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ABSTRACT Electromagnetic (EM) body models predict the impact of human presence and motions
on the Radio-Frequency (RF) field originated from wireless devices nearby. Despite their accuracy,
EM models are time-consuming methods which prevent their adoption in strict real-time computational
imaging and estimation problems, such as passive localization, RF tomography, and holography. Physics-
informed Generative Neural Network (GNN) models have recently attracted a lot of attention thanks
to their potential to reproduce a process by incorporating relevant physical laws and constraints. They
can be used to simulate or reconstruct missing data or samples, reproduce EM propagation effects,
approximated EM fields, and learn a physics-informed data distribution, i.e., the Bayesian prior. Generative
machine learning represents a multidisciplinary research area weaving together physical/EM modelling,
signal processing, and Artificial Intelligence (AI). The paper discusses two popular techniques, namely
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs), and their adaptations to
incorporate relevant EM body diffraction methods. The proposed EM-informed GNN models are verified
against classical EM tools driven by diffraction theory, and validated on real data. The paper explores
emerging opportunities of GNN tools targeting real-time passive RF sensing in communication systems
with dense antenna arrays. Proposed tools are also designed, implemented, and verified on resource
constrained wireless devices. Simulated and experimental analysis reveal that GNNs can limit the use
of time-consuming and privacy-sensitive training stages as well as intensive EM computations. On the
other hand, they require hyper-parameter tuning to achieve a good compromise between accuracy and
generalization.

INDEX TERMS EM body models, generative models, variational autoencoders, generative adversarial
networks, radio tomography, integrated sensing and communication, localization.

I. INTRODUCTION

PASSIVE radio sensing employs stray ambient radio
signals from Radio Frequency (RF) devices to detect,

locate, and track people that do not carry any electronic
device, namely device-free [1], [2], [3], [4], [5]. In line with
the Communication while Sensing paradigm [5], these tools
provide seamless detection capabilities, while performing
wireless communications. Radio signals encode a view of
all moving/fixed objects traversed during their propagation:

several data analytic tools, such as Bayesian [6], [7] and
machine learning approaches [8], can be used to decode
this information, typically by large-scale processing of radio
signals exchanged by different devices.
Most of emerging approaches proposed for solving the

radio sensing problem require an approximated knowledge
of a physical-informed (prior) model to interpret the effects
of human subjects on radio propagation. The perturbative
effects of the radio signals induced by the presence or
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movements of human bodies can be interpreted using
electromagnetic (EM) propagation theory considerations [9].
These EM methods have paved the way to several physical
and statistical models for passive radio sensing, which exploit
full wave approaches [10], ray tracing [11], moving point
scattering [12], and diffraction theory [13], [14], [15],
[16]. The body-induced perturbations that impair the radio
channel, can be thus acquired, measured, and processed using
model-based methods to estimate location and track target
information. A general EM model for the prediction of body-
induced effects on propagation is still under scrutiny [17].
On the other hand, current models are too complex to be
of practical use for real-time sensing scenarios [10], [11],
although they can be used for off-line applications such as
network pre-deployment assessment [18].
Physics-informed generative machine learning is an

emerging field in different application contexts ranging
from imaging [19], EM field computation [20], to Bayesian
estimation for inverse problems [21]. Generative deep Neural
Networks (GNN) can be trained to produce observations
drawn from a distribution which reflects the complex
underlying physics of the environment under study, or
rather reproduce approximate fields in an almost negligible
time compared with classical numerical methods [22], [23].
For the first time, our paper discusses the adoption of
GNN models designed to reproduce the effects of body
movements on EM propagation, considering varying size,
position and orientation/posture of the body, multiple antenna
(e.g., MIMO) setups and different physical and geometrical
properties of the radio link(s).
The proposed physics-informed GNN models are trained

with samples obtained from EM models based on diffraction
theory [15], [16], under different environment configura-
tions. The GNN tools discussed in this paper are based
on Variational Auto-Encoders (VAEs) [24] and Generative
Adversarial Networks (GANs) [25], [26]. The opportunities
and the limitations of each proposed approach are discussed
and compared in several case studies targeting the perception
of body motions and passive RF sensing applications.

A. RELATED WORKS
Physics-informed GNN models use Machine Learning (ML)
methods for computing physical processes. Although still
in their infancy, they have been recently proposed to
approximate EM fields. A small body of existing works
related to this problem does exist. A ML model is proposed
in [27] to obtain an approximation of the EM field in a cavity
with an arbitrary spatial dielectric permittivity distribution.
The model is shown to be one order of magnitude faster
than similar finite-difference frequency-domain simulations,
suggesting possible applications in inverse problems. In [28],
a neural solver for Poisson’s equation is proposed using a
purely-convolutional neural network structure. An approach
for solving Partial Differential Equations (PDEs) using
Neural Networks (NNs) has recently emerged [29], where
a physics-based loss function is constructed to improve

FIGURE 1. EM model geometry (2D sheet-like obstacle, multiple-input
multiple-output antenna configuration) and generative approach.

NN training. Compared to traditional EM field computing
methods based on numerical integration and/or mesh-based
methods, an attractive feature of physics-informed models,
based on Deep NN (DNN) implementations, is that they
could break the curse of dimensionality [30]. In addition,
once trained, DNNs can solve an EM problem in an
almost negligible time in comparison to classical numerical
methods [22], [23]. Finally, generation accuracy and training
time can be improved by incorporating a small amount of
labeled data or EM field measurements (if available) during
the training process.
Applications of GNN tools to communications and local-

ization are also emerging [31]. For example, [32] discussed
a convolutional encoder-decoder structure that can be trained
to reproduce the results of a ray-tracer, encoding also
physics-based information of an indoor environment. A ML-
assisted channel modeling approach is proposed in [33] to
generate site-specific mmWave channel characteristics. The
model is shown to improve the generalization capabilities
of conventional physical–statistical models when adopted to
reproduce complex network configurations. A Multibranch
GAN (MBGAN) has been recently analyzed for radar signal
processing to synthesize data that reflect human physical
properties and kinematics [34]. The model is shown to
provide an increase of 9% in classification accuracy.

B. OBJECTIVES AND CONTRIBUTIONS
The paper discusses for the first time the adoption of EM-
informed generative neural network models inspired by VAE
and GAN tools [24], [25]. As depicted in Fig. 1, the GNN
models are designed and trained to reproduce the human
blockage effects on radio propagation as underpinned by
scalar diffraction theory. The models consider different body
and link configurations relevant in radio sensing:
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1) varying link geometries: distance (d), height from the
ground (h);

2) Multiple-Input Multiple-Output (MIMO) antennas (L);
3) variable size (wS,1,wS,2, hS), position (x, y) and ori-

entation/posture (ϕ) of the monitored target.
The proposed GNNs comprise of: i) a generator of body-
induced RF signal attenuations, andii) a generator of EM
field samples which can be used for EM full-wave prop-
agation analysis. The generators are shown to reproduce
human body blockage effects under configurations which
might be unseen during the training phase, or rather difficult
to predict through traditional EM field computing methods.
The considered GNN models are designed to reproduce the
body blockage effects according to selectable configurations:
therefore, they generate EM field samples conditioned on
input body characteristics, or features, that can be selected
at run-time, namely during RF sensing deployment.
In line with initial studies [19], [22], [23], the generators

are purely based on sequences of convolutional (and de-
convolutional) layers whose number varies depending on
the physical quantity to be reproduced. Therefore, they
are well-suited for real-time localization applications as do
not need intensive EM wavefield computations. VAE and
GAN [22], [26] generator methods are analyzed in terms of
their accuracy in reproducing EM model diffraction effects,
implementation complexity, generation times, and model size.
The paper is organized as follows: Section II introduces

the passive RF sensing problem and motivations. Section III
reviews relevant EM body models that quantify the human
body blockage based on diffraction theory considerations.
Section IV targets the proposed GNN approaches and
discusses VAE and GAN tools. Section V validates the
proposed generators against EM diffraction and thus verifies
the effectiveness of the models in reproducing body blockage
effects on single and multiple antennas wireless receivers.
Section VI discusses an experimental case study. The
goal is to demonstrate the effectiveness of GNN tools
in reproducing real field measurements, supporting the
RF sensing and the passive localization processes. Finally,
concluding Section VII summarizes the open problems, the
opportunities, and the limitations of the study.

II. BACKGROUND AND PROBLEM FORMULATION
The RF sensing goal is to extract the EM human body(ies)
blockage effects (Eθ ) from noisy measurements St of the
RF radiation observed at time t. The human subject(s) is
characterized by an unknown state θ which is recovered
from Eθ . The body effects Eθ can be evaluated in terms
of body-induced excess attenuations Aθ [15], [35], as in
the example of Fig. 1. Baseband Channel State Information
(CSI) Cθ [36] can be evaluated as well. The body state θ

consists of an ensemble of features, e.g., body location, size,
height, and orientation (see Section III-A) [6], [15], [16],
which depend on the specific sensing application. In what
follows, we provide the necessary background on RF sensing
and Bayesian methods.

A. RF-SENSING AND BAYESIAN FORMULATION
The objective of the RF sensing inverse problem is to obtain
the posterior distribution p(Eθ |St):

p(Eθ |St) = p(St|Eθ ) · p(Eθ )

p(St)
(1)

of the (unknown) human body blockage effects Eθ , given the
measurements St. Maximum A-Posteriori (MAP) solution
to (1) allows to extract the most likely effects:

(
Êθ , θ̂

) = arg max
θ

{p(Eθ |St)} (2)

from which it is possible to recover the subject state θ̂ and
any feature (ϑ ∈ θ̂ ) of interest, e.g., body position, size,
height, and orientation. Field measurements St can be in the
form of received power, Received Signal Strength (RSS), or
base-band CSI response [5]. Observations St are perturbed
by the body movements according to a prior distribution,
p(Eθ ), which predicts the effects of the body (i.e., the target)
in the state θ as the result of the propagation of the reflected,
scattered, and diffracted EM waves.
The Bayesian approach (1) for solving the radio sensing

problem (2) requires the knowledge of the likelihood
function p(St|Eθ ), namely the RF measurement model,
and the prior distribution p(Eθ ). The likelihood term
depends on the data collection process as well as on the
impairments introduced by the measurement instrument or
by the environment. It is typically chosen as log-normal
distributed, according to [2], [6]. On the other hand, the prior
distribution p(Eθ ), which models the initial beliefs on Eθ ,
is usually hard to represent as it often requires full-wave
EM approaches. Approximated solutions, such as diffraction
models [13], [16], and several variants [12], are in many
cases too time-consuming to be of practical use for real-
time sensing scenarios [11]. In addition, when it comes
to practice, imperfect knowledge of the scenario, small,
involuntary, body movements, or changing configurations
of the propagation environment, make the prior even more
difficult to obtain with an acceptable level of accuracy [5].

B. BAYESIAN PRIOR MODELLING OF EM BODY
EFFECTS
The EM-informed GNN tools discussed in this paper are
designed to reproduce the EM effects Eθ as sampled from
the Bayesian prior probability distribution p(Eθ ). The prior
p(Eθ ) quantifies the uncertainties of the body effects Eθ as
caused by imperfect knowledge of the body state θ . It is
defined in general as:

p(Eθ |θk) = Eθ∼p(θ |θk). (3)

In other words, the EM effects Eθ are obtained for random
instances of body features θ that follow a probability function
p(θ |θk). Probability p(θ |θk) models the uncertainty with
respect to the nominal body features θk.

Some examples are proposed in the following to clarify
the approach. First, consider the problem of generating



961 IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, VOL. 5, NO. 4, AUGUST 2024

FIGURE 2. 2D layout of the radio link assuming a multiple antenna configuration of
Fig. 1. Extension to a MIMO set-up is straightforward. The point O′

� is the projection of
the barycenter P of the target S over the �-th LoS path having length d�.

body-induced RF excess attenuation values (Aθ ) for a
subject located at some (nominal) position θk = (x, y) [5].
Involuntary movements, as the result of the complex structure
of the human body, strongly affect the RSS [5] and
must be adequately taken into account. Body motions can
be represented by random movements in an elementary
squared area of size � around the nominal location (x, y).
Subject movements can be modelled by setting p(θ |θk) =
U−(�/2),(�/2) with � = 5 ÷ 10 cm [16]. Replacing
Eθ with Aθ , the prior distribution becomes p(Aθ |θk) =
Aθ∼U−(�/2),(�/2)

.
Likewise, let’s consider now the problem of subject

activity recognition [36], which requires to real-time track
the subject trajectory and orientation w.r.t. the LOS path
and its effects on CSI (Cθ ) measurements. Diffraction
models [13], [16] can be designed to capture the rotation
angle ϕ of the 2D target (see Fig. 2) by varying the size of
the absorbing sheet S that represents the body. However, this
operation is often expensive in terms of computational time.
Rather than simulating each target rotation angle separately,
which is not feasible, the proposed generative model can
be set to reproduce the CSI Cθ for all subject orientations1

simultaneously, namely p(Cθ |θk) = Cθ∼p(θ |−π/2≤ϕ≤π/2).
Further examples are given in Section V.

III. EM BODY MODELS
The proposed GNN tools are optimized to match the prior
distribution p(Eθ ) in (3) using (few) training examples
obtained from scalar diffraction theory [15], [16]. In this
section, we discuss relevant diffraction-based EM body
models to reproduce the human body blockage effects Eθ ,
considering also body-induced RF excess attenuations Aθ

and CSI Cθ , as special cases. First, we briefly recall the
body models proposed in [15] for a single link scenario using
scalar diffraction theory considerations. Next, we consider a
receiver equipped with an array, i.e., Uniform Linear Array

1The angular resolution is set to π/200, which is sufficient for accurate
reproduction of complex body trajectories.

(ULA), of L isotropic receiver antennas. The diffraction
model represents the body effects relative to each radio link
�, namely Eθ = [E�,θ ]L�=1, or equivalently Aθ = [A�,θ ]L�=1
for RSS and Cθ = [C�,θ ]L�=1 for CSI.

In what follows, we will always assume that the monitored
target is in the Fraunhofer’s region of both transmitting (TX)
and receiving (RX) antennas for all the considered links �.
Extension to multi-target scenarios can be also inferred
according to [16].

A. DIFFRACTION MODELS FOR BODY-INDUCED
EXCESS ATTENUATIONS
As depicted in Fig. 1, we assume that the length of the
radio link is given by d while h is its height from the floor.
The effects of floor, walls, ceiling or other obstacles are not
considered. However, with some effort, these obstacles can
be included, as shown in [43]. The scalar diffraction theory
assumes that the 3D shape of the human body is modeled as
a 2D rectangular absorbing sheet S [15] with height hS and
traversal size that changes according to a 3D cylinder view,
with max. and min. traversal sizes wS,1,wS,2, respectively.
The target has nominal position coordinates p = [x, y], w.r.t.
the TX position, which is defined by the projection of its
barycenter on the horizontal plane that includes the Line-
of-Sight (LOS). The 2D target might be also rotated of an
angle ϕ with respect to the LOS direction. The body/subject
state θ is characterized by an ensemble of body features
collected into the vector θ := {p, ϕ, hS,wS,1,wS,2}.

A distribution of Huygens’ sources of elementary area dS
is located on the absorbing sheet S. The electric field Eθ at
the receiver [15] is obtained by subtracting the contribution
of the obstructed Huygens’ sources from the electric field E0
of the free-space scenario (with no target in the link area):

Eθ = E0 −
∫

S
dE (4)

where time t is omitted to simplify the reasoning. According
to [15], equation (4) can be rewritten in terms of the field
ratio Cθ = (Eθ /E0), representing the CSI:

Cθ = 1 − j
d

λ

∫

S

1

r1 r2
exp

{
−j2π

λ
(r1 + r2 − d)

}
dξ2 dξ3

(5)

where λ is the wavelength. Notice that each elementary
source dS = dξ2 dξ3 has distance r1 and r2 from the TX
and the RX, respectively which depends on the relative
coordinates p.

B. MULTIPLE ANTENNA ARRAY CONFIGURATIONS
We now consider an ULA configuration with links ordered
as −M ≤ � ≤ M and being RX� the receiver node for
corresponding link �. The central antenna of the array is
indicated by the index � = 0. As shown in Fig. 2, each
�-th antenna RX� of the array is uniformly deployed at
mutual distance �a along a segment orthogonal to the LOS
at distance d from the TX and horizontally placed w.r.t.
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the floor. Ignoring mutual antenna coupling (approximately
valid for �a > λ/4, see [37]), the CSI observed on the �-th
antenna of the array corresponds to the ratio of the electric
fields C�,θ = (E�,θ,/E�,0): therefore, using (5) it is:

C�,θ = 1 − j
d�

λ

∫

S

1

r1,�r2,�

· exp

{
−j2π

λ

(
r1,� + r2,� − d�

)}
dξ2 dξ3 (6)

where E�,0 is the EM field received by the same RX� node
in the reference condition, i.e., the free-space scenario. The
term d� indicates the distance of the �-th antenna RX� of the
array from the TX while d1,� and d2,� are the distances of the
projection point O′

� (of the barycenter P of the 2D surface S)
from the TX and RX� nodes. Likewise, r1,� and r2,� are the
distances of the generic elementary area dS of the target S
from the TX and RX�, respectively. Notice that, for M = 0,
equation (6) reduces to the single-antenna case (5), where
RX0 coincides with the RX antenna at distance d = d0 from
the TX.
CSI data (C�,θ ) and the corresponding excess attenuation

values (A�,θ = −10 log10 |C�,θ |2) represent the human body
blockage effects for link �. These are organized into the
vectors:

Aθ =
[
A�,θ = −10 log10

∣∣C�,θ

∣∣2
]L

�=1
,

Cθ = [
C�,θ

]L
�=1. (7)

In addition to the CSI terms Cθ , the EM field E�,θ, observed
on link � can be also re-arranged according to (6) as:
where E0,0 is the electric field received by the central antenna
of the array of index � = 0. Using (8), as shown at the
bottom of the page, and (6), the EM field for each considered
link can be obtained as:

Eθ =
[
E0,0 C�,θ

d

d�

exp

{
−j2π

λ

(
d� − d

)
}]L

�=1
. (9)

C. EFFECTS OF HUMAN BODY BLOCKAGE ON ARRAY
RESPONSE
Based on the previous analysis, we now highlight the EM
effects of target movements on the array response [38] of
conventional linear beamforming processing [44]. Using the
same ULA configuration, we consider the vector w(γ ) =
[w�]+M�=−M = [w−M . . . , w−1 w0 w1 . . . , wM]T of linear
beamforming coefficients designed to steer the array in a
direction γ . The received baseband signal rθ (γ ) at the output
of the beamforming processing is given by:

rθ (γ ) =
+M∑

�=−M
w∗

�(γ )
[
E�,θ + n�

] = w(γ )H · [Eθ + n], (10)

where H indicates conjugate transpose operation, n�

is the �-th element of the Additive White Gaussian
Noise (AWGN) complex vector n = [n−M . . . , n−1 n0
n1 . . . , nM]T of size 2M+ 1, that is assumed to be spatially
white with zero mean and covariance σ 2I. Neglecting the
AWGN noise2 and considering the CSI C�,θ defined in (6),
the array response Rθ (γ ) as due to a target in state θ is
defined as [38]

Rθ (γ |Cθ ) =
+M∑

�=−M
w∗

�(γ )
E�,0

E�,θ

= w(γ )H · C−1
θ . (11)

Notice that conventional ULA scenarios assume planar
wavefront propagation. In this case, the steering vector w(γ )

for the considered array is given by [44]:

w(γ ) =
[

exp

{
j�

2π

λ
�a cos γ

}]+M

�=−M
(12)

where �a = λ/2 is the inter-element antenna distance.
According to (12), it is also |w|2 = wHw = (2M + 1).

The dominant Direction of Arrival (DoA) γmax, namely
the maximum response of the array, is obtained as:

γmax = arg max
γ

{Rθ (γ |Cθ )} (13)

and will be considered in the analysis of Section V.

IV. EM-INFORMED GENERATIVE NEURAL NETWORKS
TOOLS
The generative models considered in this section reproduce
body-induced EM effects Eθ as sampled from the conditional
prior distribution p(Eθ |θk) in (3). The prior is thus condi-
tioned on the input body features θk. As shown in Fig. 3,
the generation process is implemented by a decoder (VAE),
or a generator (GAN), both parameterized by deep Neural
Network (NN) parameters WD and WG, respectively. The
neural networks map the input latent space z ∼ pZ (z) of
size Z (z ∈ R

Z×1), into the output space:

Êθ ∼ pgen(Eθ |θk) ∼= p(Eθ |θk). (14)

The generated samples Êθ are thus set to reproduce the
targeted EM model, namely pgen(Eθ |θk) ∼= p(Eθ |θk), for
selectable inputs θk. As shown in Fig. 3, the NN parameters
WD and WG constitute the generation models and are trained
separately to reproduce body-induced excess attenuations Aθ

or EM field samples Eθ , respectively.

2In line with the setup described in (1), the generative model is now
designed to reproduce the prior effects of body movements on the response
of the array; therefore, it appears reasonable to neglect the effect of
measurement and AWGN noise, as well as fading.

E�,θ

E0,0
= d0

d�

exp

{
−j2π

λ
(d� − d0)

}⎡

⎣1 − j
d�

λ

∫

S

1

r1,�r2,�

· exp

{
−j2π

λ

(
r1,� + r2,� − d�

)}
dξ2 dξ3

⎤

⎦ (8)
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FIGURE 3. a) Conditional VAE (C-VAE) and b) Unbalanced Conditional GAN (UC-GAN) architectures for generating EM body model samples; c) C-VAE encoder and decoder
neural network structures for generating excess attenuations Aθ and EM field responses Eθ ; d) corresponding discriminator and generator structures for UC-GAN. Dense, Conv
and ConvT refers to fully connected, convolution and deconvolution layer [48] operators, respectively.

Below we discuss VAE and GAN model architec-
tures [25], [26] referred to as conditional-VAE (C-VAE)
and unbalanced conditional-GAN (UC-GAN) [46]. Both
models are adapted to generate samples conditioned on input
body features θk that can be chosen at run-time. In the
following, we limit our focus on the body feature set θk =
[pk, ϕk, hS,wS,1,wS,2] so to generate body effects for varying
locations pk, orientations −π/2 ≤ ϕk ≤ π/2, and sizes
hS,wS,1,wS,2 of the target. Although different approaches
are possible, the problem is complex enough to make a full
EM simulation unfeasible, thus motivating the use of GNN
models.

A. CONDITIONAL VARIATIONAL AUTOENCODER (C-VAE)
As depicted in Figs. 3a) and 3c), the C-VAE model uses an
encoder Q(z|Eθ , θk;WE), parameterized by NN parameters
WE, which learns the latent space pZ (z|θk) ∼ N (μk, σ

2
k) for

inputs θk. Latent space is multivariate Gaussian distributed
with mean μk and standard deviation σ k parameters (other
choices are not investigated here). The encoder is trained
using samples Eθ obtained from the EM model (9) and
the corresponding body states θk. Model training is further
discussed in Section V. The decoder produces a distribution

ÊVAE
θ ∼ pVAEgen (Eθ |θk):

pVAEgen (Eθ |θk) =
∫

Z
pVAEgen (Eθ |z, θk;WD) pZ (z|θk) dz (15)

which is the marginalization of the conditional probability
pVAEgen (Eθ |z, θk;WD) function of the NN parameters WD. The
goal is to maximize the likelihood bound called Evidence
Lower BOund (ELBO) LELBO described in [45]. Omitting
dependency on parameters WE and WD, it is:

LELBO = �k − β · DKL
[Q(z|Eθ , θk)‖pZ (z|θk)

]
. (16)

The first term �k = Ez∼Q(·|·)log[pVAEgen (Eθ |z, θk)] is
the log-likelihood function, while the second one is
the Kullback-Leibler (KL) divergence DKL [47] between the
encoder output and the input latent space.
Maximization of the likelihood �k in (16) makes the

generated samples ÊVAE
θ more correlated to the latent

variables z, which typically cause the model to be more
deterministic. On the other hand, the number of latent
variables Z as well as the ELBO weight term β > 0 can
be tuned to increase the contribution of the KL divergence
between the posterior and the prior to the total ELBO and
thus increase the randomness of generated samples. Targeting
passive localization applications, in Section V, we will show
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that both terms (Z, β) can be optimized to improve the
generation process, also to account for measurements St
affected by noise and multipath interference.

B. UNBALANCED CONDITIONAL GAN (UC-GAN)
GAN training, depicted in Figs. 3b) and 3d), is formulated as
a min-max problem that can be interpreted as an adversarial
game with two players: the discriminator D(Êθ ,Eθ ;WI) ∈
[0, 1], namely a binary classifier which tries to improve the
detection of fake EM field samples, and the generator which
is designed to fool the discriminator. The generator produces
ÊGAN

θ ∼ pGANgen (Eθ |θk;WG) with:

pGANgen (Eθ |θk) =
∫

Z
pZ (z)pGANgen (Eθ |z, θk;WG)dz (17)

now driven by pZ (z) ∼ N (0, I). The goal is now to
minimize the statistical distance (Jensen-Shannon diver-
gence, based on [47]) between p(Eθ |θk) and pGANgen . This
corresponds to maximizing the discriminator loss while
minimizing the generator one. More details can be found
in [26]. Physics-informed GAN based models were proposed
in several works [23], [32]. For the considered problem,
we adopted an unbalanced implementation [46] which pre-
trains the generator using the parameters WD of the C-VAE
decoder (15). This prevents the faster convergence of the
discriminator at early epochs which could limit the generator
reproduction accuracy.

C. MODEL TRAINING AND IMPLEMENTATION
CONSIDERATIONS
C-VAE and UC-GAN pre-trained models shown in Fig. 3
are available on-line [41] together with example codes for
training on new samples, and testing, namely generating
body-induced excess attenuations (Âθ ) and CSI (Ĉθ ),
according to specific body configurations. In the following
sections, we discuss few critical implementation constraints
and related general considerations useful for the case study
of Section VI.
GNN trainable parameters and models. Considering

C-VAE in Figs. 3a) and 3c), the encoder model WE includes
two key components: a sequence of convolutional layers
and a feed-forward network. The encoder takes as input
training samples obtained from the diffraction model as
well as the conditional inputs θk. Excess attenuations Aθ

and EM field generation Eθ require a different number of
convolutional layer subcomponents, to reflect the dimension
of the data: 2 layers are chosen for reproducing excess
attenuations Âθ , while 3 layers are required to generate EM
field samples Êθ . This choice is conservative since it is
critical to limit the size of trainable model parameters, while
no apparent performance improvement is observable beyond
this limit. The decoder WD reproduces samples of body
effects as a function of customized inputs θk that are one-hot
encoded before being used as input to the neural network.
It uses transposed convolution layers, also referred to as
fractionally-strided convolutions, to increase (upsample) the

TABLE 1. C-VAE and UC-GAN vs diffraction model: body-induced excess
attenuation and EM field generation time analysis.

spatial dimensions of intermediate features, so that generated
outputs respect the desired dimensions.
Considering now the UC-GAN model in Figs. 3b) and 3d),

the discriminator (WI) and the generation (WG) model struc-
tures include similar components. Following the unbalanced
GAN implementation, the C-VAE decoder model parameters
WD are transferred to discriminator WI at the beginning of
the training stage. To simplify comparison, the outputs of
both the models have the same dimension. For an assigned
input θk = [pk, hS,wS,1,wS,2] VAE and GAN generate 201
different subject orientations ϕk in the interval −π/2 ≤ ϕk ≤
π/2, for all the configured physical links3 L.
Generation times. Generation times of C-VAE, UC-GAN

and EM diffraction models are compared in Tab. 1 con-
sidering single antenna TX and RX and a MIMO setup
with L = 81 links. Reproduction of excess attenuations Âθ

and EM field samples Êθ are analyzed separately. For each
case, time measurements are obtained using a Jetson Nano
single-board computer equipped with a quad-core ARM-
Cortex-A57 SoC, 4 GB RAM, 128 Compute Unified Device
Architecture (CUDA) cores, and a Maxwell GPU architec-
ture. This is representative of a typical resource-constrained
wireless device. Note that, on average, the VAE/GAN-based
generation of the EM body effects is about × 60 ÷ 100
times faster than EM model computation. The latter also
depends on the chosen numerical integration configurations,
i.e., tiled integration method, and absolute error tolerance,
target size, and antenna configuration (omnidirectional [15]
vs directional [42] antenna radiation patterns). The generative
model can be therefore used to reproduce the desired prior
distribution in real-time, with sufficiently high randomness
of samples. Generation rate is in the order of 50 ÷ 100

3Pre-trained models [41] generate EM samples for L = 81 links where
TX and RX have 9 antennas with spacing �a = λ/2.
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TABLE 2. C-VAE and UC-GAN comparative analysis of model footprints for
body-induced ̂Aθ RF excess attenuations and EM field ̂Eθ generation.

samples per second, which is reasonable considering typical
body movement speeds (max. 1 m/s).
GNN model footprints. For the proposed implementations,

Tab. 2 analyzes the size of the trainable parameters, namely
the model footprint, of the decoder (C-VAE) and the
generator (UC-GAN). Footprints range from 1 MB to
240 MB, being the EM field generation Êθ more demanding
in terms of memory occupation than excess attenuation Âθ

generation. Although out of the scope of the current paper,
accurate model pruning is desirable to minimize the memory
footprint on resource-constrained devices [5].

V. ANALYSIS OF EM FIELD GENERATION ACCURACY
In this section, we assess the ability of C-VAE and UC-
GAN approaches to reproduce the EM diffraction effects
(Section III) and, more generally, the effectiveness of the
models in sampling from the prior p(Eθ |θk) in (3). We
consider the problem of reproducing attenuations (Aθ )

and CSI (Cθ ), separately, for varying input features and
scenarios.
The setup consists of TX and RX nodes equipped with

ULAs having 9 omni-directional antennas (corresponding
to L = 81 total links) that are spaced at �a = λ/2. The
length of the central link of the array is equal to d =
4 m while all the links of the array are horizontally placed
at height h = 0.99 m from the ground. The human target
has also variable height hS, traversal max. and min. sizes
equal to wS,1 and wS,2, respectively. Generative models C-
VAE and UC-GAN are trained using samples of EM body
diffraction at carrier frequency fc = 2.4 GHz. The training
samples correspond to the following settings of the body
configurations θk = [pk, ϕk, hS,wS,1,wS,2]:

1) 75 marked positions pk, k = 1, . . . ,K = 75, located
inside the Fresnel’s area of the considered link, so that
the spacing between marked positions is 0.25 m along
and across the LOS (for d = 4 m);

2) 4 subject rotations ϕk = [ − π/2,−π/3,−π/6, 0];
3) 21 different dimensions of the targets ranging from

hS = 1.2 m to hS = 2.2 m and wS,1 = 0.25 m to
wS,1 = 0.55 m. Note that, in the reported tests, the
dimension wS,2 is fixed, by setting wS,2 = 0.25 m.

Notice that these limitations are reasonable as far as the goal
is to represent a human body [16].

C-VAE method requires parameter optimization, namely
optimization of the number of latent variables Z and ELBO
weights β, which is the goal of the first part of the analysis
in Section V-A. Next, in Section V-B C-VAE and UC-GAN
reproduction accuracy is compared considering a multiple
antenna array configuration. Finally, in Section V-C we
evaluate the accuracy of the generated EM field samples for
reproducing the array response.

A. C-VAE LATENT VARIABLE OPTIMIZATION
Fig. 4 shows an example of C-VAE generation of diffraction
model samples, namely body-induced excess attenuations,
using varying latent variables ranging from Z = 8 to Z = 32
and ELBO weight β = 0.05. The subject is moving along
and across the (single) radio link in specific marked locations
pk, as well as changing its orientation 0 ≤ ϕ ≤ −π/2. TX
and RX are equipped with a single antenna (L = 1). Here,
we are interested in generating body excess attenuations
ÂVAE

θ = [̂AVAE1,θ ]. To account for the uncertainties introduced
by different body postures and small, i.e., involuntary,
movements in the assigned location pk, we report the average
excess attenuations w.r.t. 50 generated samples from ÂVAE1,θ ∼
pVAEgen (Aθ |θk).
In Fig. 4a), the C-VAE model is used to reproduce

the average excess attenuation samples corresponding to a
subject that is moving along the LOS (0.25 m ≤ x ≤ 3.75 m,
y = 0) with a step of 0.25 m, namely occupying 15 marked
locations, from p1 = [0.25 m, 0] to p15 = [3.75 m, 0]. The
target has different dimensions, namely hS = 1.4 m,wS,1 =
0.35 m (black), hS = 2.0 m,wS,1 = 0.65 m (red), hS =
1.65 m,wS,1 = 0.65 m (green) and wS,2 = 0.25 m.
Also, it is changing its orientation while standing in each
marked location. Fig. 4b) shows the corresponding generated
samples now featuring a subject moving across the LOS
(−0.5 m ≤ y ≤ 0.5 m, x = 1 m) and with same dimensions.
Finally, in Fig. 4c), the target is now fixed in position p =
[0.5 m, 0] but uniformly changing its orientation ϕ from
ϕ = −π/2 to ϕ = 0. Generated samples are compared
with the average EM body excess attenuations A1,θ obtained
from (6) and (7) via numerical methods for the same
link and corresponding positions (dashed lines). The excess
attenuations are averaged over 50 random target movements
in an elementary squared area of size � = 0.1 m surrounding
the corresponding marked positions pk. Considering all
the tests, we found that using Z = 16 latent variables
constitutes a good compromise between complexity and
accuracy.
In addition to average excess attenuation terms, Fig. 5

analyzes the distribution of the generated excess attenuation
samples pVAEgen (Aθ |θk) compared with those obtained from
the EM diffraction model. Prior distributions are obtained
for varying latent variables Z and two choices of ELBO
weight β, namely β = 0.05, for Figs. 5a) and 5c); and β =
1e−09, for Figs. 5b) and 5d). Three target configurations
are considered, namely hS = 1.4 m,wS,1 = 0.35 m
in Figs. 5a), 5b), 5c), and 5d); hS = 1.65 m,wS,1 =
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FIGURE 4. C-VAE generation of body-induced excess attenuation values A�,θ for different target movements (along, across the LOS and varying orientations) and dimensions
(hS ,wS,1), with wS,2 = 0.25 m. C-VAE results are shown for varying latent samples Z and β = 0.05. From left to right: a) the subject is moving along the LOS (0.25 m ≤ x ≤ 3.75 m,
y = 0). The generated EM body excess attenuation values obtained via numerical methods are represented in dashed lines by averaging over random target orientations
−π/2 ≤ ϕ ≤ π/2 and random movements in an elementary squared area of size � = 0.1 m. b) The subject is moving across the LOS (x = 1 m, −0.5 m ≤ y ≤ 0.5 m). Dashed lines
shows the corresponding ground-truth diffraction model samples obtained similarly as in a). c) The target is in position x = 0.75 m, y = 0 and changing orientation −π/2 ≤ ϕ ≤ 0
while performing small movements in the same elementary area. Dashed lines shows the EM body model excess attenuations obtained for a subset of the subject orientations.
Figs. a) and c) are also presented in [24] .

FIGURE 5. C-VAE generated sample probabilities pVAE
gen (Aθ |θk ) of body-induced RF excess attenuations for varying latent dimensions (Z = 8, 16, 32) and ELBO weights β,

compared with samples obtained from EM body model (dashed lines). In a) and b) the target stands at x = 0.5 m from the TX with size hS = 1.4 m, wS,1 = 0.35 m. Generation
exploits β = 0.05 in a) and β = 1e − 09 in b). In c) and d) the target stands at x = 2 m from the TX with size hS = 1.4 m,wS,1 = 0.35 m while β is set to β = 0.05 in c) and β = 1e − 09
in d), respectively. The target, with size hS = 1.65 m,wS,1 = 0.65 m, stands at distance from the TX equal to x = 0.5 m in e) and at x = 2 m in f). The target with size
hS = 2.0 m,wS,1 = 0.65 m stands at distance from the TX equal to x = 0.5 m in g) and at x = 2 m in h). For the cases in e), f), g) and h), it is β = 0.05.

0.65 m in Figs. 5e), and 5f); and hS = 2.0 m,wS,1 =
0.65 m in Figs. 5g) and 5h). The generated distributions
pVAEgen reproduce the excess attenuations observed with a
target standing at distance from the TX equal to 0.5 m
in Figs. 5a), 5b), 5e), and 5g); and equal to 2 m in
Figs. 5c), 5d), 5f), and 5h), but changing its posture in the
same squared elementary area of size � = 0.1 m previously
considered.

As evident from the corresponding cases, the number
of latent variables Z substantially affects the generated
samples, while the ELBO weight β seems to have less
evident effects. The C-VAE tool configured for Z = 16 (and
Z = 32) provides a good representation of the distribution
of the excess attenuations when compared with the EM
diffraction model one. On the other hand, the C-VAE model
seems to better reproduce the excess attenuation samples
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FIGURE 6. C-VAE vs UC-GAN generation of EM body model for a MIMO array consisting of 3 antennas at the TX and RX, respectively, and L = 9 radio links. The subject has
dimensions (hS = 2 m,wS,1 = 0.55 m, wS,2 = 0.25 m) and is moving along the LOS path of link � = 5 (0.25 m ≤ x ≤ 3.75 m, y = 0). The EM body average excess attenuation values
Aθ = [A�,θ ]L=9

�=1 obtained through C-VAE (solid lines) and UC-GAN (diamond markers) methods are compared with the corresponding diffraction model samples (dashed lines).
C-VAE latent variable dimension is Z = 16 with β = 0.05, as optimized as in Fig. 4. UC-GAN is pre-trained using C-VAE decoder model.

corresponding to targets placed at some distance, i.e., 2 m
from the TX, rather than close to TX, i.e., 0.5 m. The
trend is particularly evident when the C-VAE model is
set to reproduce sample distribution with high variance
and few training samples, as in the case for small target
size (hS = 1.4 m,wS,1 = 0.35 m). Finally, the choice
for β = 0.05 stands as a good compromise between the
average reproduction accuracy and the reconstruction of
the entire probability function which require to increase the
randomness of generated samples [24].

B. C-VAE AND UC-GAN MODEL COMPARISON
In Fig. 6, we compare the C-VAE generation tool using
the optimized parameters Z = 16, β = 0.05 shown
previously with the UC-GAN implementation described in
Section IV-B. The following analysis is of interest as it
shows the behavior of two different generative systems and
compares their ability to reproduce the EM body diffraction
effects. With respect to previous section, we now consider
a MIMO ULA setup consisting of 3 antennas at the TX
and RX, respectively, L = 9 radio links and distance
d = 4 m. The samples ÂVAE

θ = [̂AVAE�,θ ]L=9
�=1 obtained

through C-VAE (solid lines) and with UC-GAN ÂGAN
θ =

[̂AGAN�,θ ]L=9
�=1 (diamond markers) tools are compared with the

corresponding EM body-induced excess attenuations Aθ =
[A�,θ ]L=9

�=1 obtained from diffraction theory (dashed lines).
The subject has fixed dimensions hS = 2 m, wS,1 = 0.55 m,
wS,2 = 0.25 m, and it is moving along the LOS path of the
link � = 5 (0.25 m ≤ x ≤ 3.75 m, y = 0).

Tab. 3 reports a comparative analysis of C-VAE and UC-
GAN generation for the same MIMO setup, in terms of Mean
Squared Error (MSE) and Kullback-Leibler (KL) divergence
DKL [47]. The latter compares the distance (divergence)

TABLE 3. C-VAE and UC-GAN comparative analysis in terms of MSE and KL
divergence DKL.

among the generated sample probability functions, pVAEgen or
pGANgen and the theoretical ones obtained from EM diffraction.
The MSE and the KL divergence terms are computed for
link � = 5 and varying target dimensions. The MSE values
remain below 0.5dB for C-VAE, on the other hand they are
about 1dB higher for UC-GAN. Similarly, by observing the
KL divergence, the C-VAE model is able to better reproduce
the true distribution of the samples (KL divergence < 1)

compared with UC-GAN, which features in some cases large
deviations (> 3). As previously noticed, the C-VAE model
seems to better reproduce the diffraction samples for targets
placed at distance x > 0.5 m from the TX. Also, large
targets surfaces S (hS ≥ 1.8 m) are better represented by
C-VAE model than small surfaces (hS ≤ 1.6 m). Even
if not considered in this paper, a possible solution could
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FIGURE 7. a) Array layout setup; b) Array response Rθ (γ ) for γ = 0 and a target with dimensions hS = 1.65 m,wS,1 = 0.55 m,wS,2 = 0.25 m and 2 positions, namely x = 2 m,
y = −0.25 m and x = 2 m, y = 0.25 m. Response is obtained using C-VAE EM field generated samples ̂CVAE

θ (Z = 16, β = 0.05) - green/red solid lines - and compared with the
array response obtained with EM Diffraction field samples (dashed lines); c) Direction of Arrival (DoA) analysis for a subject moving across the LOS (−0.25 m ≤ y ≤ 0.25 m,
x = 2 m), and changing orientations randomly in the interval −π/2 ≤ ϕ ≤ π/2.

be to augment the size of training data for these more
disadvantageous cases.

C. ANALYSIS OF GENERATED BEAMFORMING ARRAY
RESPONSES
Based on the analysis in Section III-C, we now verify the
ability of the proposed C-VAE model to reproduce the array
response of a conventional linear beamforming processing.
We thus compare the reproduced response Rθ (γ |ĈVAE

θ ) using
the generated EM field samples ĈVAE

θ with the true response
Rθ (γ |Cθ ) obtained by diffraction as in (11).
Fig. 7 considers an RX-side UL array layout now con-

sisting of L = 9 antennas (see Fig. 7a)) and shows the
body-induced array response 20 log10 |Rθ (γ )| as a function
of the DoA γ and for different values of the y displacement
of the target (w.r.t. the central LOS) and x = 2 m. The array
signal processing is set to extract the response for varying
DoA γ and is based on Fast Fourier Transform (FFT) with
NFFT = 257 points. Fig. 7b) shows two responses (red and
green lines) for corresponding target locations y = −0.25 m
and y = 0.25 m, respectively. The theoretical responses
Rθ (γ |Cθ ) using EM diffraction are in dashed lines while
solid lines represent the reproduced responses Rθ (γ |ĈVAE

θ )

using C-VAE generated CSI samples ĈVAE
θ .

Fig. 7c) compares the maximum response γmax of the
array as defined in (13). Blue dots are the dominant
DoA obtained by maximizing the array response Rθ (γ |Cθ ).
Red dots refer to the DoA produced by C-VAE generated
response Rθ (γ |Ĉ(VAE)

θ ). Both cases simulate a target moving
across the LOS (−0.25 m ≤ y ≤ 0.25 m, x = 2 m), with
speed 0.5 m/s and changing orientation randomly in the
interval 0 ≤ ϕ ≤ π/2. It can be noticed that the maximum
response γmax is perturbed by the presence of the subject
and such alteration is well reproduced by the C-VAE model.

VI. CASE STUDIES IN PASSIVE RADIO LOCALIZATION
A specific case study is considered in this section. The goal
is to demonstrate the effectiveness of the proposed GNN
tools to reproduce the prior p(Eθ |θk) in (3) and to support
a real-time localization process. The EM-informed C-VAE
tool has been thus validated with measurements taken in a
hall of size 6.1 m × 14.4 m as shown in Fig. 8. Both TX and
RX are equipped with directional antennas with parameters
summarized in the table embedded in Fig. 8. A mechanical
handling mechanism, shown in the top left of Fig. 8, is used
to move the RX antenna at specified positions where RF
measurements on multiple links � are collected. The target is
located in K = 75 marked positions pk, k = 1, . . . ,K, which
belong to a regular 2D grid as shown in the same figure. A
tracking generator enabled spectrum analyzer [49] is used
to measure the RSS St in the 2.4 ÷ 2.5GHz band and over
81 frequencies with 1.25MHz spacing. For each frequency
and target position under test, 500 consecutive time samples
are acquired in 1 min. (120 ms sampling time). The human
target (one of the authors who volunteered) has height hS =
1.80 m and traversal max. and min. sizes approximated as
wS,1 = 0.55 m and wS,2 = 0.25 m, respectively.

A. GENERATION OF RECEIVED SIGNAL STRENGTH
SAMPLES
So far we considered generative models to reproduce human-
body blockage effects Eθ . In what follows, we highlight a
dual use of the tool to reproduce the raw RSS measurements
St = [S�,t]L�=1 for an assigned body state θk and link set L
as in the scenario of Fig. 8. The RSS measurements Ŝ�,t are
generated via Monte Carlo sampling method and using the
C-VAE tool as follows:

Ŝ�,t =
{
P�,0 − ÂVAE�,θ + w�,0 pk /∈ F�

P�,0 − ÂVAE�,θ + w�,T pk ∈ F�,
(18)
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FIGURE 8. Measurement setup, TX/RX antennas, linear guide system for RX
antenna positioning. Explored target positions around the Fresnel’s area.

where ÂVAE�,θ ∼ pVAEgen (A�,θ |θk), P�,0 is the free-space received
power, known or measured during calibration, while w�,0 and
w�,T model the log-normal multipath fading and the other
noise sources. Disturbances w�,0 and w�,T differ depending
on whether the target is located inside (pk ∈ F�) or outside
(pk /∈ F�) the first Fresnel zone F� of the considered link
�. Noise w�,0 ∼ N (0, σ 20 ) refers to the free-space case with
pk /∈ F�, while noise w�,T ∼ N (μT , σ

2
T ) refers to the case

with pk ∈ F�. In the followings, we set μT = 1.5dB, σT =
1dB and σ0 = 1dB [16].

Fig. 9 compares the generated RSS samples Ŝ�,t with RSS
measurements S�,t at 2.4GHz for the scenario in Fig. 8 and
link � = 2. The subject is standing while performing small
movements around 4 nominal positions pk = (x, y), namely
x = 0.25 m, y = 0 (blue color), x = 0.5 m, y = 0 (violet
color), x = 0.75 m, y = 0 (yellow color). Position outside the
Fresnel area is x = 2 m, y = −0.5 (black color). Considering
the same scenario, Fig. 10 evaluates the C-VAE generation
of RSS samples obtained from two RX locations, namely
the links � = 1 (red) and � = 2 (green), corresponding to
a target now moving along the LOS 0.25 m ≤ x ≤ 3.75 m
(y = 0). The generated samples are again compared with
RSS measurements where the target is set to move along the
LOS path with a constant speed approximated as 0.25 m/s.
The average error ε�(pk) = Et[S�,t(pk)] − Et [̂S�,t(pk)]

between the RSS values Ŝ�,t(pk) predicted by the C-VAE
model and the corresponding measurements S�,t(pk) are
summarized in Tab. 4 for varying target locations pk along
the LOS path. The corresponding error δ�(pk) = σ�(pk) −
σ̂�(pk) between the true σ� = √

Et[S�,t(pk) − Et[S�,t(pk)]]2

FIGURE 9. Sample probabilities pgen(St |θk ) of generated RSS samples using
C-VAE (18) compared with histograms pRSS(St ) obtained from true RSS measurements
at 2.4GHz. Target size is hS = 2 m,wS,1 = 0.55 m, and orientation ϕ is uniformly
distributed in 0 ≤ ϕ ≤ π/6, to model small/involuntary movements in the surrounding
of the nominal positions. The subject is standing while performing small movements
around 4 nominal positions pk = (x, y), namely x = 0.25 m, y = 0 (blue color),
x = 0.5 m, y = 0 (violet color), x = 0.75 m, y = 0 (yellow color), and outside Fresnel
area x = 2 m, y = −0.5 (black color). A single link is considered (� = 2).

and predicted σ̂� =
√
Et [̂S�,t(pk) − Et [̂S�,t(pk)]]2 standard

deviation values are shown as well. The generative model
can be effectively used to predict the true RSS values for
both the considered links with average error of 2.7dB and
max standard deviation error of 2.9dB. On the other hand,
as also observed in Section V-A, the C-VAE generation tool
seems to over-estimate (ε� < 0) the observed RSS values
for target positions close to the transmitter or receiver, i.e.,
x = 3 m, since it is trained using diffraction models [15].

B. PASSIVE LOCALIZATION USING RF GENERATED
SAMPLES
In this section, we discuss an example of passive localization.
The goal is to detect the distance dR of the target from the
multi-antenna RX device in real-time, as in typical radar
applications. Given the RSS observations St over the same
links considered in Fig. 8, we want to recover the estimated
target state θk, in our case the position pk of the target
relative to RX.4 The proposed use case is critical in industrial
scenarios where human workers operate in areas featuring
increasing level of safety or privacy. Enforcing safety/privacy
constraints requires the real-time monitoring and tracking of
the human subject.
The estimated position p̂k of the target relative to RX

is obtained as in (2), replacing θ̂ with p̂k. Next, the target
distance is derived as dR = |̂pk|. The C-VAE generated
attenuations are here used to reproduce the prior distribution.

4To simplify the reasoning, the target moves along the LOS path.
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FIGURE 10. C-VAE generation of RSS samples observed for links � = 1 (red) and
� = 2 (green) described in Fig. 8 and corresponding to a target moving along the LOS
0.25 m ≤ x ≤ 3.75 m (y = 0). Generated samples are compared with RSS
measurements at 2.4GHz. Both the generated samples and the corresponding true
measurements have Confidence Interval (CI) of 60%.

TABLE 4. Average ε� and standard deviation δ� error analysis between true RSS and
predicted via C-VAE generative model (setup in Fig. 8).

The problem simplifies to p̂k = arg maxk{pA(θk)}: using
simple Bayes rule considerations and eq. (2), the probabilities
pA are defined as:

pA(θk) = maxθ log
[
p(Aθ |St, θk)

]

= maxθ

∑

�

log
[
p
(
S�,t|A�,θ

) · pVAEgen

(
A�,θ |θk

)]
.

(19)

Tab. 5 analyzes the precision and recall probabilities:

p1(dR) = Pr[pk ∈ L(dR)|̂pk ∈ L(dR)]

p2(dR) = Pr[̂pk ∈ L(dR)|pk ∈ L(dR)] (20)

with L(dR) being the region that contains the positions pk
of the target at distance of dR from the RX. The recall
metric measures how often the algorithm correctly identifies
the target distance from all the true positive counts, while
the precision indicates how often the algorithm is correct
when predicting the target distance. The table analyzes the

TABLE 5. Precision p1 and recall p2 probabilities for a target at varying distance dR

from the multi-antenna RX. Estimated prior from calibration data, C-VAE prior and
uniform prior are compared.

precision and the recall for varying distance dR from the
RX. Three cases are considered:

i) estimated prior scenario: assumes the prior probability
pgen(A�,θ |θk) being estimated from calibration mea-
surements;

ii) C-VAE prior: adopts the probability pVAEgen (A�,θ |θk) as
prior model with samples obtained using the C-VAE
generator tool;

iii) uniform prior: represents a case where no information
on excess attenuation is available: the prior is replaced
with a uniform probability function U−5dB,15dB with
attenuations ranging from −5dB to 15dB.

Note that scenario i) gives the best performance, as expected;
on the other hand, it requires time-consuming data collection
and a calibration stage which might be not feasible in
practice. Case iii) corresponds to the worst case scenario
since no prior information on body-induced attenuations
are available. Finally, case ii) does not need any cali-
bration as it uses the C-VAE tool to real-time generate
samples from the prior pVAEgen (A�,θ |θk). From the results
in the Tab. 5, the performance of C-VAE prior scenario
approaches the estimated prior case, with an average drop of
about 10%.

VII. CONCLUSIONS AND FUTURE ACTIVITIES
The paper proposed the use of EM-informed Generative
Neural Network (GNN) models to predict body-induced
diffraction effects. Explored applications are in the field
of passive radio sensing and localization. A Variational
Auto-Encoder (VAE) tool, namely the Conditional VAE
(C-VAE), is designed to generate samples of the targeted
EM model through latent variable encoding/decoding neural
network operations. The tool reproduces EM field samples
corresponding to specific human body states that are user
selectable and modifiable in real-time during model exploita-
tion. Adaptations of Generative Adversarial Networks (GAN)
are also considered for comparative analysis. Generated
samples are set to reproduce both RF signal attenuations,
i.e., Received Signal Strength (RSS), as well as base-band
Channel State Information (CSI) for full EM analysis of
human body blockage.



971 IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, VOL. 5, NO. 4, AUGUST 2024

GNNs produce observations sampled from the Bayesian
prior probability which supports Bayesian estimation prob-
lems. Examples tailored for passive localization reveal the
possibility of optimizing the generation process so to limit
the use of time-consuming calibration stages and intensive
EM computations. Generated samples might also serve as
synthetic training data for supervised or semi-supervised
machine learning tasks. They thus reduce the need of
personal data collection, that could be used maliciously for
person (re-)identification.
Beside the advantages, the proposed generators require

hyper-parameter optimization to achieve a good compromise
between average reproduction accuracy and generalization
capability. The former measures how close the prediction
is to the training observations, the latter quantifies the
randomness of generated samples which is useful to predict
effects not seen during training. When compared with real
measurements, the generated tools appear to underestimate
some human blockage effects, i.e., for small targets placed
close to the receivers. This opens the room for possible
improvements. The considered generative systems are cur-
rently trained to reproduce scalar diffraction effects. 2D EM
absorbing sheets are also used to model 3D human bodies.
Training the system with different EM blockage models,
such as full-wave solutions or Method of Moments (MoM),
and/or using more accurate body models, might increase the
generalization capabilities.
Although still in their infancy, we expect physics-informed

GNN models to become indispensable tools for designers in
different scenarios. For example, future radio sensing tools
will be paired with accurate EM modeling in high frequency
bands as proposed in emerging wireless communication
standards (6G and beyond). The possibility of generating
large CSI tensor structures representing the full RF radiation
field is also useful in emerging holographic methods and
microwave imaging techniques based on Synthetic Aperture
Radar (SAR). Finally, the proposed tools have been proved to
be effective in reproducing body motions in user selectable
locations. The property is instrumental to privacy selective
sensing policies.
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