∂ x̂

1
κ

∂ Fr (q, η)

∂η
0

1
κ

∂ Fr (q, η)

∂ x̂


is positive semidefinite. Involving the fact that Lc is positive
semidefinite, it follows that the symmetric part of Ao is
positive semidefinite if

n∑
i=1

{
1
ε

y2
ηi

−

(
n
ε

−
1
κ

ri pr V r
i

)
yηi y Îi

+
c
κ

(
riαIi +ri pr V r

i
)

y2
Îi

}

+

n∑
i=1

{
1
κ

riαui y2
ui

−
ϵ

κ
yui y Îi

+
1 − c

κ

(
riαIi +ri pr V r

i
)

y2
Îi

}
≥ 0

holds for all yηi , yui , y Îi
∈ R. Completing the square, we can

deduce that the symmetric part of Ao is positive semidefinite
if the condition (26) holds.

H. Proof of Theorem 1

The proof of each statement of Theorem 1 is reported in
the following.

1) The result follows from the definition and properties of
the tangent cone operator [51, eq. (2.14)].

2) For convenience, we rewrite the systems (24b) and (24c)
and (24d)–(24f) in the following compact form:

εγ̇ = Aeγ + Be Î , κ ˙̂z = TU
(
ẑ, −Ge

(
ẑ, η

)
− ϵ1ẑeI

)
where γ ≜ col(η, ν), Ae and Be are constant matrices,
and Ge can be easily attained by inspection of (24d)–
(24f). Following the definitions in (30) and (31), and
using the same notation for the operators, we define

YU (ẑ) = arg max
y∈N ⋆

U (ẑ)

{
y⊤

(
Ge

(
ẑ, η

)
+ ϵ1ẑeI

)}
QU (ẑ) = max

{
0,

(
YU

(
ẑ
))⊤ (

Ge
(
ẑ, η

)
+ ϵ1ẑeI

)}
.

Exploiting the geometric properties of the normal cone,
discussed in Section I-D2, it follows that for all ẑ, ẑ∗

∈

U it holds that(
ẑ − ẑ∗

)⊤ QU
(
ẑ
)

YU
(
ẑ
)

≤ 0. (42)

Taking the time derivative of W (s), we have

Ẇ (s) = −
1
κ

(
ẑ − ẑ∗

)⊤ (
Ge

(
ẑ, η

)
− QU

(
ẑ
)

YU
(

ẑ ))

+
1
ε

(
γ − γ ∗

)⊤
(Aeγ + Be Î )

+
ϵ

κ

(
u − u∗

)⊤
(
( Î − Î ∗) −

(
I − I ∗

))
. (43)

By involving the first equality in (37), we can deduce
that Ge(ẑ∗, η∗) = Gr (ẑ∗). Hence, it follows that(

ẑ − ẑ∗
)⊤ Ge

(
ẑ∗, η∗

)
=

(
ẑ − ẑ∗

)⊤ Gr
(
ẑ∗

)
≥ 0. (44)

By combining (42)–(44) with the equality Aeγ
∗

+

Be Î ∗
= 0, we conclude that

Ẇ (s) ≤ −
(
s − s∗

)⊤ D−1
s

(
Gds (s) − Gds

(
s∗

))
+

(
s − s∗

)⊤ D−1
s (ϵ1s Î − ϵ1s∗ Î ∗)

−
(
s − s∗

)⊤ D−1
s

(
ϵ1s I − ϵ1s∗ I ∗

)
≤ −

ϵ

κ

(
u − u∗

)⊤ (
I − I ∗

)
(45)

where the last inequality follows by noting that 1s =

1s∗ and exploiting the monotonicity of D−1
s (Gds(s) +

ϵ1seI ) with respect to s (see Proposition 3), which
implies the monotonicity of D−1

s (Gds(s) − ϵ1s Î ) with
respect to s.

I. Proof of Theorem 2

Construct the following Lyapunov function

S (x, s) =
ϵ

κ
E (x) + W (s) . (46)

Taking the time derivative of S(x, s) and combining Lemma 1
and Theorem 1, it follows that

Ṡ (x, s) ≤
ϵ

κ

(
u − u∗

)⊤ (
I − I ∗

)
−

ϵ

κ

(
u − u∗

)⊤ (
I − I ∗

)
= 0 (47)

where the first inequality invokes (34) and (45). Construct the
following level set

Ωc ≜
{
(x, s) ∈ R2n+m

× Uds | S (x, s) ≤ S (x0, s0)
}

.

Note that x∗ and s∗ are bounded, S is continuous, and the
inequality in (47) proves that Ṡ(x, s) is nonincreasing for all
t ≥ t0. Hence, we deduce that Ωc is a compact set that is
positively invariant with respect to (24). Exploiting the first
equality of (34) and the first inequality of (45), it follows that

Ṡ (x, s) ≤ −
1
ε

∥∥η − η∗
∥∥2

+
n
ε

(
η − η∗

)⊤
( Î − Î ∗)

−
1
κ

(
q − q∗

)⊤ (
Fr (q, η) − Fr

(
q∗, η∗

))
+

ϵ

κ

(
u − u∗

)⊤
( Î − Î ∗) −

1
ε

∥∥η − η∗
∥∥2

Lc

−
1
κ

(
λ − λ

∗
)⊤ Dr Lc Dr

(
λ − λ

∗
)

+
ϵ

κ

(
x − x∗

)⊤ H
(
x − x∗

)
. (48)

Since the symmetric part of Ao is positive semidefinite
[under condition (26)] and leveraging [38, Proposition 2.3.2.c],
we conclude that the sum of the first four items of the
right-hand side of (48) is negative semidefinite. Based on such
a fact, (48) becomes

Ṡ (x, s) ≤ −
1
κ

(
λ − λ

∗
)⊤ Dr Lc Dr

(
λ − λ

∗
)

−
1
ε

∥∥η − η∗
∥∥2

Lc
+

ϵ

κ

(
x − x∗

)⊤ H
(
x − x∗

)
.

(49)
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Note that Dr Lc Dr ⪰ 0, Lc ⪰ 0, 0 and 1 are the eigenpair of
Lc, and H is negative definite. Hence, combining these facts,
Proposition 2(1), and (49), we conclude that Ṡ(x, s) = 0 if and
only if x = x∗, x̂ = x̂∗, η ∈ span(1n), and r1λ1 = · · · = rnλn .
These conditions imply that Ṡ(x, s) = 0 if and only if ẋ = 0
and ṡ = 0, and thus confirms that the following set

Ωm ≜
{
(x, s) ∈ R2n+m

× Uds | ẋ = 0, ṡ = 0
}

is the largest invariant set within

Ωe ≜
{
(x, s) ∈ R2n+m

× Uds | Ṡ (x, s) = 0
}

.

We conclude the proof by invoking Proposition 2 and LaSalle’s
invariance principle [54, Th. 4.4] which imply that the tra-
jectory of (24) converges to the �m , x∗

= x̂∗
= x̂ne, and

s∗
∈ SOL(Gds, Uds).
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