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Abstract— In this work, the relationship between nonlinear
effects and the signal-to-noise ratio of a resonator is analyzed
and the impact of reducing nonlinear effects of the resonator
on the performance of a resonant accelerometer is investigated.
A theoretical framework is formulated to evaluate the dynamic
range of the double clamped-clamped resonator. A reduction
of the mechanical nonlinearity is achieved through an external
electrostatic force, resulting in an enhancement of the dynamic
range from 93.8 dB to 132.6 dB. Experimental findings indicate
the nonlinear coefficient is reduced to 2.2% compared to an
approach without nonlinearity compensation. The nonlinearity
compensation demonstrates a 12.8 dB improvement in the signal-
to-noise ratio of the resonator, leading to a 5.5-fold increase in
resolution of the accelerometer and an extension of the dynamic
range by 15 dB. The proposed technique enables the performance
of resonant sensors to be further optimized. [2024-0107]

Index Terms— Signal-to-noise ratio, resonant accelerometer,
nonlinear effects, dynamic range, nonlinearity compensation.

I. INTRODUCTION

MICRO-ELECTRICAL-MECHANICAL resonant sen-
sors offer excellent resolution, making them suitable

for various applications such as accelerometers [2] and mass
sensors [3]. Among these, some metrics of the resonant sensors
such as long-term stability and resolution are intimately related
to the frequency resolution of the resonator. To improve
frequency resolution, the signal-to-noise-ratio (SNR) of the
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resonator should be maximized as it can be shown that it is
correlated with the frequency resolution of the resonator [4]:

1ω

ω0
≈

1
2 · Q · SSNR

(1)

where 1ω/ω0 is the frequency resolution that is typically
determined by the frequency bias instability, Q is the quality
factor; and the SNR is given as: SSNR = 10SDR/20. The
dynamic range (DR) of the resonator (SDR) is determined
by the thermal-mechanical noise [5] and the maximum linear
amplitude (MLA) [6], [7], which, in turn, is limited by the
Amplitude-frequency (A-f) effect [8].

To augment the SNR of the resonator, a possible strategy is
to employ a higher driving voltage, thus increasing the MLA
of the resonator. However, this approach increases intrinsic A-f
effects, which can lead to the frequency response transition-
ing into the nonlinear Duffing regime [9]. Previous research
explored the advantages of operating resonators within this
nonlinear regime, elucidating its potential to overcome the
limitations of the linear regime for MEMS resonators [9], [10],
[11], [12], [13]. Investigation of the frequency stability encom-
passing hysteresis behavior in the nonlinear regime have been
empirically compared in references [14], [15], [16], reporting
an enhancements of the SNR of the resonators [17]. However,
as a trade-off, the hysteresis behavior in the nonlinear regime
can cause a deterioration in long-term stability as the driving
voltage increases [18]. Thus, increasing the driving voltage
while addressing the A-f effect of the resonators has emerged
as a viable strategy [6], as illustrated in Fig. 1.

In the past decades, researchers investigated various
approaches to address the A-f effect. Suppression of the inher-
ent A-f effect was achieved by tailoring the resonator design
parameters [6], [20], [21], [22]. Furthermore, a methodology
to reduce the A-f effect was developed using nonlinearity
compensation schemes [19]. Electrostatic spring softening
to counterbalance mechanical hardening effects has shown
promise in enhancing the MLA [23], [24], [25]. Also, reduc-
ing the A-f effect with nonlinearity compensation schemes
for nanoelectromechanical systems resonators was shown to
increase the DR [6], [23]. However, improving the MLA of
the resonator by nonlinearity compensation does not reduce
the noise floor of the resonant sensor. An electrostatic force
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Fig. 1. Comparative illustration of the dynamic range without and with
nonlinearity compensation. The blue and red curves represent the response
without and with nonlinearity compensation, respectively. MLA-a and MLA-e
correspond to the output amplitude of the resonator for input amplitudes of
4 mV and 44 mV, respectively, as discussed in Section III-B. The operational
points in this study are defined as: i) conventional maximum linear amplitude,
ii) nonlinear amplitude, and iii) nonlinear amplitude with compensation.

from any practical voltage source used for spring softening
introduces external noise [26], which can increase the noise
floor. Therefore, a detailed experimental investigation is
required to explore the effectiveness of compensating the A-f
effect, its impact on the SNR of the resonator and, in turn,
on the performance of resonant sensors.

This paper presents a comparative analysis of the DR
for distinct operational points of the resonator as indicated
as (i) ∼ (iii) in Fig. 1. The measured frequency stabilities of a
resonant accelerometer operating at these points with various
DR are utilized to determine the SNR of the resonator. The
paper is arranged as follows: In Section II a dynamic model of
the resonator is developed to predict the nonlinear coefficients
of A-f effect and DR in the presence of a compensation volt-
age. Section III presents a comparative experiment to verify
the theoretical analysis and evaluate the improvement of the
SNR at the operational points by nonlinearity compensation.
In Section IV limitations of the nonlinearity compensation
scheme are discussed and conclusions are drawn.

II. THEORY

To demonstrate the influence of nonlinearity compensation
on the SNR of the resonator, a resonant accelerometer is
utilized in the work. A schematic of the accelerometer is
shown in Fig. 2(a). The motion of the proof mass is converted
into differential axial forces applied to two resonators through
amplification levers [27]. Disregarding the thermal-mechanical
noise from the amplification levers, the resolution of the
resonant accelerometer is mainly determined by the SNR
of the resonators. This means that the resolution of the
accelerometer can be improved by either increasing the MLA
or by reducing the thermal-mechanical noise of the resonators.
In the following, a nonlinear dynamic model is developed to
evaluate the theoretical DR of the resonator; then, a numerical
solution is obtained using MATLAB.

A. Nonlinear Dynamic Model

The two resonators of the accelerometer comprise a pair
of Clamped-Clamped (C-C) beams, as shown in Fig. 2(b).

Fig. 2. Schematic of the resonant accelerometer. (b) is the zoom-in schematic
with nonlinearity compensation setup in the red-dashed line section of (a).
RC is the intrinsic resistor of the power supply as described in Section III. A.

Vdc and vac are bias and AC drive voltages, respectively. To
compensate the nonlinearities of the resonators, an electrostatic
nonlinear force is introduced by compensation voltage VC .
Assuming uniformity along the length of the beams, the force
dynamics of the C-C beam can be derived in a Cartesian coor-
dinate system using the Bernoulli-Euler equation, yielding:

E I
∂4w (x, t)

∂x4 + ρWeh
∂2w (x, t)

∂t2 + γ
∂w (x, t)

∂x

=
∂2w (x, t)

∂x2

(
EWeh

2I

∫ l

0

(
∂w (x, t)

∂x

))2

+

∫ l2+l

l2

εh (Vdc + vaccos (ω0t))2 φ

2 (d + w (x, t))2 dx

+

∫ l2+l

l2

εh (Vdc + VC )2 φ

2 (d − w (x, t))2 dx

+

∫ l1+l

l1

εhV 2
dcφ

2 (d + w (x, t))2 dx

+

∫ l1+l

l1

εhV 2
dcφ

2 (d − w (x, t))2 dx (2)

where E is Young’s modulus, L is the length of the beam,
ρ is the density, We and h are the width and the thickness
of the resonator respectively, d is the air-gap width between
the electrodes and the resonator, ε0 is the permittivity of
vacuum, l1and l2 are the starting positions of the overlap

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LI et al.: ON EXTENDING SNR OF RESONATORS FOR A MEMS RESONANT ACCELEROMETERS 3

areas of the electrodes, and l is the length of the electrodes.
w (x, t) is the displacement (in y-axis) of an infinitesimal
element of the beam at position x , which is also a func-
tion of time t . To solve Eq. (2), the deformation of the
elements is separated into a position-dependent mode shape
φ (x) and a time-dependent maximum displacement u (t).
Substituting the separated deformation u (t) · φ (x) and using
boundary conditions of φ (0) = φ (L) = 0 [28] into Eq. (2),
we obtain:

m
∂2u (t)

∂t2 + γ
∂u (t)

∂t
+ k1u (t) + k2u (t)2

+ k3u (t)3
= Fd

(3)

where Fd represents the driving force, m denotes the effective
mass of the C-C beam resonator, and γ the linear damping
coefficient. Fd and m are described by Eqs. (4) and (5),
respectively.

m = ρhWe

∫ 1

0
φ (x)2dx (4)

Fd =

∫ l2+l
L

l2
L

2εWehVdcvaccos (ωt) φ(x)

d2 dx (5)

In Eq. (3), kr (r = 1, 2, 3) represents the rth-order stiffness
of the resonator, which is the sum of the rth-order mechan-
ical stiffness kmr and the rth-order electrostatic stiffness ker .
By merging similar terms on the left-hand side of Eq. (2),
the mechanical stiffness terms can be expressed as.

km1 =

∫ 1

0

EW 3
e h

L3

(
d2φ (x)

dx2

)2

dx (6)

km3 =

∫ 1

0

EWeh
L3

(
dφ (x)

dx

)2

dx (7)

where km2 is ignored as the C-C beam resonator operating in a
symmetric out-of-phase mode [23]. Expanding the electrostatic
force terms on the right-hand side of Eq. (2) by using
a Taylor expansion, the electrostatic stiffness terms ker can
be derived. It is noteworthy that the 4th-order electrostatic
stiffness term is 10−3 times smaller compared to the 1st

electrostatic stiffness term assuming x/d < 1/10. Therefore,
only the first three terms (r = 1, 2, 3) are considered
to reduce the complexity of the model. In the initial state
of the C-C beam, there are no axial and harmonic forces.
Therefore, (disregarding constant electrostatic force terms),
the first 3- order terms of electrostatic stiffness can be
derived as:

ke1 = −

∫ l2+l
L

l2
L

εh
[
3V 2

dc + (Vdc + VC )2] φ(x)

d3 dx (8)

ke2 = −

∫ l2+l
L

l2
L

εh
[

3
2 V 2

dc +
3
2 (Vdc + VC )2

]
φ(x)

d4 dx (9)

ke3 = −

∫ l2+l
L

l2
L

εh
[
6V 2

dc − 2 (Vdc + VC )2] φ(x)

d5 dx (10)

Fig. 3. Numerically calculated (a) nonlinear coefficient and (b) dynamic
range as a function of the compensation voltage. The nonlinear coefficient α

is the sum of αm and αe .

B. Numerical Solution

In this work, the MLA is defined as the point before
the onset of nonlinearity [7] and is determined within a
2% linearity error margin with respect to the frequency
backbone.

In the resonant accelerometer, the transduction gain of the
resonator displacement x depends only on the gain of the
Transimpedance Amplifier (TIA) as described in section III-A.
Thus, the theoretical DR of the resonator can be calculated
by the ratio between the maximum linear displacement of
the resonator and the thermal-mechanical displacement due to
noise. This thermal-mechanical displacement of the resonator
(at the middle of resonator, x = L/2) can be expressed as [29]:

xT N (ω) =

√
4kB T

(
ω0
mQ

)
√(

ω2 − ω2
0
)2

+

(
ωω0

Q

)2
(11)

where kB is the Boltzmann constant, T is the temperature, ω0
represents the eigen-frequency of the resonator. Using Eq. (3)
and Eq. (11), the theoretical DR of the resonator can be
described as Eq. (12).

SDR = 20lg


√√√√ 8mπ3 f 3

0

3
√

3 kB T Q2

∣∣∣∣∣ 24k2
1

9k1k3 − 10k2
2

∣∣∣∣∣
 (12)

Following the methodology described in ref [23], we intro-
duce a mechanical (αm) and an electrostatic nonlinear
coefficient (αe) describing the shift of the frequency peak due
to spring hardening or softening, respectively. VC was swept
from 0 V to −30 V in increments of 0.01 V. It can be seen
that the total nonlinear coefficient (α = αm + αe) follows the
same trend as αe whereas αm remains constant [23]; this is
shown in Fig. 3(a).
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Fig. 4. Micrograph of the resonant accelerometer. (i) and (ii) are close-ups
of the resonator and comb fingers used to generate equivalent acceleration,
respectively.

It worth noting that the DR is correlated with 1/Q in
Eq. (12). However, the Q factor is also in the denominator
of Eq. (1), thus we require a high Q for better resolution
of the resonant accelerometer [4]. Therefore, the Q factor
was set as the highest value that was achievable in our
experimental setup (Q = 10846, section III-A). By substituting
Eq. (6) ∼ Eq. (10) into Eq. (12), the numerically calculated
results of Eq. (12) are shown in Fig. 3(b). The calculated
DR without compensation (VC = 0) is 93.8 dB, whereas the
highest DR is 132.6 dB for VC = −25.55 V.

III. EXPERIMENT AND DISCUSSION

A resonant accelerometer based on a double C-C beam,
as shown in the micrograph of Fig. 4, was chosen to validate
the theoretical predictions and investigate the potential of
increasing the SNR of the resonator by minimizing the total
nonlinearity. Also, an evaluation of the resonant accelerometer
performance (such as: scale factor, bandwidth, resolution)
is presented by operating the sensor at the aforementioned
operational points with various SNR.

A. Device and Experimental Setup

The device was fabricated using a Silicon-On-Insulator
(SOI) wafer with a 40 µm thick device layer, employing a
dicing-free process as described in [30]. Stoppers and release
holes were used to protect the proof mass during the release
process in hydrofluoric (HF) vapor. The size of the accelerom-
eter is 9 mm × 8 mm. The key parameters of the device are
listed in Table. I.

The experimental setup as shown in Fig. 5 follows the
previously described theoretical model. The proof mass and
substrate of the accelerometer were grounded to minimize
the parasitic capacitance. The mechanical damping constant
of the resonator can be adjusted by the applied bias voltage,
leading to the bias voltage dependence of the Q factor [31].
Therefore, a bias voltage Vdc = 12 V was applied at the
four electrodes to obtain the highest Q factor according to
the experimental observation. A variable compensation voltage
VC was applied using a DC power supply. To address the

TABLE I
KEY PARAMETERS OF THE RESONANT ACCELEROMETER

Fig. 5. Schematic of the measurement system showing one half of the setup
(the red line is a symmetry line). The TIA provides a gain of 10 M� @50 kHz
∼ 250 kHz. DC REG is the DC regulation module. PD is the phase detector,
OSC is the digital oscillator, DM is the demodulation module and LPF is the
low-pass filter. PLL is the Phase Locked Loop of the lock-in amplifier.

additional noise caused by fluctuations in the compensation
voltage, an active DC regulation module was incorporated into
the work. This module consists of a tunable precision voltage
reference (REF 102 BU) combined with a low-pass filter
(AD8620) and mitigates the primary noise associated with
the compensation voltage. The actual noise introduced by the
compensation voltage is therefore lower than the noise floor
of the circuit. To excite the resonator, an AC voltage vac was
applied using a lock-in amplifier (HFLI Zurich Instrument).
For measuring the dynamic response of the resonator, a TIA
was used to convert the motional current im into an output
voltage. Referring to Fig. 5, Rd and Cd are employed to
dissipate DC current and to decouple any AC current from the
motional current im , respectively. The resonant accelerometer
and the associated TIA circuitry (A single stage TIA is realized
using a commercial operational amplifier (ADA4817-1).) were
placed in a vacuum chamber maintained at an ambient pressure
of 1 Pa. Furthermore, a DC voltage, denoted as Vacc, was
applied to the comb fingers to emulate an equivalent accel-
eration. The proof mass is moved by the electrostatic force
exerted by the comb finger and generates an axial force to
the resonator through two amplification levers. This yields an
equivalent acceleration from −2 g to 2 g.

B. Dynamic Range of the Resonator

For carrying out comparative experiments of the DR of
the resonator for different operational modes, the operational
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Fig. 6. Measured amplitude-frequency response and phase-frequency response with different compensation voltage. (a) ∼ (e) shows the amplitude-frequency
response of the resonator, with compensation voltages VC of (a) −24.6 V, (b) −23.8 V, (c) −23.6 V, (d) −22.1 V and (e) 0 V, respectively. (f) ∼ (h) shows
the phase-frequency responses of the resonator. Similarly, VC was set to (f) −24.6 V, (g) −23.8 V, (h) −23.6 V, (i) −22.1 V and (j) 0 V, respectively. The
operational point NNA-e is in the mechanical nonlinear regime when vac is 28 mV.

points (i) ∼ (iii) (Fig. 1) are termed as MLA-e, NNA-e
and MLA-a for the subsequent measurements, respectively.
Measurements of the resonator amplitudes are shown in Fig. 6.
The black lines represent the MLA of the operational points
(MLA-a ∼ MLA-e) for vac set to 44 mV, 28 mV, 20 mV,
12 mV, and 4 mV, respectively.

1) Without Nonlinearity Compensation: As the total nonlin-
ear coefficient α (equal to αm in this case) is positive without
compensation voltage (VC = 0 V), it manifests itself as spring
hardening. The maximum linear amplitude is 42.3 mV (using
the gain of the TIA) and the DR is 93.7 dB; see Fig. 6(e).
The eigen-frequency increases as vac increases monotonically
from 10 µV to 80 mV. The phase-frequency response exhibits
a steep variation, as shown in Fig. 6(j). The phase at the
eigen-frequency peak (MLA-e) ranges from −110◦ to −101◦

as vac increases uniformly from 1 mV to 44 mV. It is also
worth noting that the amplitude of vout , shown as a spectrum
density using a Fast-Fourier-Transform (FFT) performed by
the Lock-in amplifier, exhibits saturation as vac increases: this
is shown in Fig. 7.

2) With Nonlinearity Compensation: On the contrary, the
electrostatic nonlinearity leads to a negative or spring softening
effect, since the mechanical nonlinearity effect is compensated
by the electrostatic nonlinearity effect. The eigen-frequency
of the resonator thus decreases in the nonlinear regime.
To be specific, the nonlinear coefficient α at point MLA-a

Fig. 7. Measured FFT of the output voltage without VC and with
VC = −24.6 V. The bandwidth of the low-pass filter was 100 Hz.

is approximately 2.2% of point MLA-e. The reduction of
the nonlinear coefficient significantly improves the MLA of
the resonator. By gradually tuning VC from −22.1 V to
−24.6 V, the measured DR is considerably improved from
93.7 dB to 110.1 dB as depicted in Fig. 6(a). Meanwhile,
the thermal-mechanical noise level remains approximately
constant. The phase-frequency response exhibits a smooth
variation, as shown in Fig. 6(f) to Fig. 6(i). The phase at the
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Fig. 8. Measured open-loop static scale factor of the accelerometer based on
equivalent acceleration. (a) and (b) are scale factors of MLA-e and NNA-e in
Fig 6(e), respectively. (c) is the scale factor of MLA-a with VC = −24.6 V
in Fig 6(a).

eigen-frequency peak (MLA-a) ranges from −110◦ to −108◦

as vac increases uniformly from 1 mV to 44 mV. Typically,
such a smooth frequency variation is advantageous for phase
control in closed-loop operation. The spectral density of the
output signal at the MLA points remains approximately linear
with an increase of vac, as shown in Fig. 7. The white region
is considered as the linear operational range whereas the grey
region is considered the nonlinear regime.

Although the measured DR follows a similar trend with
the compensation voltage, as shown in the theoretical DR
from 0 V to −25.55 V in Fig. 3, the measured maximum DR
was 110.1 dB which was 22.5 dB lower than the theorectically
calculated DR of 132.6 dB. This is attributed to nonideal
effects such as fabrications tolerances. Specifically, the fab-
rication tolerances degrade the symmetry of the resonator due
to non-vertical etching profiles and sidewall roughness. This
increases the mechanical nonlinear effects of the resonator.
Consequently, the measured MLA is lower than the ideal
MLA.

C. Scale Factor of the Accelerometer

The open-loop static scale factor of the accelerometer at the
different operational points of the resonator was measured by
sweeping the voltage to emulate equivalent acceleration from
−2 g to 2 g. Without VC , the measured scale factor of the
accelerometer was 936 Hz/g (MLA-e) with a linearity within
2%. In contrast, by operating the accelerometer at MLA-a
(for VC = −24.6 V), the negative or spring softening effect
leads to a small decrease of 1.5% in the frequency sensitivity
of the resonator. In this case, the static scale factor of the
accelerometer was 921 Hz/g, as shown in Fig. 8(c).

The dynamic scale factor of the accelerometer is not con-
stant but will change with the frequency of the acceleration,
which leads to bandwidth limitations. To obtain the detection
limit of the accelerometer, closed-loop measurements are
mandatory. The bandwidth of the accelerometer is obtained
by taking the −3 dB scale factor drop as the cutoff frequency.
In closed-loop configuration, a PLL was used to lock the

Fig. 9. Measured normalized dynamic scale factor by sweeping the frequency
of input acceleration.

TABLE II
COMPARISON OF THE METRICS ON THE RESONANT ACCELEROMETER

resonator at different operational points. Then, a square wave
signal is applied to the proof mass through the comb fingers
to emulate a dynamic acceleration from 0.1 Hz to 200 Hz.
As shown in Fig. 9, the dynamic scale factor of the accelerom-
eter operating at point MLA-e exhibits a similar frequency
dependency and thus bandwidth compared to point MLA-a
(approximately 50 Hz). In sharp contrast, the normalized scale
factor drops below 10 Hz when the accelerometer operates at
NNA-e. This phenomenon may be attributed to asymmetric
oscillations within the mechanical nonlinear regime and needs
to be further investigated.

D. Signal-to-Noise Ratio and Resolution

Similar to the bandwidth measurement, stability measure-
ments of the accelerometer were carried out in closed-loop
configuration. An approximation of the SNR of the resonator
can be obtained by rearranging Eq. (1):

SSNR ≈
1

2Q
ω0

1ω
(13)

From measurements, 1ω/ω0 was extracted from the Allan
Deviation of the output at 1-second integration time. The Q
factor of the resonator was 10846, determined using the ring-
down method. Due to a lower frequency stability, the SNR
without compensation voltage declines with vac, as depicted
in Fig. 10. A decrease of frequency stability has also been
observed in previous work [15]. In contrast, the SNR of point
MLA-a shows an increase from 55.9 dB (for vac 4 mV, result-
ing in the MLA without compensation voltage), to 68.7 dB for
a vac of 44 mV (resulting in the MLA with VC =-24.6 V.)
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Fig. 10. SNR of the resonator using Eq. (13) based on measured results
without VC and with VC = −24.6 V as a function of vac .

Fig. 11. Measured resolution of the accelerometer in a vacuum environment.
(a) Allan Deviation comparison for different operational points. (b) Power
Spectrum Density comparison for different operational points.

In principle, the SNR could be further extended by weak-
ening the intrinsic mechanical nonlinear coefficient when
vac > 44 mV. However, the SNR shows a steep decline for
vac > 44 mV. This is due to the fact that the DR of the
resonator is reduced as nonlinear effects reduce the MLA (see
Fig. 6(a)) [18]. Within this study, the nonlinearity compen-
sation method introduced by ke3 is restricted to levels below
44 mV for vac. Thus, the threshold for extending SNR using
nonlinearity compensation method is delineated within 11-fold
vac without compensation.

The resolution of the accelerometer was measured in a vac-
uum chamber. Fig. 11 shows the bias instability (derived from
the Allan Deviation) and the noise floor for the accelerometer
operating at NNA-e, MLA-a and MLA-e; for point MLA-e
was 6.4 µg@1.5 s and 4.8 µg/

√
Hz@1 ∼ 5 Hz, respectively.

Ambient vibrations were inevitable, as evident from the PSD
shown in Fig. 11(b). It can be seen that the bias instability
and the noise floor of the accelerometer operating at MLA-a

were significantly improved. The optimal bias instability was
1.4 µg@0.3 s and the noise floor was 0.88 µg/

√
Hz@1∼5 Hz.

Table. II summarizes the main metrics of the accelerometer
operating at points MLA-a and MLA-e, respectively.

IV. CONCLUSION

In conclusion, this work shows that the SNR of the resonator
can be enhanced by reducing the A-f effect of the resonator.
As a proof of concept, the resolution of a resonant accelerome-
ter is increased by extending the SNR of the resonator without
compromising the sensor bandwidth. However, the threshold
for SNR extension remains restricted by the inherent Duffing
limitation of the resonator [32]. Hence, further research aimed
at optimizing the nonlinearity compensation approach will be
carried out to increase this threshold.
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