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ABSTRACT Research on electromagnetic (EM) components is essential to enabling the design and
optimization of such devices as antennas and filters, leading to improved functionality, reduced costs, and
enhanced overall performance. This paper presents an overview of recent developments in optimization
and design automation techniques for EM-component design and modeling. Limitations of conventional
optimization methods are discussed, while the need for novel machine learning techniques capable of
handling multiple objectives and large design spaces is highlighted. In this study, existing methods in
the literature are reviewed from four viewpoints: structural view, algorithm view, component view, and
application view. Different schemes in distinct design stages or applications are examined with advantages
and drawbacks laid out for easier comprehension. Finally, to broaden the scope of optimization in the
field of EM design and modeling, some prospective trends are pointed out to shed light on emerging
research hotspots.

INDEX TERMS Optimization, design automation, deep neural networks, inverse modeling, microwave
computer-aided design (CAD).

I. INTRODUCTION

ELECTROMAGNETIC (EM) components are well-
known for their nonlinear behaviors and vulnerability

to the environment. As a result, modeling, simulation,
and verification of complex EM designs are becoming
increasingly complicated. These problems may become even
more challenging when a high-dimensional input space
(design space) is required to form a desired multi-objective
output space (performance space). To delve into solutions for
demanding specifications, optimization methods and design
automation are good fits, especially in the wake of recent
advances in machine learning (ML) [1].

While optimizations for EM-based problems have a vital
role in designing microwave or millimeter wave (mmWave)
components, they suffer from great computational complex-
ities in practice. This is mainly due to the repetitive EM
simulations needed to investigate the impacts of different
geometrical parameters as well as technology and/or material

coefficients, which typically serve as design variables [2].
Thus, data acquisition and data sampling are of great
importance in guiding the optimization process toward
the optimum solutions and reducing the computational
burden.
In EM component design, optimization problems fre-

quently arise aiming at multiple objectives in the context of
numerous variables [3]. While mathematical programming
approaches can prove to offer a single optimal solution
if the problem is convex, population-based evolutionary
algorithms (EAs) excel in finding a set of optimal solutions
by balancing conflicting objectives for any (including non-
convex) problems [4]. Nevertheless, conventional EAs tend
to converge at a slower pace compared to the mathematical
programming methods due to exponential growth of the
design space with the increasing number of optimization
variables. This phenomenon is commonly referred to as the
curse of dimensionality [5].
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In recent years, much effort has been devoted to
developing optimization and design automation algorithms
to mitigate the challenges associated with error-prone
operations and to avoid time-consuming manual design
tasks. The significant benefits of design automation include
higher speed, lower human endeavor and errors, and higher
productivity. Electronic design automation (EDA) tools, such
as Ansys HFSS, CST and FeKo, have been employed in the
design of various electromagnetic structures. Although such
computer-aided design (CAD) tools are getting more mature
for the field of electromagnetics, they are typically used for
design entry, simulation, and rendering purposes [6]. Three
literature reviews in [7], [8], [9] have explored the application
of ML in antenna design and optimization, focusing on initial
ML methods. However, when dealing with the real-world
EM design challenges, there are typically numerous variables
to adjust and various constraints to meet throughout the
optimization process. As a result, the demand has arisen for
more robust and expressive models to effectively address
these complexity challenges.
Yu et al. [10] provided a review of the state-of-the-art

AI-assisted methodologies only for microwave filter design.
Moreover, an excellent overview of artificial neural network
(ANN) techniques for microwave CAD design was presented
in [11]. However, the limited scope of ANN tends to con-
strain the authors from further investigating more advanced
ML-based methods, such as reinforcement learning. In a
similar work [12], a survey of ML techniques was carried out
for the modeling of radio wave propagation. Most recently,
Cha et al. [13] utilized natural language processing (NLP)
and ML techniques to analyze the research of antennas
and propagation (A&P) through extensive unstructured data
drawn from openly published scientific papers and patents,
forecasting future A&P research trends.
In modern AI research, various architectures have been

developed to enhance the efficiency of ANNs. For instance,
transformers utilize a self-attention mechanism to manage
sequential data, excelling in capturing long-range dependen-
cies and revolutionizing various fields like NLP. As another
example, autoencoders complement these architectures by
enabling efficient data compression and reconstruction,
providing robust feature extraction capabilities. Additionally,
neural networks with transfer function (neuro-TF), a blend of
neural networks and traditional transfer functions, are used
effectively in parameterized EM modeling. By leveraging
knowledge of transfer functions, such as poles and zeros,
this method simplifies highly nonlinear problems into more
manageable ones for neural networks to learn, particularly in
scenarios with sharp resonances versus frequency. Together,
these techniques enhance the adaptability and efficiency
of neural networks in handling diverse tasks. We will
explore the applicability of these methods in EM design and
optimization in more detail in subsequent sections.
Design and optimization methods for electromagnetic

components may be categorized in different ways. To better
understand the main contributions and advantages of existing

FIGURE 1. Top-level organization of the paper.

techniques and then envision future developments, in this
paper we opt to categorize them from four viewpoints:
1) structural view, 2) algorithm view, 3) component view,
and 4) application view. As shown in Fig. 1, we begin with
the structural view, examining essential structural elements
within the typical process of EM optimizations. Next, the
algorithm view explores computational strategies, including
machine learning and heuristic algorithms. After that, the
component view examines specific EM components such
as antennas and metamaterials, discussing unique chal-
lenges and optimization strategies. Finally, the application
view showcases real-world benefits of machine learning
techniques across diverse fields of applications. These
perspectives offer a comprehensive understanding of current
and future directions in design and optimization of EM
components, including antennas, filters and metamaterials.
The rest of this review paper is organized as follows. We

first look at the key components in the general structure
of the EM optimizations in Section II. Then different
algorithms employed in a variety of EM design areas are
presented in Section III. The component view is presented in
Section IV, while various applications of EM optimization
algorithms are discussed in Section V. Some discussions
on literature statistics and extended insights into future
research & development are offered in Section VI and finally,
Section VII presents the main conclusions of this paper.

II. STRUCTURAL VIEW
During the optimization process, it is possible to substitute
computationally-expensive simulations with inexpensive sur-
rogate model predictions [14]. Consequently, the optimization
time can be significantly reduced. Regarding the availability
of a model to aid in the optimization process, there are two
different approaches, namely offline surrogate modeling and
online surrogate modeling. The former scheme uses a fixed
dataset to construct a surrogate model, which remains static
and does not adapt to new data. In contrast, the online surrogate
modeling scheme continuously updates the surrogate model
in real time based on new observations, allowing for dynamic
adaptation and improved accuracy while the optimization
progresses. Here we investigate three main factors for online
surrogate modeling as shown in Fig. 2, which are model itself,
search operator, and framework.
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FIGURE 2. Classification from the structural view.

A. MODEL
A model is a representation of a real-world phenomenon or
complex system from which various types of engineering
tasks including design optimization and sensitivity analysis
can be carried out. Hence, the design process can be
formulated as an optimization problem [10]

x∗ = arg min
x

U(R(x)),

s.t. x ∈ [xLB, xUB] (1)

where x represents a set of design parameters, and x∗
indicates the optimal design parameters. U(·) stands for the
objective function to be optimized, while R(x) denotes the
EM responses. In addition, the range of search space is
denoted as [xLB, xUB].

Nonetheless, use of extensive and accurate models for
exploring the best designs is often impractical due to
the overwhelming computation required. To expedite the
search process, an effective approach is to employ surrogate
models, which are also referred to as approximation models
formulated by

x∗ = arg min
x

Rs(U(R(x))), (2)

where RS(·) represents the response values obtained from
a constructed surrogate model. These models act as repre-
sentations of the original models, enabling them to replace
costly simulation models by approximating their input-output
responses [14].

Among the surrogate models, Gaussian process (GP)
model has been widely employed by the virtue of its
great ability to learn and reduced data requirements for
initialization. However, updating the GP model during each
iteration within the optimization process is still a highly
time-consuming task. Liu et al. [15] proposed a method
for complex antenna design, which integrated an adaptive
GP and radial basis function (RBF) model with differential
evolution (DE) operations to build a framework to enable
many design candidates to share the same GP model when
possible. However, the training time of the GP model
undergoes cubic expansion as the number of training data
points, design variables and specifications increases. As
an enhancement to the previous work, a Bayesian neural

FIGURE 3. Structure of the ANN: (a) three-layer fully-connected network and (b) a
neuron with the details adapted from [10].

network (BNN) model with lower computational complexity
and higher prediction uncertainty was employed in [16]
to replace the GP model as the surrogate model. This
improvement surpasses the previous work, reducing the total
optimization time by over 50%. Nevertheless, by shifting to
a different design requirement, there is no avenue to reuse
the previous results or data, which might be a direction for
further improvement.
ANNs, as another popular model, have the potential to

serve as a machine learning model which can perform
regression to effectively map intricate, high-dimensional,
and nonlinear functional connections between input and
output parameter spaces. This makes ANNs a useful resource
that can support computational electromagnetic (CEM)
approaches in the optimization and modeling of intricate
static electromagnetic design challenges [11]. The graphical
description of an ANN is illustrated in Fig. 3(a), where
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FIGURE 4. The architecture of an autoencoder.

the known data X is fed into the input layer of the neural
network, which then makes predictions Y as its outputs.
In addition, a single neuron (also called perceptron in
ML) is shown in more detail in Fig. 3(b), where a single
neuron function involves three key components: weights,
bias and activation function. Weights {w1,w2, . . . ,wN} are
the parameters that the neuron uses to scale its input
signals {x1, x2, . . . , xN}. Each input signal is multiplied by
its corresponding weight, and these products are summed
up to produce the weighted sum. Then a bias β is added
to this weighted sum to obtain a linear expression η in the
inputs. Finally, the activation function f takes η as input
and typically applies a nonlinear transformation to derive the
output. The activation function often introduces nonlinearity
into the model, enabling it to learn and represent complex
patterns within the data. Some of the well-known examples
for the activation functions include Sigmoid, ReLU, Tanh
and Softmax, each with its own specifications and suitability
for different tasks.
Convolutional neural networks (CNNs), which are widely

known for their remarkable capabilities for image processing
and feature extraction, are a class of ANN models. As an
example, in [17] Shibata et al. proposed a convolution-
autoencoder method that utilized unsupervised learning to
extract geometric features from a dataset of planar bandpass
filter (BPF) images without relying on any EM simulation
outputs. As shown in Fig. 4, the autoencoder compresses
the input data to a lower dimensional space to capture its
principal components, then decodes it back to the original
size. This process reduces noise and perturbations in the data.
After training a CNN, the S-parameters could be rapidly
calculated simply by giving an image of BPF circuit pattern
as an input to the trained CNN. However, in their work only
four design variables were considered in highly-restricted
ranges. While the dataset consisted of fewer than 7,000
entries, it might be adequate for some problems with narrow
design scope, but may fall short for complex problems.
Introduced in [18], the space mapping (SM) technique

has been further applied to various engineering applications.
The concept of space mapping relies on the presence of
both coarse and fine models. The coarse models, such
as equivalent circuit models, are typically computationally
efficient but less accurate. Conversely, the fine models
offer accurate solutions but require significant computational
resources. The SM technique establishes a mathematical
relationship between the fine and coarse models, enabling the

combination between the fine-model accuracy and coarse-
model efficiency [19]. In [20], Melgarejo et al. employed SM
techniques to tune microwave filters at X-band frequencies
with different coarse-model fidelities. Its major drawback
is that the accuracy of the solution is highly dependent
on the quality of the surrogate model used as the coarse
model. In other words, constructing a surrogate model that
accurately captures the behavior of the original problem may
be a challenging task, requiring significant computational
resources and expertise [21].

Instead of considering the entire response, feature-based
optimization (FBO) methods, also known as response feature
methods, use a set of suitably selected characteristic points
of the system outputs to find a highly linear relationship
in the frequency domain. For instance, in the case of
antenna design, these feature points might be the antenna
resonant frequencies or the points corresponding to S11 at
the level of −10dB. In [22], a feature-based approach was
employed to enhance the input tolerance of an antenna
design, while remaining in the feasible design space. In
general, the process of defining and extracting features
from EM-simulated antenna responses, as well as defining
the objective function based on these features, needs to
be customized for specific types of antenna responses
and design tasks. This limitation presents a significant
drawback of the feature-based optimization technique in
terms of automation, as it requires a certain level of
user experience and interaction to set up the optimization
framework. In another work [23], Pietrenko-Dabrowska and
Koziel proposed a unified definition of response features so
that the characteristic points can be defined and extracted
automatically regardless of a specific set of performance
specifications, and subsequently used to formulate a feature-
based objective function.

B. SEARCH OPERATOR
A search operator, also known as optimization algorithm,
is a computational method or procedure used to find the
optimal solution to a problem within a given search space.
It is a key component in the optimization process, where the
goal is to find the best possible solution that satisfies certain
criteria or constraints. There are numerous types of search
operators such as genetic algorithms (GAs), differential
evolution (DE), Bayesian optimization, etc., each with their
own characteristics and suitability for different types of
problems.
To further accelerate the search within the design space,

some dedicated techniques are commonly used. One of these
is the trust region (TR) methods, which were employed
in [24] to limit the search space of design variables to further
improve the convergence rate of optimization. Moreover,
neuro-TF has recently been developed to create parametric
models of EM responses. The neuro-TF method, as shown
in Fig. 5, leverages a transfer function to capture the highly
nonlinear relationship between EM responses and frequency.
This simplifies the task for an ANN by reducing the
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FIGURE 5. Structure of the neuro-TF method.

nonlinearity in the relationships between transfer function
parameters and design variables. Consequently, the neuro-TF
method is more accurate and robust. The trained neuro-TF
model serves as a surrogate, enabling rapid surrogate-based
EM design optimization. For instance, in [25] Zhuo et al.
proposed a method that introduces a polynomial function
and a pole-residue based transfer function to represent EM
responses. Initially, the entire EM response was represented
by the pole-residue based transfer function, which was then
divided into multiple sub-transfer functions, each consisting
of a pole and its corresponding residue. A new algorithm
for discerning smoothness was also introduced to evaluate
the smoothness of each sub-transfer function response and
separate the pole-residue pairs whose sub-transfer function
responses were determined to be smooth. To explore more
features of optimization algorithms in depth, we will dedicate
Section III to the algorithm view.

C. FRAMEWORK/MODEL MANAGEMENT
Model management methods refer to the techniques and
practices used to effectively handle and control surrogate
models in the context of modeling and optimization tasks.
They involve various processes, strategies, and considerations
to ensure the surrogate model to accurately represent the
underlying system and contribute to the optimization process.
Three pivotal tasks are essential to model management as
shown in Fig. 2: model initialization, update, and validation.

One of the challenges in model initialization is adequate
data availability, a significant concern when developing ANN
models. In simple terms, the accuracy of an ANN model
improves as more data samples become available. However,
obtaining a large quantity of data samples is unavoidably
time-consuming and requires substantial resources, such as
3-D EM simulations. To alleviate this issue, some studies
have been carried out to accelerate the conventional process
of solving Maxwell’s equations. We will further discuss state-
of-the-art data generation techniques in Section V-A.

For model management, another important consideration is
the process of updating the model, which involves selecting
the next data point to be utilized for improvement. In
particular, for EM modeling where structures are often
complex, selection of the next step in the optimization
process greatly impacts on the overall time required for
optimization. For example, Bayesian optimization strategies
are defined in an indirect manner by optimizing what is
known as an acquisition function. This function evaluates

and assigns a score to possible observation paths. This score
reflects how much these locations are believed to enhance the
optimization process and guides the optimizer to select the
next sampling point [26]. Many variations of the acquisition
function concept have been developed to expedite the model
update process. In [24], Zhou et al. applied a modified
acquisition function, which is the product of the classical
expected improvement (EI) function and a penalty function to
produce multiple update points for the parallel computation
of EM responses at each iteration cycle. However, due
to the nature of Bayesian optimization, this method is
computationally expensive and sensitive to initial conditions,
with limited scalability to high-dimensional problems.
Model validation, as another consideration in model man-

agement, refers to the process of assessing and evaluating
performance, accuracy, and generalizability of a machine
learning or statistical model. It involves testing the model
using independent data that was not used in the model
training phase. The purpose of model validation is to
determine how well the model can predict or estimate
outcomes on unseen data. Mean square error (MSE) is a com-
monly utilized measurement in assessing the performance of
models [27].

III. ALGORITHM VIEW
To meet ever-increasingly demanding design requirements
and aggressive development turnaround, conventional trial-
and-error approaches are being replaced by global and local
optimization methods. Minimizing the difference between
the simulated and expected objective function amounts is the
goal of optimization algorithms. Numerical methods, such
as the finite-element method (FEM), method of moments
(MoM) and finite difference methods (FDM), are mostly
used in CAD software to carry out a series of EM
simulations. Nevertheless, these methods come at a huge
cost of memory and runtime [28].
Besides that, in most cases the objective functions to

be optimized are challenging to evaluate. They may have
many local optima and the derivative information is usually
unavailable. That is to say, the widely-used gradient-based
methods tend to become inadequate, and thus the need for
a global optimizer arises with the goal of more effectively
searching the design parameter space [28]. Although there
are numerous statistical methods and optimization algorithms
available in the literature, this survey aims to identify
the most prominent ones in the context of EM compo-
nent design. Fig. 6 summarizes different EM optimization
methods from the algorithmic perspective. At the highest
level, there are three core categories, namely heuristic,
ML-based, and hybrid methods. The heuristic methods can
be further subdivided into two major categories, EAs, and
homotopy methods. In addition, the ML-based algorithms
can be broken down into supervised, unsupervised, and
reinforcement learning methods. Finally, the hybrid methods
are the ones, which apply multiple optimization methods
together to find the problem solution.
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FIGURE 6. Categorization of different optimization methods from the algorithm view.

A. HEURISTIC METHODS
A heuristic optimization algorithm is a problem-solving
technique used to find approximate solutions to complex
optimization problems. Heuristic algorithms draw inspiration
from natural or human problem-solving strategies, intuition,
and experience, rather than relying on rigorous mathematical
proofs or exhaustive search procedures.
One of the most important categories of global

optimization techniques is EA, which is based on the idea of
natural evolution. In these algorithms, a group of candidate
solutions, called population, is evolved within the design
space to find the global optimum. In the past decades,
population-based iterative algorithms such as GAs [29], [30],
[31], [32], [33], particle swarm optimization (PSO) [34],
[35], [36], DE [37], [38] and grey wolf optimization
(GWO) [39], [40], [41] have attracted significant interest.
However, these methods typically suffer from high com-
putational cost, which basically stems from the necessity
of running the simulation iteratively and then making
performance predictions for various combinations of input
values [14], [42].
It is always important to choose a set of initial design

parameter values close enough to the optimum in order
to find a satisfactory result. Otherwise, we may fail to
approach the optimal with regard to the desired performance
criteria. Even though in some cases the initial parameters
are significantly distant from the optimal solution, Zhao and
Wu utilized homotopy optimization (HO) to search for an
optimum solution for microwave and millimeter-wave filter
design [43]. The homotopy method utilizes the principles of
topology to produce a sequence of solutions for nonlinear
systems by incorporating a parameter for controlling con-
vergence. Instead of directly solving the desired problem,
this approach formulates a series of nonlinear optimization
problems. Moreover, Roy and Wu [44] employed HO to
collect the data from different cruciform coupler designs

to train an ANN model. After the development of this
ANN model, the circuit parameters for various specifica-
tions of a cruciform coupler could be obtained without a
need for repetitive utilization of an optimization algorithm.
Notwithstanding the benefit of being able to handle non-
convex optimization problems, this method suffers from high
computational cost and excessive sensitivity to the choice of
homotopy parameters.

B. ML-BASED METHODS
In general, ML methods refer to the algorithms with the
capability of learning patterns and features to reduce human
involvement and increase the predictability of an unknown
event. They might be trained by some already-existing
dataset or generated on purpose, without any prior knowledge
of their environment. Over the past decade, there has been
significant progress in developing high-expressive models,
especially neural networks with many hidden layers, known
as deep neural network models. This advancement has
reignited interest in machine learning algorithms within
the research community. Deep neural networks have been
leveraged for extended capacity to model complex relation-
ships within large data samples, and eventually, to tackle
challenges in high-dimensional modeling and optimization
problems. In Fig. 7, an EM application example is illustrated
for each category of ML methods. In the sequel, we will
elaborate on various ML algorithms and their respective
categorization and applications.

1) SUPERVISED LEARNING METHODS

In supervised learning methods, for each element of the
input, the corresponding output, called label, is provided
to help the model to be trained to recognize meaningful
patterns [45]. The precision of this class of ML method is
highly-dependent on the amount of data presented as input
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FIGURE 7. Categorization of machine learning (ML) techniques.

to the training process. This is the major drawback of the
supervised learning methods.
One of the most widely-used supervised learning meth-

ods is Bayesian optimization (BO), in which the prior
information provided by the optimization history is used to
explore the design space more efficiently. By employing this
approach, the BO framework is made up of two major parts.
The first is a Gaussian process (GP) model playing the role
of surrogate model. The other is the acquisition function
or loss function [46]. For instance, Zhou et al. [24] used
a GP model along with parallel EM simulations by using
a modified acquisition function to obtain multiple updated
points in a dynamic sampling design space. Nevertheless,
not much significant enhancement in simulation runtime and
iterations can be achieved by using this approach compared
to more conventional methods, such as SADEA and pure BO.
As another popular supervised learning method, support

vector machines (SVMs) are used for both classification
and regression tasks. They work by finding the optimal
hyperplane in a high-dimensional space that best separates
data points belonging to different classes. Linear SVM is
employed when data points can be readily separated by a
straight line or hyperplane. On the other hand, nonlinear
SVM is used when the data cannot be effectively separated
using a straight line/hyperplane. In such cases, nonlinear
SVM utilizes kernel functions to transform the data from a
nonlinear space to a linear space. This transformation enables
the data to be classified by finding an appropriate hyper-
plane in the transformed space. According to the antenna
performance of interest, Shi et al. proposed an intelligent
antenna synthesis method, in which the antenna type is
automatically determined based on the performance speci-
fications using an SVM classifier as shown in Fig. 8 [47].
Then its optimal geometric values are achieved through an

FIGURE 8. Intelligent antenna synthesis framework proposed in [47].

ensemble learning model, which is a cooperative decision-
making mechanism that constructs and integrates multiple
learners to accomplish the learning process.

2) UNSUPERVISED LEARNING METHOD

In contrast to supervised learning methods, in unsupervised
learning methods there is no need to use labeled data to
train the model. Feature recognition and finding similarities
for data clustering are the major benefits of unsupervised
learning methods to help classification or data extraction.
One popular clustering algorithm is the K-means algo-

rithm, which aims to partition a set of observations into
K clusters. Here each observation belongs to a cluster
with reference to the nearest centroid. Nevertheless, the
primary issues with K-means are its sensitivity to the initial
selection of cluster centers, as well as the requirement
of knowing the number of classes a priori. The K-means
algorithm seeks to minimize the sum of squared distances
between observations and the centroids of their assigned
clusters. However, since the algorithm may converge to a
local minimum, multiple initializations with different starting
centroids may be necessary to find the global minimum [48].
In this regard, in [49] Zhang et al. proposed a K-means
algorithm to speed up the optimization process for designing
a MIMO antenna with decoupling elements. The population
was divided into multiple clusters using the K-means method,
followed by the selection of an appropriate mutation strategy
for each cluster based on its average fitness. Their results
show a runtime saving of at least 28% compared to the GA,
PSO, and DE algorithms.
As one of the most widely used multivariate techniques

in statistics, principal component analysis (PCA) is an
unsupervised learning method, whose main purpose is to
examine the underlying structure of a set of variables
and the covariance or correlation structure between them
for dimensionality reduction. This technique is commonly
utilized to reduce the complexity of data and reveal its
underlying patterns without a need for predefined labels
or categories [50], [51]. By reducing the dimensionality
of data, PCA can help to compress large datasets and
extract the most important features. In [52], Sedaghat et al.
proposed a technique called PCA-based data compression
to identify and eliminate redundant information from the
response data in the training set of inverse modeling of
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microwave filters. This study presented a novel approach
to determine the optimal number of PCA coefficients,
which corresponds to the optimal compression level. By
selecting the appropriate dimension for the compressed
input space using orthonormal PCA coefficients, along with
the application of a regularization technique, this method
effectively addressed the inherent challenges of ill-posed
inverse problems.

3) REINFORCEMENT LEARNING METHOD

As a progressive learning method, reinforcement learning
(RL) is an interactive algorithm, in which a software agent
with the ability to learn is rewarded for a set of actions when
interacting with the environment. An environment comprised
of a collection of potential states, denoted as S, and a set of
actions, denoted as A, through which an agent can execute
to modify its state. The agent engages with the environment
by executing an action at at time step t while being in state
st, and subsequently receiving a reward rt. RL involves the
process of determining the optimal actions to take in different
states with the aim of maximizing the accumulated reward
over a sequence of time steps, called the return Gt in (3):

Gt =
∞∑

k=0

γ krt+k+1, (3)

where γ falls within the range (0, 1), and serves as a discount
factor to avoid divergence of the infinite sum. The action-
value function Qπ (s, a) is also defined as

Qπ (s, a) = Eπ [Gt|st = s, at = a], (4)

which is the expected return assuming a policy π is followed.
Unlike other learning methods, the learner is not provided

with explicit instructions on which actions to choose. Instead,
it must explore and experiment with different actions to
determine which ones result in the highest rewards. In
complex scenarios, the consequences of an action may extend
beyond immediate rewards and impact future situations,
influencing all subsequent rewards. These two fundamental
aspects, the trial-and-error nature of search and the delay in
receiving rewards, are the key distinguishing characteristics
of RL [53]. One can also refer to [54], which compares RL
methods with EAs comprehensively.
Deep Q-network (DQN) is one of the most well-known

RL methods using experience replay to improve the stability
and efficiency of the learning process. By using a deep neural
network (DNN) to estimate the Q-value function instead
of the plain Q-value table, DQN enables the Q-learning
algorithm to handle high-dimensional input problems. The
Q-values are updated by approximating the Bellman equation
as follows:

Q(st, at)← Q(st, at)

+ α
[
rt + γ max

a
Q(st+1, a)− Q(st, at)

]
, (5)

where α represents the learning rate, and the other variables
have been previously defined.

FIGURE 9. Classification of RL methods.

As depicted in Fig. 9, these methods belong to the family
of value-based methods. In [55], Zhang et al. addressed the
beam-steering issue of a phased-array antenna by developing
a DQN-based system. The process involved training a
DQN to determine the phase distribution of a conformal
phased array antenna that corresponds to the desired beam
steering angle. One significant benefit of employing deep
RL (DRL)-based phased array antenna design is its ability
to substantially decrease the time required to calibrate phase
errors that naturally occur for each path in real-world
situations. In another work [56], Wei et al. utilized a DQN
framework to automatically design a decoupling metasurface
for mutual coupling reduction between array antenna ele-
ments. The proposed method utilized the decision-making
capacity of RL to acquire improved training data without
requiring human intervention. However, one limitation of
using the DQN algorithm is that it requires discretization of
the action space, which can result in a higher computational
complexity when addressing high-dimensional or continuous
action space problems, and may lead to loss of important
action information [53]. To mitigate this risk, more advanced
RL algorithms such as deep deterministic policy gradient
(DDPG) and proximal policy optimization (PPO) can be
employed.
Policy-based RL methods are another family of RL

methods directly focusing on learning a policy, which is a
strategy or mapping from states to actions, without explicitly
estimating a value function. The policy represents the agent’s
decision-making strategy in the environment. Policy-based
methods, e.g., REINFORCE, deterministic policy gradient
(DPG), etc., are particularly effective in scenarios with high-
dimensional or continuous action spaces where traditional
value-based methods might face challenges.
Actor-critic methods are a family of RL algorithms

consisting of two major parts inherited from the value-
based and policy-based methods: actor model and critic
model. The actor model is updated using policy gradients
that maximize the expected reward, while the critic model
is updated using temporal difference (TD) learning that
estimates the value of the current state. One of the benefits of
the actor-critic algorithm is that it can learn from experience
in real time, making it well-suited for online learning in
dynamic environments. It is also computationally efficient so
that it can handle high-dimensional state and action spaces.
In [57], Peng et al. employed an actor-critic algorithm to
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FIGURE 10. Procedure of the DDPG algorithm applied to design of the conformal
array antenna adapted from [58].

TABLE 1. Optimization algorithms’ performance [58].

synthesize reflecting intelligent surfaces (RISs) to address
the issue of radio frequency interference in the control area
of a radio telescope. In another work, Zhang et al. [58]
explored conformal phased array antenna (PAA) pattern
synthesis across a broad angular range spanning from −150o
to 150◦ through the application of the DDPG algorithm
as shown in Fig. 10. Here an actor and a critic interact
with each other through the policy gradient mechanism.
The configuration of the conformal PAA and the reflection
coefficient of the utilized patch antenna are illustrated in
Fig. 11(a) and (b), respectively. Table 1 shows a comparison
between GA and the proposed DDPG algorithm with respect
to computational resources, optimization time and sample
size. One can easily conclude that DDPG is more successful
in meeting the challenge of learning a complex problem, a
process that demands significant time. Once it has mastered
the complexity, DDPG can swiftly generate outputs for the
next target beam steering-angle with high precision. Despite
GA’s computational and complexity advantages, it requires
more training data along with significant recalculation and
programming time for each beam scanning angle switch.
Such limitation hinders its ability to provide quick and
flexible radiation beam switching.

FIGURE 11. (a) Configuration of the conformal phased array antenna, (b) Reflection
coefficient of the utilized patch antenna adapted from [58].

In a similar work, Zhang et al. [59] used the twin
delayed deep deterministic policy gradient (TD3) algorithm
to dramatically improve the stealth characteristic of a
conformal array antenna. The outcomes from both simulation
and measurement demonstrate remarkable adaptability in
beam scanning, achieving a range of ±50 degree around
6 GHz. Additionally, it exhibits a noteworthy reduction of
10 dB in radar cross-section across the frequency bands of
3.1–5.3 GHz and 6.5–11.2 GHz.

C. HYBRID METHODS
Hybrid optimization methods combine different optimization
techniques, typically integrating ML-based methods with
non-ML-based methods, to create new and more powerful
optimization methods. These hybrid methods leverage the
strengths of different techniques to overcome the limitations
of individual methods and improve overall optimization
performance. Taking the prediction ability of ML methods
in EAs, ML-assisted EAs are able to significantly reduce
the effort spent on time-consuming EM simulations, when
compared to the plain EA-based methods.
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Surrogate-assisted EAs (SAEAs) are a type of
optimization technique that combines surrogate modeling
and EAs to efficiently solve complex optimization
problems [60]. In [61], Liu et al. proposed a surrogate-model-
assisted DE algorithm for antenna synthesis (SADEA).
On top of its effectiveness over traditional algorithms,
Akinsolu et al. [62] made further enhancements to evaluate
multiple candidate designs by taking advantage of parallel
simulation. This improvement resulted in 3.4-fold increase in
speed compared to SADEA. In a similar work, Xue et al. [63]
introduced a surrogate model-assisted hybrid optimization
algorithm that employed the GP surrogate model-assisted
DE and Nelder-Mead (NM) simplex algorithms.
It is common to adjust the geometry of microwave

components to find optimal values for a given set of
geometric parameters. This is called geometry optimization.
In contrast, topology optimization, which aims to give
more degrees of freedom to the optimizer to explore the
optimal shape and topology of the EM structure, would
help add or eliminate elements without any constraints on
shape and topology. The conventional surrogate-based EM
optimization approach is not suitable for solving the EM
topology optimization problem due to its inability to relate
different shapes and topologies by altering a fixed set of
geometric parameters. Consequently, traditional surrogate
models cannot adequately represent EM solutions when the
design object comes to changes in topology. To overcome
this limitation, Jin et al. [64] proposed an EM topology
optimization technique tailored for microwave component
design. They integrated Matrix-Padé-via-Lanczos with the
Householder formula, simplifying the FEM matrix equation
across frequencies to a single-frequency point for improving
numerical efficiency. A novel technique leveraging GA’s
inheritance pattern further reduced the small matrix problem,
exploiting shared characteristics between new and parent EM
structures for additional computational cost reductions.
In [42], Fu et al. combined two ML-based approximation

models with PSO to speed up prediction tasks. A simplified
Kriging model was introduced to reduce the computational
costs for high-dimensional datasets, while one RBF model
was developed to predict new antenna structures. The
experimental findings demonstrated that the search efficiency
for the substrate integrated waveguide (SIW) and linear
array antenna was enhanced by a factor of 2-4 when
compared to the SADEA method. Therefore, selection of
an appropriate optimization method is crucial for deriving
optimal solutions in various domains. Some key performance
criteria, including convergence rate, solution quality, and
support for high-dimensional problems are used for the
comparisons throughout Table 2.

IV. COMPONENT VIEW
Electromagnetic devices and circuits, such as antennas and
filters, are essential components used in the modern era.
In this section, we discuss optimization schemes for three

TABLE 2. Comparison among different optimization method.

of the most-common EM components: antennas, filters and
metamaterials.

A. ANTENNAS
In the past decade, antennas have become crucial components
for ensuring the optimal functionality of consumer electron-
ics due to the growing popularity of mobile communication
and Internet-of-Things (IoT). There is an increasing demand
for antennas to be designed with upgraded precision,
efficiency and complexity [47]. ML techniques have been
successfully applied to the field of antennas to empower
designers with greater CAD tools to facilitate the process of
designing various antenna applications. For instance, in [65]
a recurrent NN (RNN) model was utilized to generate appro-
priate complex weights for the antenna array beamformer to
build a fast-tracking system. The generated weights from the
RNN were then compared with the corresponding weights
obtained through a null steering beamforming (NSB) tech-
nique to measure the RNN accuracy. The implementation of
the RNN model demonstrated a high level of accuracy when
adjusting the main lobe direction (i.e., main lobe divergence
< 0.5◦) and positioning the nulls (i.e., nulls divergence <
0.1◦). This approach allows for the incorporation of some
real-world factors, including the anisotropic radiation pattern
of individual array elements and mutual coupling between
elements.
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In the next several years, there is a projected multi-fold
increase in the commercial availability of 5G communication
systems. These systems are driven by the utilization of
mm-Wave active phased arrays (APAs) as the primary
communication front end, serving as the key enabler for
both 5G and the subsequent 6G evolution. The pursuit of
maintaining quality of service (QoS) remains a significant
driving force behind the advancement of communication
systems. Consequently, the importance of fault diagnosis in
communication systems has grown exponentially, as it plays
a vital role in meeting user expectations regarding QoS [66].
As an example, in [67] Nielsen et al. used a DNN specifically
designed to extract hidden features from the baseband in-
phase and quadrature signals. Remarkably, it only requires a
single probe at one measurement point for the diagnosis of
faulty elements and components within APAs. The proposed
method was validated using a commercial 28 GHz APA,
demonstrating impressive accuracies of 99% for single-
element and 80% for multi-element failure detections.
Direction-of-arrival (DOA) estimation, also known as

radio direction finding (DF), finds diverse applications in
various fields such as communications, remote sensing, and
indoor localization, among others. This technique, widely
used to determine the direction from which a signal is
originated, has significant relevance in numerous domains.
For instance, Friedrichs et al. utilized an ML-based method
for high precision DOA estimation [68]. The effectiveness
of the proposed method was showcased by applying it to
an ultrawide-band circular array composed of miniaturized
transverse electromagnetic (TEM) horns operating within a
frequency range of 1.5 GHz to 5.5 GHz. In another work,
Liu et al. in [69] introduced an autoencoder along with a
DNN to preprocess the original array outputs for general
DOA estimation. However, the proposed method tends to
require a large amount of labeled data to train the DNN
framework for DOA estimation. It may be very demanding
in practical applications when such data is difficult to collect.

B. FILTERS
Among microwave circuits and modules, filters are critical
because they possess distinct capabilities of transmitting and
suppressing signals in order to function within particular
frequency ranges. Filter design involves multiple steps and
considerations, such as loss, bandwidth, operating frequency,
stopband rejection, wideband performance, physical size,
weight, operating power, and stability. Those must be
tailored to meet the specific requirements for the practical
applications.
A comprehensive survey of the state-of-the-art AI-assisted

filter designs is provided in [10]. In [43], Zhao and Wu
incorporated a homotopy algorithm along with an ANN for
microwave and mmWave filter design. They provided two
different five-pole rectangular waveguide design examples
to meet the desired specifications at the center frequencies
of 160GHz and 170GHz. However, this method may not be
applicable to all types of filters including discrete, nonlinear

and non-convex filters due to their discontinuous and non-
smooth nature. In another work, Wu et al. proposed the use
of an auxiliary neural network whose input includes not only
electrical parameters but also partial physical/geometric vari-
ables [70]. Their result showed considerable error reduction
within the same number of optimization iterations compared
to the well-known DE optimization method.
In order to further facilitate the process of inverse

modeling and address the issue of non-uniqueness,
Zhang et al. in [71] presented a multivalued neural network,
which enables the association of a single set of electrical
parameters with multiple sets of geometric or physical
parameters. This approach has the capability of effectively
learning from training data by automatically considering con-
tradictory information in the assignment of different values
within the inverse model and eventually resolving the non-
uniqueness problem. In [72], to handle the scenarios where
the initial response for design optimization significantly
deviates from the desired specifications, a multifeature-
assisted neuro-TF was developed. The results showed more
than 40 times faster convergence rate in comparison to direct
EM optimization.

C. METAMATERIALS
Metamaterials, first introduced over 20 years ago, are a
type of engineered EM material that can manipulate EM
fields in unique ways. Over the past decade, there has been
substantial growth and interest in EM metamaterials among
physicists and engineers. These materials possess exceptional
properties, including negative refraction, ultra-refraction, and
anomalous dispersion, which do not naturally occur [73].

As a subset of metamaterials, 2-D structures of sub-
wavelength unit cells made up of metallic scatterers and/or
dielectric substrates are called metasurfaces [74]. The
traditional approaches for designing metasurfaces heavily
rely on the designer’s intuition and previous experience.
During the design process, selecting parameters in a multi-
dimensional space is a time-consuming task and inevitably
involves iterative loops through resource-intensive full-wave
simulations. By virtue of their advantages, ANNs have
been increasingly used as a viable option for metamaterial
modeling. In [75], Yuan et al. proposed an improved
TF-ANN model to expedite the inverse design of meta-
surfaces. By using this method, they were able to reduce
CPU time by over 4 times compared to a simple GA
optimization, while achieving more than 20% higher accu-
racy than the direct inverse modeling method. Similar
findings were reported in [76], where Koziel and Abdullah
developed a rigorous ML-based framework followed by
an expedited EM-driven fine-tuning process of metasurface
geometric parameters. This approach resulted in a 15–25%
enhancement in the bandwidth of radar cross-section (RCS)
reduction compared to the original designs.
Similar to the inverse modeling methods in other EM

areas, one approach to designing metasurfaces is inverse
design. The inverse problem of predicting the physical
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composition of the metasurface structures based on the
desired properties is not easy to solve due to the non-
uniqueness challenge. For instance, in [77] Naseri and Hum
proposed an encoder, a decoder and an ML model, which
were trained to establish a generative ML-based approach
for the inverse design of multilayer metasurfaces. However,
one significant limitation of the metasurface inverse design
is its considerable computational burden involved in the
inverse design procedure. To address this issue, in [78]
Szymanski et al. introduced a 2-D circuit network solver
that utilized reduced-order models of the unit cells in
a metastructure. This solver was employed alongside a
gradient-based optimization algorithm, which utilized the
adjoint variable method. This combined approach enabled
the solution of large-scale optimization problems in the
metastructure devices. In a similar report, Brown et al. in [79]
aimed to tackle several key challenges involved in solving
the inverse source problem. These include the formulation
and optimization of a nonlinear cost function.

V. APPLICATION VIEW
In this section, we will explore three major application
areas in microwave modeling; targeted by recent EM papers,
namely; data generation, tolerance-aware design, and inverse
modeling of EM components.

A. DATA GENERATION
To a large extent, the core challenge of direct optimization
with full-wave EM simulations is the huge computational
cost for determining the design variables and identifying
the corresponding performance outputs. In the meantime, to
train surrogate or other ML models, we need to generate the
training data through extensive EM simulations [43]. Thus,
the data generation stage seems to be inevitable. Moreover,
as EM problems can be described by Maxwell’s equations,
much research has been devoted to solving Maxwell’s
equations by incorporating prior knowledge. The methods,
such as FEM, MoM and FDM used in traditional solvers,
rely on discretizing the space to solve equations. This
means that there is a trade-off between resolution and speed.
Calculations on coarse grids are faster but less accurate,
whereas those on fine grids are accurate but slow. When
dealing with complex partial differential equations (PDE)
systems, a very fine discretization is often required, making
it challenging and time-consuming for traditional solvers.
In contrast, data-driven methods can learn trajectories of
the equations directly from data, making them much faster
than the conventional solvers, sometimes by orders of
magnitude [80].
Machine learning methods have the potential to revolu-

tionize the EM design automation and optimization domains
by offering fast solvers that can approximate or improve
upon traditional methods. However, classical neural networks
are limited in that they can only learn solutions tied to
a specific discretization scheme since they map between
finite-dimensional spaces [81], [82], [83]. This could be a

drawback for practical applications, and there is a need for
development of mesh-invariant neural networks to overcome
this limitation.
There are three principal neural-network based approaches

for solving PDEs. The first approach uses finite-dimensional
operators, each of which is parameterized as a deep CNN
between finite-dimensional Euclidean spaces [84], [85], [86],
[87]. This method intrinsically relies on meshes, which
therefore requires adjustments and fine-tuning to achieve
consistent errors across different resolutions and discretiza-
tions. On the other hand, the neural-FEM approach directly
represents the solution function as a neural network. Its
purpose is to model a single instance of PDE, rather than the
solution operators [88], [89], [90]. This method is not reliant
on meshes, which means it is accurate and independent of
mesh-related issues. However, if a new instance of functional
parameter or coefficient is encountered, a new neural network
must be trained.
In time-domain computational EM, the propagation of EM

waves can be visualized as a sequence of color images,
akin to a video. Each cross-section of the simulated space
consists of three field components represented as pixel grids
forming monochrome images. These images combine into
a color image that evolves over time, creating a video
sequence. This method connects computational EM with
computer vision, enabling rapid and efficient predictions
of EM wave propagation in new configurations based on
learned patterns. For instance, Noakoasteen et al. [91]
employed an encoder-recurrent-decoder architecture trained
on finite-difference time-domain (FDTD) simulations of
plane wave scattering from distributed, perfect electric
conductor (PEC) objects. Their demonstrations showed that
the trained network significantly accelerated simulation time,
achieving more than 17 times speed-up compared to tradi-
tional FDTD solvers for transient electrodynamics problems.
As explained in Section I, the transformer architectures excel
in time-series optimization by adeptly modeling complex
relationships and capturing long-range dependencies. Their
efficient parallel processing capabilities significantly enhance
the accuracy and speed of EM design and optimization
tasks. In [92], a transformer model and a Convolutional
Graph Neural Network (CGNN) were used to emulate the
dynamics of EM fields propagating and scattering from PEC
objects, achieving computation speed-ups of 14x and 9x,
respectively.
In the transformer architectures as illustrated in Fig. 12,

the encoder processes input sequences, converting them
into a series of embeddings that represent each token’s
semantics and position. These embeddings are enhanced
with positional encoding to preserve sequence order. The
decoder, on the other hand, generates output sequences
based on the processed input and context, utilizing attention
mechanisms to focus on relevant input tokens. Embeddings
are vector representations of tokens, capturing their semantic
meaning within the sequence. At the output layer, a
softmax function generates probability distributions over the
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FIGURE 12. Architecture of a transformer model.

vocabulary, facilitating the model’s generation of coherent
and meaningful output sequences by assigning probabilities
to each token in the vocabulary. This is particularly useful for
modeling nonlinear relationships in EM data, where interac-
tions between design variables can significantly impact the
EM performance.
Fotiadis et al. [93] utilized a U-Net architecture to

approximate wave propagation, reducing the long-term
approximation RMSE to 0.071 from a previous baseline
of 0.186 and achieving a 240-fold increase in speed
over traditional simulations. In a related study [94],
Mohan et al. introduced the Compressed Convolutional
LSTM (CC-LSTM) framework, which combined convo-
lutional autoencoders and LSTM networks for efficient,
high-fidelity modeling of three-dimensional turbulent flows,
resulting in significant computational savings. Additionally,
Sorteberg et al. [95] presented a neural network model
designed to predict wave propagation in a two-dimensional
medium, demonstrating accurate predictions up to 80 frames
from limited initial observations. This model, which inte-
grates an encoder, LSTM propagators, and a decoder,
generalizes well to new initial conditions and significantly
accelerates simulation time. While the numerical algorithm
takes an average of 35 seconds, the network can generate
predictions for 80 frames in less than half a second.
A new approach, called neural operators, has emerged

by using neural networks to learn mesh-free and infinite-
dimensional operators [96], [97], [98], [99]. This new
technique overcomes the mesh-dependent nature of the finite-
dimensional operator methods described above by generating
a single set of network parameters that can be used with
different discretizations. This neural operator, which can
transfer solutions between meshes, only needs to be trained
once. To obtain a solution for a new instance of parameters,
only a forward pass of the network is required, which
avoids the computational issues experienced in the neural-
FEM methods. It has been recently shown that Fourier
neural operators (FNOs) have great potential to accelerate

the solving of PDEs. In fact, neural operators can directly
learn how to map any parametric dependence of a function
to its solution. That is to say, they can learn a whole range of
PDEs, unlike traditional methods which only solve a single
instance of equations [100], [101]. For instance, Zhang and
Rahmat-Samii in [102] employed a neural network equipped
with FNOs to predict the electric potential in 2D mod-
els with varying permittivity distributions. It demonstrated
exceptional precision, outperforming the traditional FDM by
over 1,000 times in runtime. This showcases the significant
promise of neural network operators in solving the time-
variant Maxwell’s equations.

B. TOLERANCE-AWARE DESIGN/SYNTHESIS
In real-world EM component design and synthesis, one
needs to take some uncertainties into consideration to
avoid failing to meet the desired specifications. These
uncertainties may stem from either fabrication tolerances
or lack of precise knowledge of material parameters.
As a result, reliable uncertainty quantification (UQ) is
important when EM simulation tools are employed to
evaluate full-wave EM simulation models, which impose
great computational costs. It becomes even more vital
when deviations of geometry parameters from their nominal
values lead to frequency shifts in the operating frequency
band, especially in microwave and mmWave component
design [22], [103], [104], [105], [106], [107], [108].
In the realm of EM design, the traditional approaches

of parameter sweeping, or trial-and-error based on domain
knowledge, can be very time-consuming, normally offering
no assurance of finding an optimal solution. Examining the
complex relationships between input and output variables,
particularly in the scenarios with high-dimensional design
and performance spaces, proves highly challenging even
when using high-fidelity models. To reduce the exploration
time in the design space, one strategy is to use the
surrogate models (as discussed in Section II-A), which are
low-fidelity approximations of a high-fidelity model [100].
Notwithstanding that, the quality of the surrogate model has
a crucial impact on the convergence rate as well as the
computational cost.
In order to avoid poor-quality surrogate modeling and take

advantage of each individual surrogate model, an ensemble
of surrogate models can be constructed with a weight
coefficient given to each model to form a linear combination
of surrogate models [14]. To further improve the balance
between convergence rate and computational complexity,
Chen et al. [109] proposed to use a multibranch ML-
assisted optimization (MB-MLAO) scheme to significantly
decrease the computational complexity involved in the
EM optimization task. Then the approach was applied to
the antenna design searching for worst-case performance
(WCP) with a consideration of realistic manufacturing
tolerances. However, when dealing with a high number of
parameters, typically in the range of several dozens, the
curse of dimensionality becomes a significant limiting factor.
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FIGURE 13. Forward modeling versus inverse modeling.

In [110], Zhang et al. combined quadratic mappings and
matrix-valued transfer functions to create a surrogate model
that accelerated the estimation and optimization of yield for
multiport microwave structures. The proposed method was
illustrated by using three microwave structures operating at
a center frequency of 12GHz, showcasing the benefits and
advantages of the approach.

C. INVERSE MODELING
An inverse problem refers to the process of extracting or
designing physical or geometric parameters by analyzing the
desired outputs such as gain, bandwidth and S-parameters in
a reverse manner, with inputs and outputs switched. Forward
modeling involves training a model such as a neural network
model to simulate a microwave component. Fig. 13 provides
a visual illustration of both the forward and inverse modeling
processes. In the forward modeling, the inputs are physical
or geometric parameters, while the outputs are electrical
parameters.
The forward model can be mathematically expressed as a

function:

y = f (x), (6)

where x and y represent the input and output of the
forward model, respectively, and f stands for the function
representing the forward model. However, in the inverse
modeling, the formulation of the relationship between inputs
and outputs can be determined by:

x = f−1(y) = g(y), (7)

where g represents the inverse model function. Once a
reliable inverse model has been developed, it allows for the
direct extraction of the physical or geometric parameters
without a need for iterative optimization processes. As a
result, the inverse modeling offers a faster and more effi-
cient approach compared to traditional iterative optimization
methods [71].
Nevertheless, when it comes to common scenarios, there is

often a lack of uniqueness in the inverse relationship between
input and output in the training data. This is why training
a model to predict inputs (design variables) from outputs
(electrical performances) is generally more difficult than
training a model to predict outputs from inputs. To address

TABLE 3. Number of publications on different combinations of EM components and
different ML-based methods since 2013 sourced from IEEE Xplore, ACM, Elsevier
ScienceDirect, and Springer databases.

FIGURE 14. Total numbers and percentages of publications within EM area for the
ML methods over the past decade sourced from IEEE Xplore, ACM, Elsevier
ScienceDirect, and Springer databases.

the non-uniqueness problem of antenna inverse modeling,
Xiao et al. in [111] proposed a novel structure for the
ANN model. Their method showed over 10 times faster
convergence rate in practical examples such as multimode
resonant antenna and triband printed antenna with twelve
and twenty-four design variables, respectively.

VI. STATISTICS AND PERSPECTIVES
As we delve into a comprehensive exploration aimed at
uncovering the most promising strategies for addressing
EM optimization and design challenges, we have combined
the terminologies of different ML methods versus the RL
methods with three chosen EM components (including
antennas, filters and metamaterials), as listed in Table 3.
It turns out that there are few papers that utilize the RL
methods for designing antennas, filters, and metamaterials,
while using other ML methods seems to be more common
among researchers.
The accumulated numbers of publications in the last

decade within EM area on the topics of RL, Bayesian
optimization, SVMs, Gaussian process, and neural networks
are analyzed and compared across IEEE Xplore, ACM,
Elsevier ScienceDirect, and Springer databases in Fig. 14. It
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FIGURE 15. Publication growth on various ML-based methods (excluding RL) versus RL methods during the recent seven years sourced from IEEE Xplore, ACM, Elsevier
ScienceDirect, and Springer databases.

FIGURE 16. Publications on various ML-based methods in the EM area consisting
of antennas, filters, and metamaterials, across different time periods sourced from
IEEE Xplore, ACM, Elsevier ScienceDirect, and Springer databases.

can be observed that the total number of publications on RL
methods only constitutes nearly 2% of the total number of
publications in the field of EM design. In contrast, Bayesian
methods hold around 3%, while SVMs, Gaussian process and
neural networks contribute 7%, 20%, and 36%, respectively.
Additionally, other ML methods account for approximately
one third of the total publications.
To gain deeper insights into the evolving landscape of

research trends, Fig. 15 depicts the growth of publications
in ML (excluding RL) methods compared to RL methods
within the field of Engineering and Computer Science (ECS)
over the past seven years. The results highlight a substantial
increase in the attention garnered by RL methods as a
prominent technique within the ECS research communities.
In recent years, there has been a notable trend of

integrating ML techniques into the EM design process,
especially with RL, demonstrating significant potential for
enhancing optimization and automation performance within
the EM area. We have also investigated publications on
different ML methods employed in the EM area during
various time periods, as illustrated in Fig. 16. One can
observe that the numbers of publications for EM component
design on Bayesian optimization, neural networks, and RL
methods are increasing, while those for other ML methods
are fairly stable. The statistical data also underline the fact

that integration of the RL techniques into the optimization
of such EM components is currently undergoing an initial
phase of research and development, compared to other ML
methods.
Over the past few years, EM structures such as antennas

and filters have continued to gain significant attention
and remained popular within the engineering community.
Interestingly, there has been a noticeable surge in the study
towards metamaterial design in recent years, representing
a noteworthy shift in the EM research landscape. The
growing popularity of metamaterial design is driven by its
remarkable ability to manipulate electromagnetic waves with
unprecedented precision and efficiency, especially applica-
ble to beamforming, antenna miniaturization, polarization
manipulation and frequency filtering.
There are tremendous opportunities for further innovations

and applications of ML methods for EM modeling and
design, from advanced RL algorithms to novel data gener-
ating methods. Further advances in quantum RL methods
emerge to be another important direction, opening up a new
window to the ML area, as it has shown its capabilities in
solving other complex problems [112], [113], [114], [115],
[116]. Moreover, the process of design is naturally an inverse
problem of performance analysis. Therefore, the pursuit
of inverse modeling for straightforward design solutions
remains an appealing avenue of research. Incorporation of
multi-agent RL methods and game theory into solutions
of high-dimensional multi-objective EM problems may lead
to new approaches to conquer the dilemma of the EM
optimization challenges.

VII. CONCLUSION
In this paper, a comprehensive review of recent optimization
techniques in EM modeling was conducted. Since the early
work on space mapping and population-based algorithms,
this field of research has drawn plenty of interest in both
industry and academia. On top of surveying from structural,
algorithm, application and component views, we delved into
the literature statistics and explored future prospects. The
current progress of research and development demonstrated
that ML techniques, especially RL, are promising, mainly by
virtue of their strong capability to explore high-dimensional
input-variable spaces and multi-objective output performance
spaces. Looking ahead, we deemed quantum computation to



ARANI et al.: STATE-OF-THE-ART SURVEY ON ADVANCED EM DESIGN: AN ML PERSPECTIVE 1092

become instrumental in handling high computational tasks,
thereby facilitating the design and optimization processes for
solving EM challenges.
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