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ABSTRACT In sixth-generation (6G) application scenarios like industry 5.0, augmented reality (AR),
autonomous transportation, and eHealth, there is a growing demand for Human Activity Recognition
(HAR). Meanwhile, with the deployment of millimeter-wave (mmWave) technologies in fifth-generation
(5G) cellular communications, higher-resolution sensing becomes feasible. Utilizing mmWave for com-
munication and HAR has garnered attention, necessitating accurate modeling of sensing channels. This
paper proposes a mmWave scattering channel model for indoor HAR, which facilitates system design,
optimization, and implementation. In the proposed model, we integrate primitive-based human body
scattering where the human body is indicated by a set of primitives, and cluster-based environment
scattering models, enabling detailed modeling of self-shadowing and double-bounce environment scattering.
Additionally, we develop a simulation framework encompassing signal transmission, sensing channels,
and processing, allowing adjustment of system parameters. Simulation results indicated by micro-
Doppler signatures including multi-link effects show good agreements with measurements, validating
the effectiveness of the proposed model. Meanwhile, the time consumption of the proposed simulation
workflow for generating micro-Doppler signatures for most human activities is within 10 minutes.

INDEX TERMS mmWave ISAC, sensing channel, human activity recognition, self-shadowing check.

I. Introduction

INTERGRATED sensing and communication (ISAC) is
envisioned as pivotal technology underpinning existing

fifth-generation (5G) and forthcoming sixth-generation (6G)
networks [1]. In various vertical application scenarios of 6G
such as industry 4.0, augmented reality (AR), autonomous
transportation, and eHealth, leveraging existing communica-
tion signals and systems for the implementation of sensing
functions is considered as one key enabler because of the
potential benefits of spectrum reuse and hardware integra-
tion [2]. Within the aforementioned application landscapes,
accurate human activity recognition (HAR) is demanding
to provide smart human assistance, e.g., AR human-body
interaction, pedestrian detection in transportation, and falling
detection for elderly care [3]. Besides, with the standard-

ization of millimeter-wave (mmWave) technology in 5G, it
becomes feasible to conduct high-resolution sensing using
communication signals/systems [4]. However, developing a
practical human-centered scattering (HCS) channel model
for HAR that balances accuracy and efficiency in mmWave
bands remains challenging. To address this, this paper pro-
poses an indoor mmWave scattering channel model for HAR
applications, which integrates trajectory-driven deterministic
human activity with stochastic environment modeling.

HAR in the mmWave bands has attracted a great deal
of attention, bringing applications such as finger gesture
recognition by Google [5], mmWave radar products for
human detection by Texas Instruments [6], as well as human
tracking, localization, and activity recognition in the context
of ISAC. On the other hand, developing channel models
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and simulators for HAR is essential for generating data to
support further research on recognition algorithm design,
real ISAC system development, optimization, and more.
However, modeling scattering from a moving human body is
inherently difficult due to the following reasons: i) the human
body has complex structures and rich reflection points, ii) the
movement of the human body is coordinated but complicated
depending on the type of motion, and iii) human tissues on
different body parts have various reflection characteristics;
from where we identify two key factors for modeling the
HCS channel: the radar cross section (RCS) of the human
body and the trajectory of its movement. Two HAR sensing
channel modeling methods have been developed and widely
adopted in existing research to address the above issues:
primitive-based [7], [8] and ray tracing-based model [9].

For primitive-based models, each body part is modeled as
primitives, such as a sphere, ellipsoid, etc., and the RCS is
calculated analytically [10]. The trajectory of each part is
determined from the data captured by specific systems, i.e.,
motion capture (MOCAP) system, Kinect sensor, etc [11],
[12]. Generally, only the line of sight (LoS) channel between
each body part and the transceiver is considered, and the total
scatterer number in the channel depends on the predefined
primitive number. In [13], a Kinect-based human micro-
Doppler simulator with a human body scattering model has
been developed for radar applications, where the human body
is divided into 17 parts represented by primitive shapes for
RCS calculation, and the trajectory is derived from data
captured by Kinect sensors. Micro-Doppler signatures for
various human activities can be obtained from the simulator
by short-time Fourier transform (STFT) analysis. A similar
modeling and simulation flow is conducted in [8] with
bistatic radar, using the trajectory derived from the existing
MOCAP database. The above simulators lack the configura-
tion of transceiver architectures, making it difficult for them
to adapt to ISAC systems. In [7] and [14], simulators are
designed for passive WiFi scenarios, integrating the packet
structure of the IEEE 802.11 standards (IEEE 802.11g, n,
and ad) with specially developed signal processing methods
to extract micro-Doppler signatures. Yet, they do not account
for environmental reflections in their models.

For the ray-tracing-based model, a 3-dimensional (3D)
model of the human body is used and meshed, while the
trajectory of each part is also captured from MCAP. Using
shooting and bouncing rays to simulate the propagation and
interaction of rays with the human body, RCS is calculated
by physical optics. Many studies on channel and signal
modeling based on ray tracing for moving humans have been
conducted using commercial simulators like Wireless InSite,
as well as self-built lightweight simulators [9], [15], [16].
Due to the precise object segmentation and the interactions of
multiple rays with objects in the given scenario, ray-tracing-
based models incorporate reflections from environmental
components and enable more accurate channel modeling,
inherently including self-shadowing effects among different

human body parts. However, time/computing efficiency is a
significant bottleneck for ray-tracing-based models, as the
simulator may require trajectory data to be imported frame
by frame for various human activities [16]. Some researchers
have also explored quasi-deterministic ray tracing model-
ing [17] and primitive-based models with environmental
scatterers [18]–[20] to balance efficiency and accuracy. Still,
there is a gap in developing comprehensive channel models
and flexibly adjustable simulators for HAR applications.

To conclude, the primitive-based model is time-saving
and provides a micro-Doppler signature that aligns reason-
ably with real-world situations; however, it neglects self-
shadowing among human body parts and multiple reflections
from interactions with the environment. In contrast, the ray-
tracing-based model can achieve high accuracy and auto-
matically accounts for self-shadowing and multi-reflections.
Nevertheless, it is highly time-consuming, computationally
expensive, and challenging to apply in dynamic scenarios.
To reap benefits from both methods, this paper aims to
establish a refined sensing channel model that integrates
a trajectory-driven, primitive-based human body scattering
model with a stochastic, cluster-based environment scattering
model. Additionally, we added a self-shadowing checking
procedure to simulate realistic human movement. Together,
these elements contribute to achieving a balance between
accuracy and efficiency. Furthermore, to accommodate mod-
eling the ISAC system with shared communication-centric
waveform, we build a complete simulation framework with
flexible antenna configuration, transmitter/receiver deploy-
ment, waveform generation, signal scattering, receiving,
and modeling. After STFT analysis, a key output of this
simulator is the micro-Doppler signature, which reflects
various human motions. We compared the generated micro-
Doppler signatures with real-world measurements, validating
the effectiveness of the proposed model.

The contributions of this paper are:

C1) We propose a refined channel model for human ac-
tivity sensing with the combination of a primitive-
based human model and cluster-based scattering model.
The proposed channel model considers self-shadowing
and double-bounce environment scattering. More im-
portantly, the model allows for fast simulation, as
10 minutes is more than enough for simulating most
various human activities using personal computers.

C2) We build a simulator for human activity sensing includ-
ing transmitting signal and topology, sensing channel,
and receiving signal and radar processing, where system
parameters such as antenna pattern, waveform, etc., can
be flexibly adjusted. Using the micro-Doppler signature
as a key metric, simulation results with the proposed
channel model are in generally good agreement with
the corresponding measurements.

The remainder of this paper is organized as follows. In
Section II, we built a 3D geometrical illustration for indoor
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FIGURE 1. 3D geometrical model for human activity sensing under
monostatic deployment.

wave propagation under monostatic, bistatic, and multi-static
deployments. In Section III, we formulated the channel
model including channel response considering scattering
from the human body, scattering from static scatterers based
on the cluster model, and double-bounce scattering. Self-
shadowing checking method and micro-Doppler processing
are also introduced in Sec. III. In Section IV, we present
the simulation implementation details and show the micro-
Doppler signatures with various human motions through sim-
ulations. We also introduce a human activity measurement
dataset, where we demonstrate that the simulation results
are in good agreement with the measurement. Finally, we
concluded the paper in Section V.

II. 3D Geometry-based Representation
This section gives a 3D geometrical illustration for indoor
wave propagation specifically HCS channels under three
deployment topologies: monostatic, bistatic, and multi-static.
Aiming at HAR, we borrowed ideas from the 3D non-
stationary geometry-based stochastic model (GBSM), where
the human body is simplified as a set of moving scatterers,
and the background environment is modeled by clusters
following stochastic distributions. Both the transmitter (Tx)
and receiver (Rx) are embedded with antenna arrays and
phase-shift beamforming is applied.

A. Monostatic Deployment
Figure 1 depicts the 3D geometrical indoor wave prop-
agation scenario with a moving human. The presented
system has NT antennas at Tx and NR antennas at Rx.
AT

i (i = 1, 2, .., NT) denotes transmit antenna i, and
AR

j (j = 1, 2, .., NR) denotes receive antenna j. Scatterers
in the whole simulated setting are grouped in different
clusters, categorized as i) clusters representing the back-
ground environment (e.g., walls, ceilings, window), denoted
by Cn(n = 1, 2, .., N(t)) and ii) clusters indicating human
body parts CH. There are N(t) background environment
clusters with M scatterers Smn

(m = 1, 2, ..,M) each,
and NB(t) = N(t)M denotes the total scatterers. Each
scatterer specifies a ray from Tx to Rx and the birth-death
process is applied to emulate the visibility of clusters to the

Tx at time instant t. CH includes P (t) moving scatterers
SH
p (p = 1, 2, .., P (t)), where P (t) is determined by the

predefined number of human body parts and varies due
to self-shadowing at each time instant t. With monostatic
deployment, Tx and Rx are co-located at a fixed position as
in Fig. 1. The moving trajectory of SH

p is set as a known
set T (t) =

{
(xH

p (t), y
H
p (t), z

H
p (t))|p = 1, 2, ..., P (t)

}
along

time, which is obtained from existing datasets collected by
MOCAP systems. Different trajectory sets are formed for
various human activities.

Moreover, a two-bounce propagation mechanism is
adopted, where background clusters consist of a pair of sub-
clusters, i.e., first-bounce from Tx side to CF

n and last-bounce
from CL

n to Rx side. Hence, there are five components con-
tained in the proposed model: i) single-bounce component
with path Tx → Cn → Rx (with CF and CL considered
as a whole); ii) single-bounce component with path Tx
→ CH → Rx; iii) double-bounce component with path Tx
→ CF

n → CL
n → Rx; iv) double-bounce component with

path Tx → CF
n → CH → Rx; v) double-bounce component

with path Tx→ CH → CL
n → Rx. To build channel models,

two geometric information elements are first determined
for the above links: path lengths and angles, i.e., angle of
arrival (AOA), angle of departure (AOD), elevation angle
of arrival (EOA), and elevation angle of departure (EOD).
Under monostatic case, we neglect the position differences
in Tx and Rx antenna array and links of each pair of
transmitting and receiving waves are assumed to share the
same path lengths and angles. For instance, the path length
of the single-bounce component including S

F/L
mn at time t is

dBmn
(t) = 2

∥∥∥A− SF/L
mn

(t)
∥∥∥ , (1)

where A denotes the 3D position vector (x, y, z) of monos-
tatic Tx/Rx with assumption of A = AT

i = AR
j , SF/L

mn is the
position vector of S

F/L
mn , and ∥·∥ indicates Euclidean norm

operation. The AOA/AOD and EOA/EOD are expressed by

φB,AOA
mn

= φB,AOD
mn

= arctan
y − y

F/L
mn

x− x
F/L
mn

φB,EOA
mn

= φB,EOD
mn

= arcsin
z − z

F/L
mn∥∥∥A− S
F/L
mn

∥∥∥
. (2)

Correspondingly, we can derive path lengths dHp (t) and
angles φAOA

p , φAOD
p , φEOA

p , φEOD
p of single-bounce links

involving human body cluster CH in a similar manner.
For double-bounce links, path lengths of components iii)-

v) illustrated above are expressed below, respectively:

dBB
mn

(t) =
∥∥A− SF

mn
(t)

∥∥+
∥∥A− SL

mn
(t)

∥∥
+
∥∥SF

mn
(t)− SL

mn
(t)

∥∥
dBH
mn,p(t) =

∥∥A− SF
mn

(t)
∥∥+

∥∥A− SH
p (t)

∥∥
+
∥∥SF

mn
(t)− SH

p (t)
∥∥

dHB
mn,p(t) =

∥∥A− SH
p (t)

∥∥+
∥∥A− SL

mn
(t)

∥∥
+
∥∥SH

p (t)− SL
mn

(t)
∥∥

, (3)
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FIGURE 2. 3D geometrical model for human activity sensing under
bistatic deployment.

where the superscript {BB,BH,HB} indicates paths includ-
ing CF

n → CL
n , C

F
n → CH, and CH → CL

n , aligning
with components iii)-v). SF

mn
,SL

mn
,SH

p denote the position
vector of scatterers in CF

n , C
L
n , C

H, respectively. Meanwhile,
the AOA/EOA and AOD/EOD are determined by relative
directions of first scattering from Tx and last scattering to
Rx, correspondingly. With the time-varying path lengths of
wave propagation, the Doppler modulation introduced by
human moving will be reflected in the backscattering signal,
including the effect of background environment scattering.

B. Bistatic Deployment
Figure 2 depicts the 3D geometrical model for HCS under
bistatic deployment, where Tx and Rx are spatially separated.
Each transmitting antenna AT

i (i = 1, 2, ..., NT) is located at
AT

i (x
T
i , y

T
i , z

T
i ) and receiving antenna AR

j (j = 1, 2, ..., NR)
at AR

j (x
R
j , y

R
j , z

R
j ). Same as the monostatic scenario, NB(t)

scatterers indicate the indoor environment, and P (t) moving
scatterers represent the human body. Path lengths of compo-
nents i)-v) should consider different locations of each pair
of Tx/Rx antenna denoted with subscription ij, which are
given as follows, respectively:

dBij,mn
=

∥∥∥AT
i − SF/L

mn
(t)

∥∥∥+
∥∥∥AR

j − SF/L
mn

(t)
∥∥∥

dHij,p(t) =
∥∥AT

i − SH
p (t)

∥∥+
∥∥AR

j − SH
p (t)

∥∥
dBB
ij,mn

(t) =
∥∥AT

i − SF
mn

(t)
∥∥+

∥∥AR
j − SL

mn
(t)

∥∥
+
∥∥SF

mn
(t)− SL

mn
(t)

∥∥
dBH
ij,mnp(t) =

∥∥AT
i − SF

mn
(t)

∥∥+
∥∥AR

j − SH
p (t)

∥∥
+
∥∥SF

mn
(t)− SH

p (t)
∥∥

dHB
ij,mnp(t) =

∥∥AT
i − SH

p (t)
∥∥+

∥∥AR
j − SL

mn
(t)

∥∥
+
∥∥SH

p (t)− SL
mn

(t)
∥∥

(4)

where the superscript {B,H} indicates single-bounce paths
involving C

F/L
n and CH, respectively. To avoid duplication,

A1
T

y

z

A2
T

Ai
T

x

A1
T

y

z

A2
T

Ai
T

A1
R

A2
R

Aj
R

x

z

x

A1
R

A2
R

Aj
R A1

T2

y

z

A2
T2

Ai
T2

z

x

A1
R2

A2
R2

Aj
R2

A1
T1

A2
T1

Ai
T1

A1
R1 A2

R1

Aj
R1

x

FIGURE 3. 3D geometrical model for human activity sensing under
multistatic deployment.

we only specify the angles of the component ii) as below

φAOA
ij,p = arctan

yRj − yHp

xR
j − xH

p

, φEOA
ij,p = arcsin

zRj − zHp∥∥AR
j − SH

p

∥∥
φAOD
ij,p = arctan

yTi − yHp
xT
i − xH

p

, φEOD
ij,p = arcsin

zTi − zHp∥∥AT
i − SH

p

∥∥
.

(5)

C. Multistatic Deployment
Considering networked sensing applications, we also depict
a multistatic deployment as in Fig. 3, where two transmitters,
i.e., Tx1 and Tx2, and two receivers, i.e., Rx1 and Rx2 are
included. Each antenna from the Tx/Rx arrays is denoted
by AT1

i , AT2
i , AR1

j , and AR2
j , respectively. All transmitters

and receivers are spatially separated. Hence, there are four
propagation channels: i) Tx1 → Rx1, ii) Tx1 → Rx2, iii)
Tx2 → Rx1, and iv) Tx2 → Rx2. The scatterers indicat-
ing indoor environments and a moving human body are
the same as the above two deployments. Moreover, links
between Tx/Rx and background scatterers, moving scatterers
with single-bounce propagation, and moving scatterers with
double-bounce propagation should be established for the
four channels, respectively. We abbreviated the geometric
expressions here as the path lengths and angles of different
links for each pair of Tx/Rx have the same formulations
under bistatic deployment.

III. Channel Modeling and Micro-Doppler Extraction
In this section, channel modeling based on geometry rep-
resentations is conducted considering monostatic, bistatic,
and multistatic deployments. We first present the generation
and evolution of background scatterers to determine their
positions. Then, we detail the formulation of channel re-
sponse by defining time delay, Doppler shift, attenuation,
and antenna pattern. Further, we develop a self-shadowing
checking process for simulating blockage among different
human body parts while human moving. Finally, we intro-
duce STFT analysis for micro-Doppler signature extraction.
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A. Generation and Evolution of Background Scatterers
Before modeling the channel response, we first generate
scatterers in the sensing channel model. For the moving
scatterers indicating the human body, the trajectory, i.e.,
positions of each scatterer at instant t are determined from
the existing database by the MOCAP system. For scatterers
indicating other environmental objects, the initial cluster
locations are generated first by distance d from Tx/Rx
to the center of background clusters, which is assumed
to be non-negative random variables following exponential
distribution within an interior room indicated by L×W ×H
(length by width by height of the room). Angles φE , φA

are assumed to be with Gaussian distributions. We then
adopted the Gaussian scatter density model (GSDM) which
collects scatterers with azimuth angles, elevation angles, and
distances similar to the detection of Tx and Rx for the
distribution of scatterers within clusters [21]. In GSDM, the
distance and angle parameters between the scatterers and
Tx / Rx follow the ellipsoid Gaussian scattering distribution
and the scattering coordinates centering on the origin of the
coordinates can be modeled as [22]

p(x′, y′, z′) =
exp

(
− x′2

2ε2DS
− y′2

2ε2AS
− z′2

2ε2ES

)
(2π)3/2εDSεASεES

. (6)

where εDS , εAS , εES denote the standard derivations of
the Gaussian distributions and characterize delay spread,
azimuth angle spread, and elevation angle spread of the clus-
ter, respectively. Given a room size, clusters are generated
randomly with the spherical coordinates of the cluster center
denoted as (d, φE , φA). Then, the positions of scatterers
(x, y, z) centering around the cluster center are stated as x

y
z

 =

 cos (φ̄A) − sin (φ̄A) 0
sin (φ̄A) cos (φ̄A) 0

0 0 1


 cos (φ̄E) 0 − sin (φ̄E)

0 1 0
sin (φ̄E) 0 cos (φ̄E)

 x′ − d̄
y′

z′

. (7)

After generating the background clusters and scatterers,
the birth-death process is applied to emulate the visibility
of background clusters at each time instant (t, t + ∆t, t +
2∆t, ...). Unlike the birth-death process used in most general
channel models where the Tx, Rx, and clusters are randomly
moving, only the human body is modeled as a moving
component in this work. Thus, we use the birth-death process
to simulate the potential blockage to background clusters
due to the human body movement. Moreover, the changes
of background clusters are relatively slow compared to
the human body cluster, and a simplified Poisson process
is considered to describe the generation and extinction of
such background clusters. Following the algorithm proposed
in [21], each cluster is assigned with a birth rate λB and death
rate λD, and remains from t to t+∆t with the probability

Premain = exp [−λDPHvH∆t], (8)

where PH is the ratio of the human cluster number to the total
background cluster number and vH is the mean velocity of
human body movement. Then, at t+∆t, the new clusters are
generated following the Poisson distribution with expectation

E{Nnew} =
λB

λD
(1− Premain) (9)

The above process is applied to both clusters CF and CL.

B. Channel Response
The channel transfer function (CTF) matrix is expressed by
a NT×NR matrix HNT×NR

= [Hij(t, f
′)]NT×NR

. Based on
the geometric model presented above, we express the wave
propagation from antenna AT

i to antenna AR
j as

Hij(t, f
′) = HB

ij(t, f
′) +HH

ij(t, f
′)

+HBB
ij (t, f ′) +HBH

ij (t, f ′) +HHB
ij (t, f ′).

(10)

Corresponding to the components illustrated in the geometric
model part, the complete channel response Hij(t, f

′) con-
sists of five parts. HB

ij(t, f
′) and HH

ij(t, f
′) denote channel of

single-bounce from background and human body scatterers,
respectively; HBB

ij (t, f ′), HBH
ij (t, f ′), and HHB

ij (t, f ′) rep-
resent double-bounce among background scatterers, back-
ground and human body scatterers, and human body and
background scatterers, respectively. For each component, the
total contribution of various scatterers should be considered.
Thus, HB

ij related to time and frequency is defined as

HB
ij(t, f

′) =

N(t)∑
n=1

M∑
m=1

Gij,mna
B
ij,mn

× exp
{
−2πj(f ′ + fc)τ

B
ij,mn

(t)
}, (11)

where fc represent the carrier frequency, respectively;
Gij,mn

denotes antenna pattern function and aBij,mn
is the

scatterer reflectivity related channel gain; τBij,mn
is the

distance related propagation delay. The above parameters
will be defined and discussed in detail below. For the
moving human body, Doppler shift is included in the channel
response, and HH

ij is expressed as

HH
ij(t, f

′) =

P (t)∑
p=1

Gij,pa
H
ij,p(t)

× exp
{
2πj

[
tfH

ij,p(t)− (f ′ + fc)τ
H
ij,p(t)

]}, (12)

where fH
ij,p(t) is the Doppler shift induced by the radial

velocity of moving human body parts. P (t) is the instanta-
neous total number of paths between Tx and Rx scattered by
human scatterers. Considering self-shadowing effect, we use
an index set C(t) to indicate scatterers that are not blocked
by other body parts, and P (t) is the set size.

For HBB
ij , only delay in Eq. (11) needs to be repleced by

τBB
ij,mn

, while for HBH
ij and HHB

ij , Doppler shift fBH
ij,mnp

and
fHB
ij,mnp

in addition to delays should be considered. Besides,
we assume the total number of clusters is divided equally for
first-bounce and last-bounce scattering, respectively. Thus,
the total number of scatterers considered in the human body
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:

related double-bounce link is NB(t)P (t)
2 . In the following, we

define the aforementioned parameters, i.e., antenna pattern,
delay, Doppler shift, and channel gain in detail.

1) Antenna Pattern
The antenna pattern function is related to the azimuth and
elevation angles of transmitted beam and receiving beam to
the antenna. For example, Gij,p in Eq. (12) is expressed as

Gij,p =

[
FT
i,V

(
φEOD
ij,p , φAOD

ij,p

)
FT
i,H

(
φEOD
ij,p , φAOD

ij,p

) ]T
[

ejΦ
VV
ij,p

√
κejΦ

VH
ij,p

√
κejΦ

HV
ij,p ejΦ

HH
ij,p

][
FR
j,V

(
φEOA
ij,p , φAOA

ij,p

)
FR
j,H

(
φEOA
ij,p , φAOA

ij,p

) ],
(13)

where FT
i,V (H) and FR

j,V (H) denote antenna patterns of
antennas AT

i and AR
j for vertical (horizontal) polarizations,

respectively, {·}T indicates transposition process, κ is the
cross-polarization power ratio, and ΦVV

ij,p, ΦVH
ij,p, ΦHV

ij,p, and
ΦHH

ij,p are uniformly distributed random phases over (−π, π).

2) Delay and Doppler
The propagation delays τXY (t), where the
superscript X ∈ {B,H,BB,BH,HB} and subscript
Y ∈ {{ij,mn}, {ij, p}, {ij,mn}, {ij,mnp}, {ij,mnp}}
relating to Eq. (4) are presented as

τXY (t) =
dXY (t)

c0
, (14)

where c0 is the speed of light. Meanwhile, Doppler shift is
calculated by the radial moving velocity of each body part
relative to the transceiver as

fH
ij,p(t) =

2vHij,p(t)fc

c0
cos (β/2), (15)

where β is the bi-static angle, and vHij,p is obtained through
the human moving trajectory, by calculating relative position
vector change at each time slot.

3) Channel Gain
According to the free-space path-loss model, the channel
gain a in the above equations is related to the distance
between scatter and transceiver, propagation effects, etc.
Moreover, RCS estimation of the human body is crucial for
the HCS model. In our proposed model, we represent differ-
ent body parts using primitives, i.e., a sphere for the head and
ellipsoids for the arms, to embody a human skeleton model.
This allows us to apply analytical RCS calculations for each
primitive, enabling accurate RCS estimation for individual
body parts. Thus, we formulate aHij,p(t) as

aHij,p(t) =
Gij,p(t)

√
σH
ij,p(t)∥∥AT

i − SH
p (t)

∥∥ · ∥∥AR
j − SH

p (t)
∥∥ , (16)

where Gij,p(t) indicates antenna gain as in Eq. (13), and
σH
ij,p(t) indicates RCS of p-th scatterer (i.e., primitive)

relative to antennas AT
i and AR

j under single-bounce propa-
gation, which is depicted as Eq. (17), with ap, bp, cp denoting
radii along the x, y, z axis of ellipsoid. In Eq. (17), time-
varying AOA/EOA/AOD/EOD are also included. Mean-
while, for background clusters, we assume RCS of each
scatterer remains the same as a constant.

C. Self-Shadowing Effects
To approach the realistic situation, we also consider the
self-shadowing among different human body parts while a
human is moving. As mentioned above, various human body
parts are represented by primitives with different sizes. As
long as the scatterer considered for human simulation has a
specific size, we could leverage methods to check whether
the wave scattered by a specific body part would be blocked
by other body parts to the receiver under motions. The
checking principle is simple: given a LoS link between a
primitive center (i.e., the position of the scatterer) on the
human body and the transceiver, if the link intersects with
any other primitives (i.e., mainly ellipsoid) indicating other
body parts, we determine this link is self-shadowed. Then,
the contribution of this link to the backscattering signal is
removed. Algorithm 1 depicts the self-shadowing checking
process. P indicates a set of each ellipsoid, where columns
1 ∼ 3 store position and columns 4 ∼ 6 store radii of
ellipsoid along x, y, z axis, respectively. To accelerate the
checking process, we first use the function “ComputeBox()”
to calculate the boundary box of each ellipsoid. As long
as there is an intersection between the current ellipsoid and
boxes of other ellipsoids, checking for an intersection with
the ellipsoid is required. If an intersection exists, the current
scatterer’s contribution is removed.

D. Micro-Doppler Analysis
As there are static objects considered in the modeling,
we should first remove the static reflections from the to-
tal channel response for human activity sensing. Given a
symbol or packet transmission time as Tc, we sample the
channel response in time, and index q = 1, ..., Q is denoted
as discrete time instants. Hence, channel response can be
represented as H(q, f ′), t = qTc. For signal processing,
we compute channel impulse response h(t, τ ′) by taking
the inverse Fourier transform (IFFT) of H(t, f ′). Then, the
background-related channel response is estimated as

h(t, τ ′) =
1

Q

Q∑
q=1

|h(t, τ ′)|, (18)

which means the time average of channel amplitude within
a window of Q samples [14]. Then, the channel response
amplitude after subtracting the background is depicted as

|ĥ(t, τ ′)| = max(|h(t, τ ′)| − h(t, τ ′), 0). (19)
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Algorithm 1: Self-Shadowing Checking

input : AT, AR, and body part set P
output: C

1 Initialization: C ← {1, 2, ..., P};
2 for i = 1 : size(P) do
3 dir1 = AT − P(i, 1 : 3);
4 dir2 = AR − P(i, 1 : 3);
5 for j = {1 : size(P)}\i do
6 bbox =ComputeBox(P(j));
7 dirt = AT − P(j, 1 : 3);
8 dirr = AR − P(j, 1 : 3);
9 if (norm(dir1)>norm(dirt) )

& (norm(dir2)>norm(dirr)) then
10 if IsIntersct(bbox,AT, dir1) &

IsIntersct(bbox,AR, dir2) then
11 if IsIntersct(P(j), AT, dir1)

&
IsIntersct(P(j), AR, dir2)
then

12 C ← C\j;
13 break;

14 Return: C

We adopt micro-Doppler as a signature of various human
activities and the spectrogram S(f, t) is plotted for identifi-
cation. The micro-Doppler extraction process is summarized
in the following:

• Integrating complex channel gain over propagation de-
lay τ ′ from 0 to τmax as µ(t).

• Conduct short-time Fourier transform (STFT) on µ(t)
as

X(f, t) =

∫ ∞

−∞
µ(t)w (t′ − t) e−i2πft′dt′, (20)

where ω(t) is a window function.
• Finally, the spectrogram S(f, t) = |X(f, t)|2.

IV. Simulation and Analysis
In this section, we present simulation results of the estab-
lished channel model for human activity sensing. We first
give a workflow for simulating human activities. To further
facilitate the model into the concept of ISAC, we adopt the
orthogonal frequency-division multiplexing (OFDM) wave-

form in the following simulations, and the implementation
of OFDM waveform in the channel model is introduced.
Micro-Doppler is selected as a major signature for depicting
human activity simulations with channel models. Simulations
for micro-Doppler signatures of various human activities un-
der monostatic and bistatic configurations are demonstrated.
Finally, we introduce the measurements for human activity
sensing, and the comparison between simulation results and
measurement results is included.

A. Simulation Workflow
For the indoor scenario, we consider a 3m×3m×3m cube,
and transceivers, background scatterers, and moving scatter-
ers indicating the human body should be placed within the
space. Figure 4 depicts the workflow of simulating human
activities with the proposed scattering channel model, which
contains the following 3 parts.

1) Signal transmitting
As introduced above, the antenna pattern can be adjusted in
this simulation. Besides, antenna array parameters such as
antenna number, polarization, etc., can be determined. Then,
we define the OFDM waveform with customized parameters
such as the number of subcarriers, OFDM symbol duration,
etc., and then the quadrature amplitude modulation (QAM) is
conducted to generate OFDM samples. The sensing signal
is finally transmitted after defining Tx’s antenna and peak
power.

2) Sensing channel
The sensing channel includes moving human target scatter-
ing and fixed cluster scattering model. For the human target
model [7], we obtain MOCAP data from the existing dataset
at first. Second, we can extract the position vector of each
scattering point, where the human movement is indicated by
the position vector dataflow at the video frame rate of the
point cloud. Then, we fit a human skeleton model to a point
cloud, which is built by a series of reference points indicating
critical joints of the human body. Then, we embody the
human skeleton with primitives to estimate the RCS of each
body part over time. State that here we need to interpolate
the data at the sensing sampling frequency. For the cluster-
based scattering model, we generate the distance and angle
information of background scatterers following the ellipsoid



σH
ij,p(t) =

πa2pb
2
pc

2
pΘ

S
p(

a2pΦ
S
p + b2pΨ

S
p + c2p(cosφ

EOA
ij,p (t) + cosφEOD

ij,p (t))2
)2

ΘH
ij,p := ((1 + cosφEOA

ij,p (t) cosφEOD
ij,p (t)) · cos(φAOA

ij,p (t)− ϕS
p(t)) + sinφEOA

ij,p (t) sinφEOD
ij,p (t))2

ΦH
ij,p := (sinφEOD

ij,p (t) cosφAOD
ij,p (t) + sinφEOA

ij,p (t) cosφAOA
ij,p (t))2

ΨH
ij,p := (sinφEOD

ij,p (t) sinφAOD
ij,p (t) + sinφEOA

ij,p (t) sinφAOA
ij,p (t))2

, (17)
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Human-Target Scattering Model
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Antenna Pattern Beamforming

Demodulation

Time-Frequency 
Processing

FIGURE 4. Simulation workflow of human activity sensing.

Gaussian scattering model, and the number of paths varies
with time.

3) Received signal
At the Rx side, antenna pattern, antenna array, noise figure,
etc., are determined. According to the trajectory of each
body part, we calculate delay and Doppler based on position
change over time; together with RCS, we can finally build
the scattering signal for the human target. Adding signal
scattering from fixed clusters and double-bounces from both
moving and background scatterers, the received signal is
formulated. For OFDM waveform, the attenuated, delayed,
and Doppler shifted signal from the human target is given
as [23]

(FRx)ij,uv =

P∑
p=1

Gij,pa
H
ij,p (FTx)ij,uv · exp [j2πvTOf

H
ij,p]

· exp [−j2πτHij,p(u∆f + fc)] + (Z)ij,uv

, (21)

where FTx, FRx, and Z indicate transmitted OFDM frame,
received OFDM frame, and noise, respectively, where each
row and column represent a sub-carrier and an OFDM
symbol with u and v denoting indexes, and TO represents
the whole OFDM duration. After beamforming and demod-
ulation at the Rx, the received signal is deducted from the
transmitted signal. At last, the derived channel matrix is
conducted with STFT to obtain micro-Doppler signatures.

B. Simulation Configuration
For both Tx and Rx, we adopted a uniform linear array
(ULA) with 4 short dipole antenna elements, where the

spacing between each element is half the wavelength. Thus,
the simulated array gain is 8.74dBi. For the OFDM wave-
form, we select parameters according to the range/velocity
resolution requirements for human activity sensing. For a
determined range resolution ∆r, the minimum bandwidth
B = c/(2∆r) should be satisfied. For OFDM symbols,
the symbol duration is reciprocal of the separation between
OFDM subcarriers, and the duration of the cyclic prefix
(CP) relies on the maximum detected range rmax as Tcp =
2rmax/c. Besides, velocity resolution is determined by the
window size of STFT and the maximum detectable velocity
is determined by the packet repetition frequency. Stated that
for various human activities, we use a dataset [12] from the
MOCAP system where the video frame rate is not sufficient
for human moving velocity; thus, we interpolate the video
frame to make sure that the sampling frequency is not
lower than 1kHz. For cluster generation, εDS = 1.1, εAS =
1.4, εES = 1.4 are used in the simualtion to indicate an
indoor room [21]. Detailed parameters of the simulation can
be found in Table 1.

C. Micro-Doppler Signature
In this subsection, we present micro-Doppler signatures of
different human motions. At first, we plot micro-Doppler
features with our proposed simulation without multi-path
scattering from the indoor environment, i.e., neglecting the
background scatterers effect, under both monostatic and
bistatic deployments. Then, we depict micro-Doppler signa-
tures with consideration of fixed clusters as well as second
bounces. Finally, we present a measurement dataset on
human activities and compare results from both simulation
and measurements. Stated that for both monostatic and
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FIGURE 5. Micro-Doppler signatures of human walk, jump jack, squat, lie down floor, stand up from chair, and sit down chair under monostatic (first
row) and bistatic (second row) deployments.

Walk

0 0.5 1 1.5 2 2.5

Time (s)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

D
o

p
p

le
r 

(H
z
)

-40

-35

-30

-25

-20

-15

-10

-5

0

(a) β = 60◦

Walk

0 0.5 1 1.5 2 2.5

Time (s)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

D
o

p
p

le
r 

(H
z
)

-35

-30

-25

-20

-15

-10

-5

0

5

(b) β = 90◦

Walk

0 0.5 1 1.5 2 2.5

Time (s)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

D
o

p
p

le
r 

(H
z
)

-40

-35

-30

-25

-20

-15

-10

-5

0

(c) β = 120◦

FIGURE 6. Micro-Doppler signatures of human walking with consideration of cluster-based environment scattering and second bounces.

TABLE 1. Parameter for HAR Simulation

Parameter Symbol Value
Carrier frequency fc 28GHz

Bandwidth B 5GHz
Number of subcarriers N 1024

Duration of a symbol T 0.20µs
Duration of cyclic prefix Tcp 0.07µs

Total OFDM duration TO 0.27µs
Turn-off duration between frames Toff 2.35µs

Packet repetition interval PF 15.59µs
Packet repetition frequency PRF 2kHz

Bits per QAM symbol bps 6

Peak power of Tx Pt 0.01W
Pwer amplifier (PA) gain Gtx 5dB

Low noise amplifier (LNA) gain Grx 5dB
Rx noise figure NF 2.9dB

Maximum detectable range rmax 10m
Range resolution ∆r 3cm

bistatic deployment, the sensing target, i.e., the human body,
stands at the original coordinate [0, 0, 0]. For monostatic
deployment, the Tx/Rx coordinate is [0, 0.9,−1], and the
azimuth and elevation angle vector is presented in a vector
as [0, 0]. For bistatic deployment, Tx and Rx are located at
[0, 0.9, 1] with angle vector [45, 0] and [0, 0.9,−1] with angle
vector [−45, 0], respectively.

1) Micro-Doppler Signatures without Background Clusters
Figure 5 depicts micro-Doppler signatures of human walk,
jump jack, squat, lie down floor, stand up from chair, and
sit down on chair, where the first row shows results under
monostatic deployment and the second row under bistatic
deployment. Using our simulation, only one human is con-
sidered as the target and only scattering from the human body
is included in the channel part. Due to the micro-motions of
different body parts, micro-Doppler features can indicate the
particular human’s motions, which we can utilize for motion
or activity identification and classification. Stated that Fig. 5
only shows some exemplary human motions by one actor
from the database. However, the database contains more
samples, and spectrogram segmentation can be conducted to
obtain more data for algorithms such as machine learning.

2) Micro-Doppler Signatures with Background Clusters and
Second Bounces
With consideration of the cluster-based environment scatter-
ing model and second bounces, we present micro-Doppler
signatures for human walking under bistatic deployment
as in Fig. 6. Here we set λB = 25/m and λD = 5/m
and the initial number of both CF and CL are 5, within
which 5 scatterers are contained. Through the simulation,
we found that even with the birth-death process, the human
body moving will not cause the obvious change in the
background cluster number at each time instant. Here we
depict the impact of the bistatic angle on micro-Doppler
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1

• Tx1-Rx1 ⇒ 11 → 4
• Tx1-Rx2 ⇒ 12 → 2
• Tx2-Rx1 ⇒ 21 → 3
• Tx2-Rx2 ⇒ 22 → 1

Front

Tx1

Tx2 Rx2

Rx1

(a) Multi-static measurement schematic

0
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Rx1

Tx2
Rx2

(b) Hardware deployment

FIGURE 7. Measurement system configuration.
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FIGURE 8. Comparison of beam pattern generated by (a) simulation and
(b) measurement.
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FIGURE 9. Comparison between (a) simulated and (b) measured
micro-Doppler signature under human squat.

signatures, where Fig. 6 (a-c) presents human waking with
bistatic angle β = 60◦, 90◦, and 120◦, respectively. We can
conclude that with β = 120◦, the micro-Doppler signature
is more detectable, which also relies on target’s orientation
and location. With β = 60◦, signatures became vague as the
human walks away.

D. Measurements Comparison
We compare simulation results using our proposed channel
model with a measurement dataset on human activity sensing
by Niigata University. The hardware configuration of the
double-directional channel sounder, utilizing a commercial-
off-the-shelf phased-array beamformer, is detailed in [24],
[25]. Figure 7 depicts the configuration of the measurement
setup. In this experiment, the antennas are placed in four
locations with Tx of 2 and Rx of 2 with a height of
1.4m. The distance between Tx1-Tx2 and Rx1-Rx2 is 1.37m,
respectively, and the distance between Tx1-Rx1 and Tx2-
Rx2 is 1.88m, respectively. The target, i.e., a human, stands

TABLE 2. Parameter for Transceiver in Measurement

Parameter Symbol Value
Carrier frequency fc 24.15GHz

Bandwidth B 100MHz
Number of subcarriers N 512

Sampling rates fs 400Msps
Range resolution ∆r 150cm

Delay span Tcp 2.56µs
EIRP of Tx EIPR 32dBm

in the center of four antennas arranged in a rectangular shape.
The distance from each antenna to the target is 2m, and the
Tx-target-Rx propagation distance is 4m. Channel responses
with multiple human activities are measured with sampling
frequency 170Hz and for each scenario, four channels, i.e.,
Tx1-Rx1, Tx1-Rx2, Tx2-Rx1, and Tx2-Rx2 are obtained.
The frequency of the transmitting signal is 24.15 GHz. In
the measurements, 2 × 8 planar antenna arrays are utilized
at both Tx and Rx. Similarly, in the simulations, we apply
uniform rectangular arrays (URA) with 2 × 8 short dipole
antenna elements. To match the 32dBm equivalent isotropic
radiated power (EIRP) in measurements, we set Tx peak
power Pt = 7.84dBm and PA gain Gtx = 5dB as the antenna
array gain is 14.16dBi in simulations. To better reflect the
real system’s characteristics, we set LNA gain to Grx = 5dB
and noise figure to 2.9dB, ensuring that the received signal
power aligns with the levels observed in measurements.
Further detailed parameters on the transceivers used in the
measurement are listed in Table 2.

To accommodate the testbed, we deploy the bi-static
transmitter and receiver with the same location as Tx2-
Rx2 link as in Fig. 7 during the simulation. The carrier
frequency is set as 24.15 GHz. The initial number of both
CF and CL are 5, within which 5 scatterers are included
to simulate the indoor environment. In the measurement,
due to the low sampling frequency, it is not possible to
generate micro-Doppler signatures of human motions with
higher velocity. However, there are lower-velocity motions
such as squatting and walking on the spot, which we chose
as samples for comparison. In the simulation, we adopted
a sampling frequency of 360Hz to capture micro-Doppler
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signatures of the human motion from the MOCAP dataset.
A comparison of beam patterns generated by simulation
and measurement is depicted in Fig. 8. According to [24],
the transmitter consists of four antenna arrays to cover
the 360◦ field of view, while for the measured channel,
only one antenna array is used. Hence, we plot a diagram
of the antenna array patterns to show the consistency of
simulation and measurement configuration. The envelopes
and the power of the two patterns are consistent.

Figure 9 (a) depicts the simulated micro-Doppler sig-
nature of human squat with our proposed channel model.
After conducting STFT on channel data (channel Tx2-Rx2)
and fixed scattering removal, we also obtained the micro-
Doppler signatures of the human squat as in Fig. 9 (b) from
measurements. The forms of micro-Doppler signatures show
similarity. Due to the unaltered human moving speed in the
MOCAP dataset as well as in the completed measurement
dataset, the maximum Doppler shown in simulated micro-
Doppler signatures is not strictly aligned with that from
the measurements. However, the envelope and form of the
signatures from simulation and measurement demonstrate
generally good agreement.

The comparison between Fig. 5 and Fig. 6 demonstrates
the effect of integrating the environment cluster model and
the self-shadowing checks in the proposed model. During
the numerical analysis, micro-Doppler signatures for various
human activities are derived within 10 minutes using stan-
dard laptops, eliminating the need for input frames of human
animation as required by ray-tracing-based models, thereby
saving both time and computational resources. Besides, the
proposed model and experimental demonstrations can be ex-
tended to other domains. For instance, in gesture recognition,
this model can be used to analyze fine movements of the
hand, enabling precise identification of gestures. This is par-
ticularly relevant for human-computer interaction systems in
AR environments, where detecting and interpreting gestures
in real-time is crucial for seamless interaction. The model’s
ability to accurately capture micro-Doppler signatures of
human motion makes it suitable for these applications, and
further optimizations could ensure that it meets the efficiency
and accuracy requirements of these emerging fields.

V. Conclusions
Our work presents a novel approach to model the indoor
mmWave scattering channel. By integrating primitive-based
and cluster-based scattering models, we have developed a re-
fined channel model that efficiently considers self-shadowing
and double-bounce environment scattering, crucial for accu-
rate HAR performance. Additionally, we have constructed
a comprehensive simulation framework facilitating system
design and optimization. We have validated the effective-
ness of our proposed approach through comparative exper-
iments with real-world measurements, demonstrating that
the proposed work mitigates the tradeoff between the time-
consuming and modeling accuracy of existing works, where

most human activities can be identified with micro-Doppler
signatures within 10 minutes. The significance of our work
lies in its potential to advance the utilization of mmWave
technology for HAR applications in emerging 6G networks,
addressing the increasing demand for precise human activity
sensing across various sectors.
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