
 

Network Diffusion Framework to Simulate Spreading
Processes in Complex Networks

Michał Czuba*, Mateusz Nurek, Damian Serwata, Yu-Xuan Qiu, Mingshan Jia, Katarzyna Musial,
Radosław Michalski, and Piotr Bródka

Abstract: With  the  advancement  of  computational  network  science,  its  research  scope  has  significantly

expanded  beyond  static  graphs  to  encompass  more  complex  structures.  The  introduction  of  streaming,

temporal,  multilayer,  and  hypernetwork  approaches  has  brought  new  possibilities  and  imposed  additional

requirements. For instance, by utilising these advancements, one can model structures such as social networks

in  a  much  more  refined  manner,  which  is  particularly  relevant  in  simulations  of  the  spreading  processes.

Unfortunately, the pace of advancement is often too rapid for existing computational packages to keep up with

the  functionality  updates.  This  results  in  a  significant  proliferation  of  tools  used  by  researchers  and,

consequently,  a  lack  of  a  universally  accepted  technological  stack  that  would  standardise  experimental

methods  (as  seen,  e.g.,  in  machine  learning).  This  article  addresses  that  issue  by  presenting  an  extended

version of  the Network  Diffusion library.  First,  a  survey of  the existing  approaches and toolkits  for  simulating

spreading phenomena is shown, and then, an overview of the framework functionalities. Finally, we report four

case studies conducted with the package to demonstrate its usefulness: the impact of sanitary measures on the

spread  of  COVID-19,  the  comparison  of  information  diffusion  on  two  temporal  network  models,  and  the

effectiveness  of  seed  selection  methods  in  the  task  of  influence  maximisation  in  multilayer  networks.  We

conclude  the  paper  with  a  critical  assessment  of  the  library  and  the  outline  of  still  awaiting  challenges  to

standardise research environments in computational network science.

Key words:  computational  framework; seed  selection; influence  maximisation; spreading  models; temporal

networks; multilayer networks; network science; network control

1　Introduction

With the rapid growth of data generated by humankind
in recent decades, the issue of their efficient processing
becomes  one  of  the  main  challenges  that  need  to  be
addressed  to  boost  experimental  sciences.  That

especially  concerns  irregular  structures,  like  graphs,
that  are much harder to enclose in robust  frameworks,
such as images, audio, or text. Computational network
science[1],  the  primary  discipline  focusing  on
applications  of  graphs,  has  developed  many  tools  that 

   Michał Czuba, Mateusz Nurek, Damian Serwata, Radosław Michalski, and Piotr Bródka are with Department of Artificial Intelligence,
Wrocław  University  of  Science  and  Technology,  Wrocław  50-370,  Poland. E-mail: michal.czuba@pwr.edu.pl; mateusz.
nurek@pwr.edu.pl; damian.serwata@pwr.edu.pl; radoslaw.michalski@pwr.edu.pl; piotr.brodka@pwr.edu.pl.

   Yu-Xuan Qiu, Mingshan Jia, and Katarzyna Musial are with Data Science Institute, University of Technology Sydney, Ultimo, NSW
2007, Australia. E-mail: yuxuan.qiu@uts.edu.au; mingshan.jia@uts.edu.au; katarzyna.musial-gabrys@uts.edu.au.

* To whom correspondence should be addressed.
    Manuscript received: 2023-10-01; revised: 2024-01-04; accepted: 2024-02-20 

BIG   DATA   MINING   AND    ANALYTICS
ISSN  2096-0654    06/25   pp637−654
DOI:  10.26599/BDMA.2024.9020010
Volume 7, Number 3, September  2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



facilitate  research-oriented  computations.  They  are
used  in  many  tasks,  like  epidemiology[2],  social
network  analysis[3],  recommendation  systems[4, 5] or
urban  planning[6],  to  name  just  a  few.  However,  the
variety  and  versatility  of  those  solutions  significantly
stand out from frameworks designed to deal with other
data modalities.

As  stands  in  Ref.  [7],  the  number  of  spreading
models and problems they tackle is overwhelming and
exceeds the abovementioned examples. One can add to
that various network models and forms of simultaneous
coexistence  of  many  processes[8].  When  these
phenomena  are  up  to  be  analysed,  researchers  must
first  design  and  perform  adequate  simulations.
Unfortunately, as demonstrated in our previous work[9],
there is a big proliferation of environments that can be
used  for  that.  Hence,  outcomes  of  such  research  are
often  presented  only  as  articles  without  proper  code
attached,  which  could  allow  reproducing  results  and
easily include proposed methods (e.g., a new centrality
measure,  spreading  model,  etc.)  in  following  research
conducted  by  another  organisation.  Although
challenges  related  to  the  standardisation  of
experimental  environments  and  results  reproducibility
have  been  addressed  a  long  time  ago  in  areas  of
computer  science,  like  computer  vision,  signal
processing,  or  machine learning,  they are  still  valid  in
network science.

This paper presents an enhanced version of Network
Diffusion, a framework originally designed to simulate
the  coexisting  spreading  processes  in  multilayer
networks[9].  Since publication, it  has been transformed
into a comprehensive library that allows the processing
of both temporal and multilayer networks with various

spreading  processes  on  top  of  them.  Though  the  tool
has  been  developed  during  various  research  activities
of  the  authors,  we  collect  developed  methods  and
models  (most  of  them  are  referenced  in Table  1)  into
one  consistent  entity.  To  the  best  of  our  knowledge,
there  is  no  such  library  providing  similar
functionalities.  Therefore,  this  framework  can  be
considered  as  complementary  to  other  available
solutions.  We  can  summarize  a  contribution  brought
with  this  paper  as  an  introduction  of  a  research
environment  for  simulating  spreading  processes  in
complex  networks  to  promote  open  science  and
research  reproducibility.  Moreover,  with  the
framework,  we  tackle  and  solve  (in  a  minimal  way)
still  valid  problems  from  a  domain  of  influence
maximisation, epidemiology, and network modelling.

The  outline  of  the  article  is  the  following.  First,  we
present  a  review  of  existing  solutions  tackling  given
problems (Section 2), then the general outline of library
functionalities (Section 3). In Section 4, we show four
use  cases  of  experiments  conducted  with  the  package.
After  that,  in  Section  5,  we  describe  a  study  of  the
computational  efficiency  of  Network  Diffusion.  The
paper  is  summarized  in  Section  6.  For  the  reader’s
convenience, we attach a table with abbreviations used
in the article (Table 1).

2　Existing Tools

In  this  section,  we  would  like  to  briefly  introduce
existing  tools  and  software  packages  with
functionalities  similar  to  the  Network  Diffusion
package.  The  detailed  list  and  comparison  are  already
available[9]. Here, we would like to focus on tools that
can be used for research on various spreading processes

 

Table 1    Abbreviations used in the paper.
Abbreviation Abbreviation expansion Note

SIS Suspected-Infected-Suspected A basic epidemiological spreading model[10]

SIR Suspected-Infected-Removed A basic epidemiological spreading model[10]

LTM Linear Threshold Model A spreading model in the sense as in Refs. [11, 12] with
extension to multilayer networks as in Ref. [13]

ICM Independent Cascade Model A spreading model in the sense as in Ref. [12], with extension to
multilayer networks similarly to Ref. [13]

SIR-UA Suspected-Infected Removed and Unaware-Aware Two coexisting spreading models in the sense as in Refs. [8, 9]

NEM Network Epistemology Model A spreading model in the sense as in Ref. [14], with extension to
temporal networks as in Ref. [15]

MDS Minimal Dominating Set A set of network’s nodes allowing to control its entire structure
according to Refs. [16, 17]

CogSNet Cognition-driven Social Network A temporal network model according to Ref. [18]

    638 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



in multilayer and temporal networks.

2.1　GLEaMviz

The first application with functionalities corresponding
to  the  designed  software  is  a  GLEaMviz[19].  It  works
with  real  data,  population  density,  and  migration
around the world, combined with stochastic models of
disease  propagation.  As  a  result,  it  provides  a
sophisticated simulation environment. Due to the large
scale  of  the  experiments  (the  whole  world),  a  single
node  is  a  population  of  a  given  size  (defined  by  the
user).  A  very  interesting  feature  is  the  manual
definition  of  the  epidemiological  model.  GLEaMviz
makes this possible by manipulating the compartments.
Allowable  transitions  between  them  are  also  fully
definable.  Users  are  also  able  to  choose  the
geographical  origin  of  the  disease,  specify  the  initial
proportions  of  individuals  in  each  compartment,
determine  its  duration,  and  more.  There  is  also  an
option  to  generate  various  visualisations  at  the  end  of
the  experiment.  Despite  the  interesting  functionalities
mentioned above, GLEaMviz has a few disadvantages:
it  is  limited  to  disease  spreading,  only  allows  the
propagation  of  one  process  at  a  time,  and  does  not
support multilayer and temporal networks.

2.2　NDlib

Network  Diffusion  library  (NDlib)[20] is  a  Python
package  based  on  the  NetworkX  library.  It  allows
performing  simulations  with  many  predefined
epidemiological  (such  as  SIS,  SIR,  etc.),  influence
spread (LTM, ICM, Profile, etc.), or opinion formation
(Voter,  Sznajd,  etc.)  models,  and  even  dynamics
(models  with  the  capacity  to  change  the  topology  of
network).  Moreover,  the  user  can  create  its  own
customised  models.  Results  visualisation  is  also
possible via Matplotlib or Bokeh with the flexibility to
append  a  custom  graphical  engine.  NDlib  also  has
some interesting run-time features. First, it includes an
option to perform a “multi-execution” of the simulation
by  parallel  computing.  As  this  kind  of  experiment  is
generally  stochastic,  this  feature  gives  a  chance to  see
the  general  behaviour  of  the  observed  phenomena.  It
also enables running the simulation on a server (as well
as  locally).  For  users  being  unfamiliar  with  Python,
NDlib’s  authors  created  NDQL,  a  query  language
(based  on  SQL  syntax)  that  supports  elementary
commands  of  the  library.  For  those  who  cannot
programme,  they  also  provided  a “visualisation

framework” to  play  with  some  of  the  models
implemented with a graphical user interface-based tool.
NDlib  is  a  very  useful  library  with  many  features.
However,  it  does  not  directly  support  experiments
where  multiple  spreading  processes  interact  with  each
other, as well as experiments on temporal networks.

2.3　SimInf

The next tool is SimInf — a framework for data-driven
stochastic disease spread simulations[21],  a package for
R  language.  This  tool  allows  a  user  to  define  custom
spreading  models  that  are  executed  following  a
principle  of  continuous-time  Markov  chains  and  the
Gillespie stochastic simulation algorithm. Interestingly,
no  network  is  needed  to  run  the  simulation,  as  the
algorithms  work  on  the  assumption  of  homogeneous
mixing and additional data,  such as births,  deaths, and
population movements at predefined time points. After
a  successful  simulation,  it  is  possible  to  display  a
summary  graph.  Nevertheless,  we  must  note  that  no
support for operations on real, multilayer, and temporal
networks,  as  well  as  the  lack  of  an  option  to  define
interacting processes, are its distinct shortcomings.

2.4　Sispread

Sispread[22] is  a  simple  application  implemented  in  C
language.  It  is  a  console  tool  without  a  graphical
interface. It focuses on epidemic models (SI, SIS, SIR)
with  the  possibility  of  deep  analysis  of  the  performed
experiments.  This  tool  supports  very  basic  IO
operations — the  user  can  upload  a  custom  network
that  meets  certain  requirements  (without  the  option  to
manipulate  it),  or  generate  it  using  one  of  three
available  models:  Barabási-Albert,  Erdös-Renyi,  or
Kleinberg.  As  a  result  of  the  experiment,  numerical
data  are  returned  for  further  analysis.  Similarly  to
previous  packages,  it  does  not  support  multiple
spreading processes,  as  well  as  multilayer  or  temporal
networks.

2.5　STEM

Another  tool  is  Spatio-Temporal  Epidemiological
Modeler  (STEM)[23].  As  an  extension  of  the  Eclipse
development  environment,  it  uses  its  graphical  layout
and  the  general  philosophy  of  user  interaction.  It
requires  the  user  to  specify  a  medium  where  the
simulation  is  performed  with  its  discretisation  level
(i.e.,  whether  the  node  is  a  municipality  or  an  entire
county). The next step is to attach an appropriate solver

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 639

 



propagation  model  and  set  the  starting  parameters  of
the  experiment.  Once  this  is  done,  it  is  possible  to
visualize  the  spread  progress.  In  addition  to  the
extensive  user  interface,  there  is  an  option  to  run
simulations  in  headless  mode,  accessible  from  the
terminal. This software also allows for simulating (to a
limited  extent)  the  propagation  of  coexisting
phenomena, such as vaccine vs. disease. However, this
package is primarily designed for epidemiologists, and
all  of  its  functionalities  are  related  to  this  subject.
Therefore,  like  other  tools,  it  does  not  support
spreading in multilayer or temporal networks.

2.6　EpiModel

EpiModel[24] is  an  R  tool  for  simulating  infectious
disease  dynamics.  It  contains  deterministic
compartmental  models,  stochastic  individual-contact
models,  and  stochastic  network  models.  Network
models  use  the  robust  statistical  methods  of
Exponential-family  Random Graph  Models  (ERGMs).
As  a  standard,  it  includes  SI,  SIS,  and  SIR  models.
EpiModel  does  not  directly  support  real  networks  (it
focuses  on  generated  ones)  and  multiple  processes
spreading at the same time. It also focuses on epidemic
models.  Unlike  previously  described  tools,  thanks  to
the  application  of  ERGMs,  it  partially  supports
multilayer and temporal networks.

2.7　Summary

Based on our review of existing tools, we can conclude
that,  to  the  best  of  our  knowledge,  none  of  them
supports  multiple  processes  at  the  same  time  (like
information  and  disinformation,  virus  and  information
about the virus, or multiple diseases), and most of them
do not support multilayer and temporal networks. That
is  why  we  focus  on  these  functionalities  in  Section  4,
where we present a few examples of experiments using
the Network Diffusion library.

3　Feature Overview

After  a  thorough  review  of  the  available  conclusions
from Section 2 are a principal motivation for investing
time  and  human  resources  in  developing  the  Network
Diffusion  package.  In  formulating  its  design,  we
operate under the following four premises:

(1) Compatibility with other tools commonly used in
the domain of data science;

(2)  Development  of  a  tool  in  the  form  of  a

framework as  opposed to  a  library  comprising  loosely
connected code fragments;

(3)  Supporting  both  multilayer  and  temporal
networks; and

(4) Supporting spreading models with discrete states.
By  releasing  a  Python-based  tool,  we  naturally

facilitate access to the entire ecosystem associated with
that  language.  Primarily,  we  maintain  compatibility
with  the  widely-used  graph  processing  package,
NetworkX,  which  is  the  backbone  of  Network
Diffusion.  It  is  good  to  note,  that  some  parts  of  the
library are implemented in C language — that allows to
speed up computations with high computational cost.

The framework-oriented design approach enables the
straightforward  extension  of  the  tool  with  new
spreading  models.  That  is  important,  especially  in
research  on  social  influence,  misinformation,  or  viral
marketing,  where  nuanced  phenomena  require
modelling tailored to their unique nature. Furthermore,
this  approach  allows  for  incremental  project
advancement  (e.g.,  as  a  side  effect  of  in-depth
research).

As  outlined  in  Section  2,  only  a  few  tools  for
simulating  spreading  phenomena  operate  on  temporal
or  multilayer  networks,  despite  these  graph  models
offering  a  more  accurate  reflection  of  reality.  This
fundamental  disparity  leads  us  to  present  our  internal
research environment as a packaged solution. It is good
to  note  that  during  the  implementation  of  network
models, the library is enriched with centrality methods
tailored  to  these  specific  structures.  These  measures
can  be  efficiently  used  to  select  seed  nodes  for
diffusion processes.

The  assumption  regarding  the  discrete  nature  of
dissemination  models  undoubtedly  constitutes  a  tool
limitation. However, the authors have yet to encounter
the  need  to  use  a  different  class  of  models  in  their
research  so  far.  Therefore,  this  aspect,  being
unobjectionable, has been omitted.

While  describing  the  functionality,  it  is  worth
mentioning  the  experiment  scheme  facilitated  by  this
library.  The  process  entails  three  fundamental  steps:
defining the propagation model, specifying the network
upon which the model is executed, and determining the
simulation  parameters  (e.g.,  number  of  steps).  With
these  three  components  in  place,  experimenting
becomes feasible,  yielding precise data concerning the
network’s  state  at  each  simulation  step.  Section  4.1

    640 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



demonstrates  this  procedure  using  the  appropriate
modules  within  the  package,  employing  a  selected
research problem.

4　Experiments with Network Diffusion

This section presents four challenges from the domain
of  spreading  models,  which  are  tackled  using  the
Network  Diffusion  library.  Please  note  that  all
experiments described below are intended to meet two
goals.  Firstly,  various  functionalities  of  the  Network
Diffusion library are presented. Secondly, despite their
compactness,  they  are  big  enough  to  draw  particular
conclusions regarding issues like phenomena spreading
or network modelling. Regarding the above, we do not
provide a comparative analysis of the methods used —
this paper is not a place for that, and dwelling on such
details could disturb the article’s main message.

All  experiments  are  conducted  in  an  environment
based  on  Python  3.10  with  Network  Diffusion  0.13.0.
Though  simulations  are  executed  parallelly,  we  use
three computers for that. The first one, which serves in
problems from Sections 4.1 and 4.3, has been installed
macOS 13 with M2 Pro CPU (arm64 architecture) and
32  GB  RAM.  The  second  one  is  used  in  experiments
from Section 4.2  and has  been installed  Ubuntu 20.04
with  Intel  Core  i7-6500U  (x86_64  architecture)  CPU
and 16 GB RAM. Simulations presented in Section 4.4
are  conducted  on  the  third  one  on  a  workstation  with
Windows  10  Pro  (22H2),  whose  hardware  consists  of
Intel  Core  i7-6820HQ (x86_64  architecture)  CPU and
32  GB  RAM.  It  is  good  to  note  that  we  provide  the
source  code  enabling  the  reproduction  of  all
experiments. It can be found in the repository available
on  GitHub  (https://github.com/anty-filidor/bdma-
experiments) with the instructions on how to run it.

4.1　Problem:  Simultaneous  spreading  of  disease
and awareness of the threat

α

β

In this Section, we demonstrate how to define a custom
spreading  model  using  pre-existing  library  interfaces
and  how  to  conduct  an  experiment.  Two  processes
(disease  and  awareness  of  its  existence)  interacting
with  each  other  will  serve  as  examples.  First,  the  SIR
epidemiological  model  with  parameters  specific  to
COVID-19[25], namely the infection rate coefficient ( )
and  recovery  rate  coefficient  ( ).  According  to  the
simulated  scenario,  the  second  phenomenon,  i.e.,
awareness  of  the  disease  Unaware-Aware  (UA),  is

supposed  to  reduce  the  infection  rate  among  agents
who  are  conscious  of  the  contagion.  Finally,  three
cases  are  considered:  minimising  social  interactions
(e.g.,  lockdowns),  wearing  masks,  and  the  absence  of
infection  countermeasures.  With  the  experiment,  we
will  determine  the  effectiveness  of  the  two  measures
mentioned above in combating the rise of the epidemic.
4.1.1　Problem formulation

SA −→ IA

α′

That  scenario  can  be  depicted  as  a  state  graph  with
transitions  between  states,  as  shown  in Fig.  1.  The
horizontal transitions occur within the disease context,
while  the  vertical  transitions  occur  within  the
awareness.  For  instance,  the  transition 
signifies  that  an  agent’s  state  change  from  suspected
and  aware  to  infected  and  aware  takes  place  with  a
probability of .

IU −→ RU
IA −→ RA β

α′ α

λ

It is important to note that the recovery rate does not
depend on  the  awareness  of  the  disease,  i.e., 
and  both have the same weight denoted as .
On  the  other  hand,  concerning  the  infection  rate,  we
have assumed that  will be a reduced value of  by a
factor  appropriate  to  the  simulated  scenario  (see
Table  2).  Thus,  for  lockdown,  we  set  infection  risk
reduction to 90% (λ = 0.1)[26], for wearing masks or 1m
social  distancing  to  65% (λ =  0.35)[27, 28],  and  for  no
countermeasures  applied  no  risk  reduction  will  take
place, hence λ = 1.

γ

In the case of the UA process, we assume that agents
initially  become  aware  of  the  disease  with  a  constant
and  low  probability .  However,  if  they  get  infected,
 

SU IU RU

SA IA RA

Contagion (SIR)

A
w

ar
en

es
s 

(U
A)

α β

α' β

γ δ γ

 
Fig. 1    Graph of states and transitions between them for the
spreading  model  of  two  processes:  contagion  (SIR)  and
awareness of its existence (UA). Each state is represented by
two  letters  indicating  the  state  of  both  processes,  e.g.,  IU
indicates  that  the  node  is  Infected  (I)  with  the  disease  and
Unaware  (U)  of  its  existence.  The  symbols  on  the  arrows
indicates the transition probability from one state to another
(for values please see Table 2).

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 641

 



70

this  value  increases  proportionally  to  the  presence  of
symptomatic  cases  in  the  population  observed  during
the  COVID-19  pandemic  ( % of  people  having
COVID-19  have  symptoms  of  the  disease)[29].
Transition  weights  between states  are  also  included in
Table 2.

IU −→ RU IA −→ RA

Another crucial  aspect is  the environment where the
processes  propagate.  In  this  case,  we  assume
propagation  occurs  in  a  multilayer  network  with  two
layers.  In  one  layer  (e.g.,  a  communication  network),
awareness  of  the  disease  spreads,  while  in  the  second
layer (e.g., a network of physical contacts), the disease
itself.  Agents  can  change  their  states  based  on
interactions with their neighbours, with the probability
of  adopting the neighbour’s  state  corresponding to the
transition  weight  according  to Fig.  1 and Table  2.  An
exception  is  the  transitions , ,  for
which  no  interaction  with  neighbouring  agents  is
needed for the transitions to occur.
4.1.2　Experiment setup
In  the  repository  attached  to  the  article,  within  the
script  utils/models.py,  we  have  included  the  source
code for the SIR_UAModel class, which represents the
implementation  of  the  problem  discussed  in  this
section.  It  also  demonstrates  how  to  extend  the
Network  Diffusion  library  with  custom  spreading
processes.  To  create  a  specific  model,  one  needs  to
extend the base class (which is network_diffusion.
models.BaseModel)  and  concrete  the  six  methods
accordingly.

The  constructor  (SIR_UAModel._init_ accepts
nine  parameters,  of  which  six  are  the  transition
weights,  and  the  remaining  two  are  the  initial
percentage  of  infected  agents  and  aware  agents.  The
class  utilises  the  transition  graph  introduced  in  our
previous  work[9],  which  helps  in  determining  the
potential state change of the evaluated agent during the
simulation.

The following method determines the initial  state  of

λ

the  network  before  the  start  of  the  simulation
(SIR_UAModel.determine_initial_states).
In  this  function,  seeds  are  chosen,  that  is,  the  infected
agents  and  aware  agents  from  which  the  process  will
propagate.  The  method  returns  a  list  of
NetworkUpdateBuffer structures,  which  contain
the  necessary  information  for  updating  the  network
state  (specifically,  the  agent’s  ID  and  states  in  each
layer). In this problem, we aim to determine the impact
of  on the number of infections. Therefore, seed nodes
are decided to be chosen randomly — that approach is
the  most  transparent  in  presented  circumstances.  It  is
good  to  add  that  we  will  select  initially  infected  and
aware actors independently, with budgets equal to 5%.

The  function SIR_UAModel.agent_evaluation_
step is  called  during  each  simulation  step  for  each
agent individually. It takes the agent’s ID, the ID of the
layer  for  which  the  evaluation  takes  place,  and  the
network  itself.  This  function  determines  the  state  the
agent  will  adopt  in  the  next  step  of  the  experiment.
That  is  done  by  reading  the  set  of  possible  states  the
agent  can  fall  in,  and  then  iteratively  attempting  to
adopt  the  neighbour’s  state  with  the  probability  as
depicted  in Fig.  1.  The  output  of  this  function  is  the
new state of an agent in the given network layer.

A function SIR_UAModel.network_evaluation_
step is responsible for evaluating the entire network in
a  single  experiment  step.  In  this  case,  it  involves
iterating  over  each  layer  and  each  agent  within  that
layer  to  determine  its  new  state  according  to  the
method (SIR_UAModel.agent_evaluation_step).
The output is a list of NetworkUpdateBuffer structures.

The  last  two  methods  are  needed  to  generate  the
experiment  report  while  using  this  model.  These  are
_str_, which provides a description of the model, and
get_allowed_states,  which  returns  the  textual
form of the graph presented in Fig. 1.

A  model  prepared  this  way  can  be  executed  on  a
given  two-layer  network  with  the network_

 

Table 2    Transition probabilities (or weights) and their interpretations in the SIR-UA model.
Symbol Formula/Value Description

α 0.19 Probability of infection for unaware agents

α′
λα;

λ ∈ {0.1,0.35,1} Probability of infection for aware agents

β 0.10 Probability of recovery

γ 0.01 Probability of awareness for uninfected agents

δ γ+1−0.3 Probability of awareness for infected agents

    642 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



diffusion.Simulator class※. By using the Simulator.
perform_propagation  method,  we  conduct  a
simulation that conceptually consists of eight steps† —
see Algorithm 1.
4.1.3　Results & discussion

λ

As  part  of  the  experiment,  we  utilize  three  types  of
networks:  AUCS  (a  real  graph  obtained  from
interactions  between  employees  of  Department  of
Computer  Science,  Aarhus  University,  Denmark),
Scale-Free,  and  Erdős-Rényi.  For  each  graph,  the
simulation  is  repeated  50  times,  and  the  obtained
results  are  averaged. Figures  2–4 depict  the  results  in
the  form of  infection and awareness  curves  within  the
population  for  each  evaluated  value.  It  can  be

observed  that  limiting  the  infection  rate  makes  sense
for every network type. Another conclusion is that the
network  structure  clearly  influences  the  course  of  the
processes. The highest percentage of infected agents at
a  given  time  is  observed  in  the  random  network,
accompanied  by  a  rapid  saturation  of  the  UA process.
We  can  observe  that  the  propagation  dynamics  are
significantly lower for the Scale-Free graph and AUCS
network, where degree distribution is not as uniform as
for  the  Erdős-Rényi  model.  Consequently,  the  number
of infected agents is lower as well.

4.2　Problem:  Linear  threshold  model  in  temporal
networks

4.2.1　Problem formulation
The  models  of  social  influence  consider  different
scenarios of the spread. In a binary-LTM that has been
introduced in Ref. [11], the adoption of a belief occurs
in a situation where a certain fraction of the neighbours
in an ego network of a node shares a new belief. In this
case,  contrary  to  the  stochastic-ICM,  we  can  consider
the  model  deterministic  and — given  that  only
unidirectional  change  is  possible — the  only  stop
condition of the model is when no future activations of
nodes are possible.

Typically, the LTM model is used in a static network
scenario,  where  the  set  of  nodes  and  edges  is  fixed.
However,  given  that  this  approach  is  simplistic
compared  to  real-world  networks[30],  it  is  worth

 

Algorithm 1　Simplified simulation procedure in Network
Diffusion library
1: procedure perform_propagation (network, model, epochs)

←2: 　states_0  model.determine_initial_states ( );
3: 　model.update_network (states_0)　　▷Predefined
　　function in the BaseModel class;

e [1, 2, . . . , epochs]4: 　for  in  do
←5: 　　　states_e  model.network_evaluation_step

　　　　(network);
6: 　　　model.update_network (network, states_e);
7: 　end for

logs ←8: 　   generate logs from experiment;
9: 　return logs;
10: end procedure

 

Infected (λ = 1.00)40

35

30

25

20

N
um

be
r o

f a
ge

nt
s

15

10

5

0

40

35

30

25

20

N
um

be
r o

f a
ge

nt
s

15

10

5

0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60 0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60

Infected (λ = 0.35)
Infected (λ = 0.10)

Aware (λ = 1.00)
Aware (λ = 0.35)
Aware (λ = 0.10)

 

λ = 0.10
λ = 0.35 λ =

Fig. 2    Infection  and  awareness  curves  for  spreading  of  SIR-UA  model  within  aucs-2  network  in  three  different  epidemic
regimes,  where  we  can  observe  how  different  prevention  measures  lockdown  (infection  risk  reduction  by  90% — ),
wearing masks or 1 m social distancing (risk reduction by 65% — ), and no measures (no risk reduction —  1.00)
affect the number of infected and aware individuals (agents) in the network. 
 

※ In the initial version of the package, it is called network_diffusion.MultiSpreading. 
 

† Simulation algorithm is described in a simplified form, and simulations in temporal networks are not covered by the pseudocode.

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 643

 



considering  the  relaxation  of  the  time  constraint  and
moving  the  problem of  seed  selection  to  time-varying
networks[31, 32].  Yet,  the  change  of  the  setting  to
temporal networks also requires an adequate choice of
a temporal network model, which can be considered as
a  problem by itself.  As  we already mentioned,  for  the
static  scenario  the  stop  condition  is  when  no  further
activation  of  nodes  is  possible.  Yet  it  is  worth
underlining that for the dynamic setting the activations
can  still  be  possible  due  to  the  network  dynamics,  so
here the process can evolve for longer.

The goal of this experiment is to answer the question
of  how the  network  dynamics  change  the  final  spread
of  the  LTM  compared  to  the  static  scenario.
Conceptually one can think of such an experiment in a
way  that  the  answer  to  this  question  will  allow  for

understanding  whether  there  is  a  speed-up  or  slow-
down of diffusion dynamics when the network evolves
over time[33].
4.2.2　Experiment setup
In the experiment on the spread of influence following
the  LTM  model,  the  CogSNet  model  will  be  used[18].
The  properties  of  this  model — contrary  to  snapshot-
based approaches — allow for continuous modelling of
temporal networks.  Here,  each event that  happens at  a
time  point  either  creates  an  edge  between  nodes
interacting  with  each  other  or  amplifies  it.  Next,  as
time passes,  the  weights  of  the  edges  decay over  time
and  in  case  of  no  forthcoming  events  lead  to  the
vanishing  of  edges.  Otherwise,  if  events  occur,  they
again  lead  to  an  increase  in  weight.  The  decaying
function  is  typically  a  power  or  exponential  function.

 

Infected (λ = 1.00)
N

um
be

r o
f a

ge
nt

s

N
um

be
r o

f a
ge

nt
s

5

100

100

200

300

400

500

600

150

200

250

300

350

0

0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60 0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60

Infected (λ = 0.35)
Infected (λ = 0.10)

Aware (λ = 1.00)
Aware (λ = 0.35)
Aware (λ = 0.10)

 

λ = 0.1
λ = 0.35 λ = 1

Fig. 3    Infection  and  awareness  curves  for  spreading  of  SIR-UA  model  within  sf-2  network  in  three  different  epidemic
regimes, where we can observe how different prevention measures lockdown ( ), wearing masks or 1 m social distancing
( ), and no measures ( ) affect the number of infected and aware individuals (agents) in the network.
 

N
um

be
r o

f a
ge

nt
s

N
um

be
r o

f a
ge

nt
s

100

0

200

300

400

500

600

600

800

1000

400

200

0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60 0 5 10 15 20 25 30
Number of epochs

35 40 45 50 55 60

Aware (λ = 1.00)
Aware (λ = 0.35)
Aware (λ = 0.10)

Infected (λ = 1.00)
Infected (λ = 0.35)
Infected (λ = 0.10)

 

λ = 0.1
λ = 0.35 λ = 1

Fig. 4    Infection  and  awareness  curves  for  spreading  of  SIR-UA  model  within  er-2  network  in  three  different  epidemic
regimes, where we can observe how different prevention measures lockdown ( ), wearing masks or 1 m social distancing
( ), and no measures ( ) affect the number of infected and aware individuals (agents) in the network.

    644 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



This  approach,  described  in  more  detail  in  Ref.  [18]
allows  for  fine-graded  modelling  contrary  to
incremental  or  snapshot-based  temporal  network
models.  However,  as  there is  no continuous variant  of
the  LTM  model  (the  closest  to  it  being  introduced  in
Ref.  [34]),  to  match  the  temporal  network  with  the
LTM,  we  will  be  matching  the  iterations  of  the
spreading model with intervals of time in the CogSNet
network.  The  stop  condition  for  the  LTM  is  when  no
further activations are possible and — for the temporal
case — the process is run for no later than the last edge
appeared.

γ µ

θ = 0.1
λ = 0.8

To  investigate  how  much  the  temporal  network
speeds  up  or  slows  down  the  spread  of  influence,  the
experimental setting is as follows. For experiments, we
use  the  dataset  on  email  exchange  in  manufacturing
company[35]. For the LTM, we focus on evaluating the
seeding  budget  and  the  threshold  for  node
activations.  For  the  seed  selection  strategy,  a  random
seed  selection  has  been  applied,  thus  the  experiments
are  repeated  100  times.  As  for  the  CogSNet  model
parameters,  based  on  the  work[18],  we  use  the
exponential  forgetting function, edge lifetime of seven
days,  edge  removal  threshold ,  and  forgetting
function  parameter ,  with  the  units  of  hours.
This  set  of  parameters  of  the  model  in  the
aforementioned  work  results  in  an  adequate  match  of
human  memory  imprints  and  ground  truth  data.  The
parameters  of  the  experiments  alongside  their
explanation are shown in Table 3.
4.2.3　Results & discussion
The results of the experiment depicted in Fig. 5 clearly
indicate that for the static networks — compared to the
temporal  one — for  combinations  of  high  seeding
budget  and  low  threshold,  a  static  network  is  easily
getting  penetrated  by  the  LTM  diffusion  process
reaching  almost  100% nodes  existing  in  the  network.
This  is  not  that  surprising  since  in  the  static  network
that  collapses  all  the  links,  there  are  more  paths  to
reaching  other  nodes.  Contrary  to  that,  in  the  same

regime  of  threshold  values  and  percentage  of  initially
activated nodes, the spread slows down in the temporal
network  built  upon  the  CogSNet  model.  That  can  be
caused  by  the  absence  of  some  potential  links  that  do
not  appear  in  the  later  stage  of  the  network  evolution
and that could not have been used for activation.

Yet, there is one interesting observation that one can
make  when  looking  at  the  combination  of  the  LTM
model  parameters  that  are  more  challenging  for  the
diffusion process (the central parts of Figs. 5a and 5b).
Here, the CogSNet-modelled temporal network leads to
a higher number of activations. It is due to the fact that

 

Table 3    Parameters used in the LTM in temporal networks
experiment.
Symbol Formula/Value Description
θ 0.1 Edge removal threshold
λ 0.8 Forgetting function parameter

µ µ ∈ {0.05,0.1,
0.15,0.2,0.25,0.5}

Threshold of influence for
LTM model

γ γ ∈ {1,5,15,25,50} Seeding budget (in %)

 

0.05
0.8

0.6

Fi
na

l f
ra

ct
io

n 
of

 a
ffe

ct
ed

 n
od

es

0.4

0.2

0.24 0.91 0.93

(a) Static

(b) Temporal

0.94 0.96

0.02 0.11 0.92 0.94 0.96

0.01 0.06 0.34 0.91 0.96

0.01 0.06 0.17 0.58 0.95

0.01 0.06 0.16 0.27 0.95

0.01 0.06 0.16 0.27 0.52

0.10

0.15

Th
re

sh
ol

d 
of

 in
flu

en
ce

 μ

0.20

0.25

0.50

1 5 15
Seeding budget value γ (%)

25 50

0.8

0.6

Fi
na

l f
ra

ct
io

n 
of

 a
ffe

ct
ed

 n
od

es

0.4

0.2

0.05 0.02 0.27 0.81 0.90 0.95

0.03 0.11 0.42 0.72 0.94

0.03 0.08 0.32 0.62 0.93

0.01 0.12 0.26 0.45 0.88

0.02 0.06 0.27 0.48 0.81

0.01 0.05 0.15 0.25 0.50

0.10

0.15

Th
re

sh
ol

d 
of

 in
flu

en
ce

 μ

0.20

0.25

0.50

1 5 15
Seeding budget value γ (%)

25 50

 

γ

µ

Fig. 5    Comparison  of  a  final  spread  as  a  percentage  of
activated  nodes  for  the  LTM  model  of  social  influence  for
two  settings:  the  temporal  network  based  on  the  CogSNet
model  and  the  aggregated  static  network  for  the  e-mail
exchange  data  in  a  manufacturing  company.  The  evaluated
parameters  are  the  seeding  budget  ( )  and  the  LTM
threshold ( ).

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 645

 



there  are  fewer  links  in  the  ego  networks  of  activated
nodes that had to be activated to change the state of the
node. This means that the lower density of the network
results in a higher number of activations in this regime.
Finally,  both  approaches  perform equally  badly  in  the
most difficult scenario (left sides of Figs. 5a and 5b).

4.3　Problem:  Multilayer  independent  cascade
model  initialised  with  minimum  dominating
set

4.3.1　Problem formulation
The  influence  maximisation  problem  is  well-known
because  of  the  work  of  Ref.  [12]  and  adopts  various
forms[7]. Studies have shown that the ultimate diffusion
effectiveness  depends  not  only  on  the  spreading
process  itself  and  its  parameters  but  also  significantly
on  the  network  structure[36–38].  In  general,  ranking
methods  for  selecting  seed  nodes  can  be  categorised
into  three  groups:  local,  semi-local,  and  global[39],
differing in the scope of the network needed to analyze
to determine the metric’s value for a given node. Each
of  these  classes  varies  in  the  trade-off  between
accuracy  and  computational  complexity.  Therefore,
research teams often have to accept  lower accuracy in
identifying  super-spreaders  to  obtain  results  within  a
reasonable  time  on  large  networks.  Occasionally,  one
can  leverage  additional  features  to  select  the  seed  set,
e.g.,  node  labels,  which  are  often  available  when
analyzing  data  derived  from  social  networks,  as
exemplified in  Ref.  [40].  However,  some studies  have
shown that it is possible to determine (by analyzing the
network’s  structure)  whether  computationally
expensive  methods  can  surpass  basic  algorithms,  such
as degree centrality[41].

Maximising influence problem has long transcended
the classical defined graphs as a set of nodes and edges.
This  experiment  will  focus  on multilayer  networks[42].
By utilising the Network Diffusion framework, we will
conduct  a  study  to  determine  (in  a  minimal  extent)
whether  network  control  methods  are  suitable  for
selecting initial nodes for propagation in graphs of this
type. In order to build new seed selection strategies for
the  spreading  processes  in  networks,  we  adopt  the
concept  of  driver  nodes  from  the  control  theory.  To
control  a  system,  one  needs  first  to  identify  the
minimum set of nodes (called driver nodes) that, when
driven  by  distinct  signals,  can  offer  full  control  over
the  network.  We  argue  that  network  spreading
processes  can  be  viewed  as  a  soft  version  of  control,

where  control  diffuses  with  a  given  probability  of
following  certain  rule(s).  Thus,  the  intuition  is  that
using  driver  nodes  as  seed  nodes  can  result  in  a  more
efficient  spread  over  the  network,  and  indeed,  it  has
been successfully employed for classical graphs[17].

Networks  with  different  characteristics  feature
different  numbers  of  driver  nodes.  Once  the  driver
nodes are identified, various centrality measures can be
used to rank the driver nodes and use this final ranking
list  in  the  seed  selection  process.  Experiments  show
that when driver nodes are used as the basis to build the
ranking list, the spreading process is more effective and
efficient  when  compared  with  the  benchmarks.  The
first  study  that  employs  control-theoretic  approaches
for  seed  selection  utilises  the  Minimum  Dominating
Set  (MDS)  to  identify  a  candidate  set  of  driver
nodes[17].  This  method  has  been  incorporated  into  the
Network  Diffusion  framework  and  extended  to  work
with multilayer networks.

G D
G v G

D v
D

MDS is an optimisation approach that determines the
minimum  dominating  set  of  nodes  in  undirected
networks[16]. MDS is the smallest subset of nodes, such
that  every  node  of  a  network  either  belongs  to  this
subset  or  is  adjacent  to  at  least  one  node  in  this  set.
Formally, a dominating set of a graph  is a subset 
of  the  vertices  of ,  such  that  every  vertex  of  is
either in the set  or  has at least one neighbour that
is in .

Each  driver  node  (or  in  the  case  of  multilayer
network: actor) can control its associated nodes (actors)
independently,  and  each  non-driver  node  (actor)  is
controllable if it is at least adjacent to one driver node
(actor).  In  the  MDS  method,  each  node  can  exert
control over its immediate neighbours at the same time,
but  the  control  does  not  propagate  further.  The  driver
nodes  (actors)  are  chosen  based  on  a  minimal  set  of
nodes  (actors)  that  ensures  each  node  (actor)  in  the
network is either a driver node (actor) itself or directly
connected  to  one.  MDS  has  been  applied  in  various
contexts,  such  as  characterising  the  perturbation  of
disease genes in  the human regulatory network[44] and
identifying  control  variables  in  protein  interaction
networks[45].
4.3.2　Experiment setup
In order  to  demonstrate  the use of  driver  actors  as  the
seeds  in  the  spreading  process,  we  run  an  experiment
using AUCS[46] and Lazega[47] multilayer networks and
apply an ICM[12].

    646 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



OR
AND

In  the  ICM  we  start  by  activating  a  set  of  nodes
(seeds) which become active. Each active node (in the
case of  a  multilayer  network an actor)  has one chance
to  activate  each  of  its  neighbours.  It  succeeds  with
some probability, known as activation (or propagation)
probability.  After  one  iteration,  each  active  node
becomes  activated  and  cannot  activate  anyone
anymore.  At  this  point,  it  is  good  to  note  that  in  the
case  of  multilayer  networks  actors,  not  nodes,  are  the
subject of the diffusion (i.e., we care whether the actor
is  active or  not,  not  nodes that  just  represent  the actor
on the particular layers). Therefore, one needs to define
how to aggregate impulses from layers of the network
influencing  the  actor.  We  adopt  here  the  approach
proposed  originally  for  LTM  extended  for  multiplex
networks  (described  in  Ref.  [13])  called “protocol
functions” (or  strategies).  In  this  study,  we  use  two
extreme ones: ,  i.e.,  an actor gets activated when it
gets  activated  on  at  least  one  layer,  and ,  i.e.,  an
actor gets activated when it gets activated on all layers
it is represented in. It is good to add that between them,
there is an entire spectrum of all possible functions that
one can invent.

For  the  first  experiment,  we  use  an  activation
probability  of  10% and  AND  strategy.  We  test  two
different  values  of  the  seeding  budget,  i.e.,  5% and
10%.  To  show how the  MDS method  performs  in  the
context,  we  compare  it  with  seed  selection  strategies
based  on  Degree,  Betweenness[48],  Closeness[49],
VoteRank[50], and Berahmand’s centrality[51]. They are
adapted  to  work  with  multilayer  networks  as  follows:
Closeness,  Betweenness,  and  Berahmand’s  centrality,
which  are  computed  separately  in  each  layer  of  the
graph, and then final values for actors are obtained by

averaging  scores  from  each  layer.  We  modify
VoteRank  by  replacing  the  Degree  of  an  actor  with
neighbourhood  size[52].  Finally,  MDS  is  obtained  as  a
union  of  minimal  dominating  sets  calculated  on  each
layer of the network. We transform it into a ranking list
by  sorting  according  to  the  Degrees  of  actors.
Averaged  results  depicting  the  efficiency  of  all
evaluated methods can be found in Tables 4 and 5.

In  order  to  show  the  dynamics  of  the  spreading
process  triggered  by  actors  belonging  to  MDS (sorted
by degree centrality), we conduct a second simulation.
For  that,  we utilize  the AUCS network and multilayer
ICM,  with  a  10% seeding  budget,  50% activation
probability,  and  OR  strategy.  The  illustration  of  the
obtained results is depicted in Fig. 6.
4.3.3　Results & discussion
The  results  for  the  AND  strategy  show  that  the  MDS
method performs at a similar level as other methods on
the  two  selected  datasets  regardless  of  the  seeding
budget,  and  it  takes  a  similar  number  of  epochs  to
reach a stable state where no more new nodes are being
activated (Tables 4 and 5). However, it should be noted
that the parameters of the spreading model are used for
illustration purposes only. The optimal ones are shown
to  depend  on  the  network  structural  characteristics[17]

and  can  be  optimised  separately,  but  it  is  out  of  the
scope of this study.

The results of spreading in the AUCS network using
the  OR  strategy  are  shown  in Fig.  6.  In  each  of  the
layers,  the  number  of  activated  nodes  goes  through  a
phase  transition  between  epoch  one  and  two  resulting
in a sudden increase in the number of activated nodes.
This  shows  that  MDS  is  a  good  strategy  to  activate
many  nodes  early  in  the  spread  process.  Again,  used

 

Table 4    Average percentage of activated actors for multilayer ICM on AUCS network and average number of epochs needed
for the model to reach a stable state when the simulation is stopped. The results for each seed selection method are averaged
over 100 runs. The model is executed with 5% and 10% seeding budgets, 50% propagation probability, and AND strategy.

Seed selection
method

Seeding budget 5% Seeding budget 10%

±
Average activated

actors  std ±
Average number of

epochs  std ±
Average activated

actors  std ±
Average number of

epochs  std
Degree ±(11.64  3.17)% ±2.82  0.77 ±(20.90  2.66)% ±2.79  0.50

Betweenness ±(9.79  2.51)% ±2.54  0.68 ±(18.11  3.02)% ±2.76  0.55

Closeness ±(8.79  1.83)% ±2.33  0.60 ±(16.49  2.43)% ±2.46  0.54

VoteRank ±(10.98  3.90)% ±2.76  0.91 ±(20.30  3.81)% ±2.88  0.52
Berahmand’s

centrality ±(7.72  2.55)% ±2.10  0.84 ±(13.56  1.91)% ±2.38  0.58

MDS ±(12.31  3.15)% ±2.84  0.73 ±(19.46  3.84)% ±2.80  0.51

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 647

 



parameters  are  not  optimised  and  are  used  for
illustrative purposes.

4.4　Problem:  Network  epistemology  model  in
temporal networks

4.4.1　Problem formulation
NEM is an approach to the formalisation of  the social
learning  process,  focusing  on  belief  evolution  and
dissemination in the social  network.  Previous research
on  this  model  has  explored  various  aspects,  including
the impact of community structure[14], conformism, and
polarisation[53–56] on the effect of the learning process.
By  adapting  the  model  to  a  temporal  framework,  it
becomes better equipped to capture the ongoing social
network  dynamics,  aligning  it  more  closely  with  real-
world scenarios[15].

K
In  its  basic  configuration,  the  model  assumes  the

existence  of  a  set  of  agents  organised  within  a
temporal social network, each facing a bandit decision-
making  problem.  At  each  iteration  of  the  process,
agents  are  presented  with  a  choice  between  two
available  actions.  The  payoff  associated  with  the  first

A
0.5

B

A
ϵ

action  denoted  as ,  is  common  knowledge  and
remains  constant  at .  In  contrast,  the  payoff
associated  with  the  alternative  action  denoted  as ,
remains  unknown  to  agents  and  deviates  from  the
payoff  of  the  action  by  a  specified  value,  denoted
as .

0 1

B A

Each agent’s decision relies on their individual belief
level.  The  belief  assigned  to  each  agent  is  a  value
within the range of  to  interpreted as the probability
that the given agent associates with the proposition that
action  yields a superior payoff compared to action .

B

B N

0.5+ ϵ

Subsequent to their decision-making, agents who opt
for  action  engage  in  an  experimentation  phase,
collecting  evidence  related  to  their  actions.  They
execute  the  action  a  defined  number  of  times,
drawing  from  a  Bernoulli  distribution  with  a
probability of success equal to .

Following this experimentation phase, agents update
their  belief  levels  using  Bayes’ rule,  calculating
posterior  probabilities  based  on  their  prior  beliefs  and
the  evidence  they  have  accumulated.  This  updating
process  occurs  in  a  synchronous  manner  across  all

 

Table 5    Average percentage of activated actors for multilayer ICM on Lazega network and average number of epochs needed
for the model to reach a stable state when the simulation is stopped. The results for each seed selection method are averaged
over 100 runs. The model was executed with 5% and 10% seeding budgets, 50% propagation probability, and AND strategy.

Seed selection
method

Seeding budget 5% Seeding budget 10%

±
Average activated

actors  std ±
Average number of

epochs  std ±
Average activated

actors  std ±
Average number of

epochs  std
Degree ±(79.17  17.74)% ±6.01  0.99 ±(88.39  3.52)% ±4.37  0.52

Betweenness ±(78.03  15.53)% ±6.02  0.96 ±(89.32  3.40)% ±4.27  0.44
Closeness ±(78.55  13.07)% ±6.17  0.90 ±(89.10  3.35)% ±4.43  0.57
VoteRank ±(82.10  13.30)% ±5.84  0.90 ±(89.03  3.40)% ±4.44  0.50

Berahmand’s
centrality ±(83.10  11.92)% ±5.83  1.02 ±(89.13  3.19)% ±4.31  0.50

MDS ±(84.90  6.04)% ±5.77  0.85 ±(89.28  3.28)% ±4.28  0.45

 

60
50
40
30

N
um

be
r o

f n
od

es

20
10
0

0 1 2
Number of epochs

(a) Facebook

3 4

60
50
40
30

N
um

be
r o

f n
od

es

20
10
0

0 1 2
Number of epochs

(b) Lunch

3 4

60
50
40
30

N
um

be
r o

f n
od

es

20
10
0

0 1 2
Number of epochs

(c) Coauthor

3 4

60
50
40
30

N
um

be
r o

f n
od

es

20
10
0

0 1 2
Number of epochs

(d) Leisure

3 4

60

Inactive
Active
Activated

Inactive
Active
Activated

Inactive
Active
Activated

Inactive
Active
Activated

Inactive
Active
Activated 50

40
30

N
um

be
r o

f n
od

es

20
10
0

0 1 2
Number of epochs

(e) Work

3 4

 
Fig. 6    Dynamics of ICM spreading in each layer of the AUCS network. The model is executed using MDS (degree centrality)
as the seed selection method, with a 10% seeding budget, 50% propagation probability, and OR strategy. “Active” means that
the node is active and has the potential to activate its neighbours; “Activated” denotes the node that is active but does not have
the potential to activate its neighbours any more.

    648 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



agents  within  the  network.  The  simulation  proceeds
iteratively  through  each  snapshot  of  the  temporal
network.

In  the  following  experiment,  we  are  going  to
compare  the  diffusion  following  NEM  between  the
classical  static  approach  to  construct  the  underlying
network  topology  and  the  temporal  strategy  with  the
CogSNet  model[18].  One  can  notice  a  similarity  with
the  experiment  described  in  Section  4.2.  In  fact,  it
exists, but the spreading model used here is much more
complex  than  LTM.  Therefore,  the  results  between
them are certainly not redundant.
4.4.2　Experiment setup

ϵ N

Implementation  of  the  model  with  an  extension
allowing  to  run  it  in  the  temporal  setting  is  located
in TemporalNetworkEpistemologyModel class.
Apart  from  previously  discussed  seeding  properties,
construction  of  the  model  instance  requires  two
specific  parameters  described  in  the  brief  model
definition,  namely  denoted  as epsilon,  and 
denoted as trials_nr.

N
1
γ ϵ

A B

B

N = 1

As stated above, in the experiment, we use two types
of  networks:  static  and  dynamic.  Both  of  them  are
constructed  from  a  dataset  on  email  exchange  in
manufacturing  company[35].  The  number  of
experiments  that  agents  perform  each  iteration  is
equal  to .  We  test  different  values  of  the  seeding
budget  and  values  of ,  which  stands  for  the
difference between expected values of  and  actions.
For  both  cases,  we  use  the  random  seeding  method.
The value we compare between these configurations is
the final number of actors voting for superior action .
The snapshots constituting the temporal network in this
experiment are created with one day interval, resulting
in  55  long  sequences,  with  one  snapshot  for  each
following  day  of  the  underlying  data.  The  parameters
of  NEM  can  be  established  based  on  the  expert
knowledge  related  to  a  specific  sociological
phenomenon  or  by  a  direct  measurement  of  the
underlying social learning process characteristic. In this
example the fixed parameter  corresponds to one
decision  made  daily  by  each  agent  during  the
simulation  process.  The  configuration  of  CogSNet
parameters is based on the work in Ref. [18], in which
it is demonstrated to effectively match the ground truth
data  on  subjects  relations.  The  values  of  the
experiments’ outcomes  are  averaged  across  100
iterations to reduce the random effects. Table 6 outlines

the experiment parameters and their description.
4.4.3　Results & discussion

B

The  outcomes  of  the  experiment  are  shown  in Fig.  7.
The  measure  of  efficiency  of  the  explored
configurations  is  expressed  as  the  ratio  of  better, 

 

Table 6    Parameters  used  in  the  Network  Epistemology
Model in temporal networks experiment.
Symbol Formula/Value Description
θ 0.1 Edge removal threshold
λ 0.8 Forgetting function parameter

N 1
Number of experiments (trials)

performed by an agent per iteration

ϵ ϵ ∈ {0.005,0.01,
0.025,0.05,0.1} A B

Difference between expected values
of  and  actions

γ γ ∈ {1,5,15,25,50} Seeding budget (in %)

 

0.005 0.8

0.6

Fi
na

l f
ra

ct
io

n 
of

 B
 a

ct
io

n 
vo

te
rs

0.4

0.2

0.03 0.09 0.20

(a) Static

0.31 0.53

0.08 0.18 0.31 0.42 0.61

0.40 0.55 0.68 0.76 0.85

0.78 0.92 0.93 0.93 0.96

0.88 0.98 0.99 0.99 0.99

0.010

0.025

D
iff

er
en

ce
 b

et
w

ee
n 

ex
pe

ct
ed

 v
al

ue
s

of
 A

 a
nd

 B
 a

ct
io

ns
 ε

0.050

0.100

1 5 15
Seeding budget value γ (%)

25 50

0.8

0.6

Fi
na

l f
ra

ct
io

n 
of

 B
 a

ct
io

n 
vo

te
rs

0.4

0.2

0.005 0.02 0.08 0.19

(b) Temporal

0.29 0.51

0.06 0.14 0.28 0.39 0.58

0.26 0.45 0.60 0.67 0.80

0.73 0.87 0.89 0.92 0.94

0.85 0.98 0.98 0.98 0.99

0.010

0.025

D
iff

er
en

ce
 b

et
w

ee
n 

ex
pe

ct
ed

 v
al

ue
s

of
 A

 a
nd

 B
 a

ct
io

ns
 ε

0.050

0.100

1 5 15
Seeding budget value γ (%)

25 50

 
B

B

Fig. 7    Number  of  action  voters  at  the  end  of  the
spreading  process  compared  for  different  levels  of  problem
difficulty  and  various  initial  seeding  budgets,  that  in  this
experiment  corresponds  to  an  initial  number  of  voters.
The  process  outcomes  are  compared  for  two  different
approaches  for  network  topology  construction — a  static
network  and  a  temporal  network  built  using  the  CogSNet
method.

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 649

 



B

ϵ

0.025

action  voters  to  all  individuals.  The  observed  results
reveal a subtle difference between the two networks in
the effectiveness of  action propagation. On average,
in  the  temporal  network,  diffusion  for  each
configuration  reached  a  smaller  or  equal  range
compared  to  the  static  network.  The  most  noticeable
differences  are  in  the  test  configurations,  where  the 
value  was ,  where  propagation  in  the  static
network covers a few to several percentage points more
nodes.

4.5　Data used in experiments

As part of the experiments,  we utilize several types of
networks.  Their  basic  parameters  have  been  listed  in
Table 7. It is worth mentioning that the aucs-2 network
is  created  with “lunch” and “facebook” layers  to
simulate  the  SIR and  UA processes,  respectively.  The
er-2 and sf-2 graphs are created using the NetworkX[59]

library,  so  that  the  layer  responsible  for  disease
transmission  is  sparser  than  the  one  responsible  for
spreading  awareness  about  the  epidemic.
Implementation  details  can  be  found  in  the
accompanying repository.

5　Limitations & Performance Study

In Section 4 of the paper, we briefly discuss limitations
of the library and complement it with the performance
analysis.  Apart  from  the  package  functionalities
described  in  Section  3,  it  is  essential  to  address  its
constraints  critically.  They  primarily  stem  from  the
adopted  design  assumptions  and  the  relatively  small
size of the team involved in the implementation.

The most significant drawback of Network Diffusion
is  also  its  greatest  advantage — implementation  in
Python.  This  results  in  significantly  slower
performance  compared  to  if  it  had  been  coded  in
another compiled language. Although a part of the code
has  been  provided  in  C  language  and  is  accessible  as
bindings  to  Python,  we  cannot  adopt  this  approach  in

the  entire  project  due  to  the  small  team.  Another
package  limitation  is  its  support  solely  for  discrete
spreading  processes  (see  Section  3).  Though  the
framework is  designed more like a set  of  interfaces to
be used in the implementation of  custom experiments,
it  does  not  include  many  concrete  spreading  models
that  work “out  of  the  box”.  Comparing  that  to  NDlib,
which  consists  of  dozens  of  pre-defined  models,  one
can find that state to be a limitation. Finally, it is worth
noting  the  absence  of  a  user  interface,  which  may
prove impossible for individuals lacking programming
skills,  leaving  them  compelled  to  resort  to  tools  like
NetLogo[60].

In  order  to  assess  the  preformance  of  the  Network
Diffusion,  we  utilize  all  four  models  described  in  the
article.The domain chosen to express complexity is the
experiment duration as a function of the network size,
expressed  in  the  number  of  actors.  We  evaluate  the
following set of parameters:

● Number of simulation steps — 200 (regardless of
whether a stable state is achieved earlier or not);

●  Evaluation  is  performed  on  two-layer  multiplex
Erdős-Rényi  networks  with  an  edge  creation
probability of 0.1 and the number of actors from range
10 to 1000; and

● Each experiment is repeated 10 times.
The  results  are  presented  in Fig.  8.  As  can  be  seen,

the  most  computationally  expensive  models  are  NEM
and  LTM,  which  significantly  differ  from  ICM  and
SIR-UA.  It  is  also  worth  noting  that  the  computation
time is  stable — a  standard  deviation  (a  blurry  region
surrounding curves) is insignificant.

Considering  the  future  of  the  package,  we
undoubtedly  are  going  to  develop  and  maintain  it.
Having defined the framework, it is natural to enhance
its  contents  by  new  spreading  models  and  functions
regarding  both  temporal  and  multilayer  networks.  We
are  also  going  to  implement  machine  learning  based
methods  for  the  identification  of  the  most  influencing

 

Table 7    Networks used in experiments with their basic parameters shortlisted.
Name Number of layers Number of actors Number of nodes Number of edges Note

aucs 5 61 224 620 AUCS network[46]

aucs-2 2 60 120 317 AUCS network[46]

lazega 3 71 212 1659 Lazega Law Firm network[47]

er-2 2 1000 2000 27 451 Erdős-Rényi network[57]

sf-2 2 1000 2000 3357 Scale-free network[58]

manuf 1 151 151 20 000 E-mail exchange[35]

    650 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



actors.  Nonetheless,  there  is  another  path  that  is
especially interesting to us — matching the theoretical
spreading  model  to  the  observed  phenomena “in  the
wild”.  That  will  be  addressed  within  the  Network
Diffusion or at least with its support.

6　Conclusion

Developing  and  making  publicly  available
comprehensive  software  frameworks  that  support
replicability  and  dissemination  of  research  effort  is  a
key  and  very  much  required  component  of  scientific
enquiry.  In  order  to  support  the  research  community,
we  show  in  this  paper  an  extended  version  of  the
Network  Diffusion  framework.  Its  initial  concept  is
presented  in  Ref.  [9]  and  has  now  been  significantly
enriched  to  encompass  both  temporal  and  multilayer
networks,  as  well  as  various  methods  and  spreading
processes  that  can  propagate  over  different  types  of
graphs.

The models  covered in this  study include multilayer
networks  and  temporal  networks.  Additionally,  we
adopt  the  node  centrality  measures  for  multilayer
networks.  Spreading  models  covered  in  this  paper
include  SIR-UA,  temporal  LTM,  temporal  NEM,  and
multilayer  ICM.  Presented  spreading  models,  which
have  been  included  in  the  framework’s  extension,  are
accompanied  by  experiments  to  show  how  the  newly
developed parts of the library can be utilized. They also
show  the  interesting  future  direction  of  our  research
that we would like to investigate in the future fully.

As  discussed  above,  the  Network  Diffusion
framework  is  complementary  to  other  software
solutions  available  in  the  field  of  data  science.  We

believe  that  its  comprehensiveness  and  ease  of  use
make it accessible not only for computer scientists, but
also  for  researchers  from  other  domains  who  are
interested  in  understanding spread in  the  systems they
work on.

Authors Contribution

Conceptualization (Michał Czuba and Piotr Bródka), data
curation  (Michał  Czuba,  Yu-Xuan  Qiu,  Mateusz  Nurek,
and  Radosław  Michalski),  formal  analysis  (All),  funding
acquisition  (Piotr  Bródka  and  Radosław  Michalski),
investigation  (All),  methodology  (Michał  Czuba,  Piotr
Bródka,  Radosław  Michalski,  and  Katarzyna  Musial),
project  administration  (Michał  Czuba),  resources  (All),
software  (Michał  Czuba,  Damian  Serwata,  Mateusz
Nurek,  Mingshan  Jia,  and  Yu-Xuan  Qiu),  supervision
(Piotr  Bródka),  validation  (All),  visualisation  (Michał
Czuba,  Damian  Serwata,  Mateusz  Nurek,  Mingshan  Jia,
and Yu-Xuan Qiu),  writing – original draft  (All),  writing
– review & editing (Michał Czuba and Piotr Bródka).

Acknowledgment

This  research  was  partially  supported  by  the  National
Science  Centre,  Poland  (Nos.  2022/45/B/ST6/04145  and
2021/41/B/HS6/02798),  and  the  EU  under  the  Horizon
Europe  (No.101086321  OMINO).  Views  and  opinions
expressed are, however, those of the authors only and do
not  necessarily  reflect  those  of  the  National  Science
Centre, EU, or the European Research Executive Agency.

References 

 F. Menczer, S. Fortunato, and C. A. Davis, A First Course
in  Network  Science.  Cambridge,  UK: Cambridge
University Press, 2020.

[1]

 R. Pastor-Satorras and A. Vespignani, Epidemic spreading
in scale-free networks, Phys. Rev. Lett., vol. 86, no. 14, pp.
3200–3203, 2001.

[2]

 M.  Nurek,  R.  Michalski,  O.  Lizardo,  and  M.  A.  Rizoiu,
Predicting  relationship  labels  and  individual  personality
traits  from  telecommunication  history  in  social  networks
using  hawkes  processes, IEEE  Access,  vol. 11,  pp.
8492–8503, 2023.

[3]

 S. Forouzandeh, K. Berahmand, R. Sheikhpour, and Y. Li,
A  new  method  for  recommendation  based  on  embedding
spectral clustering in heterogeneous networks (RESCHet),
Expert Syst. Appl., vol. 231, p. 120699, 2023.

[4]

 M.  Rostami,  U.  Muhammad,  S.  Forouzandeh,  K.
Berahmand,  V.  Farrahi,  and  M.  Oussalah, An  effective
explainable  food  recommendation  using  deep  image
clustering  and  community  detection, Intell.  Syst.  Appl.,
vol. 16, p. 200157, 2022.

[5]

 

0
0

2000

4000

6000

8000

Ti
m

e 
(m

s)

10 000

12 000

14 000

200 400
Size of graph

600 800 1000

MLTModel

MICModel

TemporalNetworkEpistemologyModel

SIR_UAModel

 
Fig. 8    Complexity  of  spreading  models  used  in
experiments; evaluation is performed on two-layer multiplex
Erdős-Rényi networks.

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 651

 



 C.  Zhong,  S.  M.  Arisona,  X.  Huang,  M.  Batty,  and  G.
Schmitt, Detecting  the  dynamics  of  urban  structure
through  spatial  network  analysis, Int.  J.  Geogr.  Inf.  Sci.,
vol. 28, no. 11, pp. 2178–2199, 2014.

[6]

 S.  S.  Singh,  D.  Srivastva,  M.  Verma,  and  J.  Singh,
Influence  maximization  frameworks,  performance,
challenges and directions on social network: A theoretical
study, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no.
9, pp. 7570–7603, 2022.

[7]

 P.  Brodka,  K.  Musial,  and  J.  Jankowski, Interacting
spreading  processes  in  multilayer  networks: A systematic
review, IEEE Access, vol. 8, pp. 10316–10341, 2020.

[8]

 M. Czuba and P. Brodka, Simulating spreading of multiple
interacting processes in  complex networks,  in Proc.  2022
IEEE 9th Int.  Conf. Data Science and Advanced Analytics
(DSAA), Shenzhen, China, 2022, pp. 1–10.

[9]

 A.  L.  Barabási, Network  Science.  Cambridge,  UK:
Cambridge University Press, 2016.

[10]

 M. Granovetter, Threshold models  of  collective behavior,
Am J Sociol, vol. 83, no. 6, pp. 1420–1443, 1978.

[11]

 D.  Kempe,  J.  Kleinberg,  and  É.  Tardos,  Maximizing  the
spread of influence through a social  network, in Proc. 9th

ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, Washington, DC, USA, 2003, pp. 137–146.

[12]

 Y. D. Zhong, V. Srivastava, and N. E. Leonard, Influence
spread  in  the  heterogeneous  multiplex  linear  threshold
model, IEEE Trans. Control Netw. Syst., vol. 9, no. 3, pp.
1080–1091, 2022.

[13]

 K.  J.  S.  Zollman, The  communication  structure  of
epistemic  communities, Philos.  Sci.,  vol. 74,  no. 5,  pp.
574–587, 2007.

[14]

 R. Michalski, D. Serwata, M. Nurek, B. K. Szymanski, P.
Kazienko, and T. Jia, Temporal network epistemology: On
reaching consensus in a real-world setting, Chaos, vol. 32,
no. 6, p. 063135, 2022.

[15]

 J.  C.  Nacher  and  T.  Akutsu, Dominating  scale-free
networks  with  variable  scaling  exponent: Heterogeneous
networks are not difficult to control, New J. Phys., vol. 14,
no. 7, p. 073005, 2012.

[16]

 A.  Sadaf,  L.  Mathieson,  P.  Bródka,  and  K.  Musial,
Maximising  influence  spread  in  complex  networks  by
utilising  community-based  driver  nodes  as  seeds,  in
Information  Management  and  Big  Data,  J.  A.  Lossio-
Ventura,  J.  Valverde-Rebaza,  E.  Díaz,  and  H.  Alatrista-
Salas, eds. Lima, Peru: Springer, 2023, pp. 126–141.

[17]

 R.  Michalski,  B.  K.  Szymanski,  P.  Kazienko,  C.  Lebiere,
O.  Lizardo,  and M. Kulisiewicz, Social  networks through
the prism of cognition, Complexity, vol. 2021, p. 4963903,
2021.

[18]

 W.  Van  den  Broeck,  C.  Gioannini,  B.  Goncalves,  M.
Quaggiotto,  V.  Colizza,  and  A.  Vespignani, The
GLEaMviz  computational  tool,  a  publicly  available
software to explore realistic epidemic spreading scenarios
at  the global  scale, BMC Infect  Dis,  vol. 11,  no. 1,  p. 37,
2011.

[19]

 G. Rossetti, L. Milli, S. Rinzivillo, A. Sîrbu, D. Pedreschi,[20]

and  F.  Giannotti, NDlib: A  python  library  to  model  and
analyze diffusion processes over complex networks, Int. J.
Data Sci. Anal., vol. 5, no. 1, pp. 61–79, 2018.
 S.  Widgren,  P.  Bauer,  R.  Eriksson,  and  S.  Engblom,
SimInf: An  R  package  for  data-driven  stochastic  disease
spread  simulations, J.  Stat.  Softw.,  vol. 91,  no. 12,  pp.
1–42, 2019.

[21]

 F.  P.  Alvarez,  P.  Crépey,  M.  Barthélemy,  and  A.  J.
Valleron, Sispread: A  software  to  simulate  infectious
diseases  spreading  on  contact  networks, Methods  Inf.
Med., vol. 46, no. 1, pp. 19–26, 2007.

[22]

 J.  V.  Douglas,  S.  Bianco,  S.  Edlund,  T.  Engelhardt,  M.
Filter,  T.  Günther,  K.  Hu,  E.  J.  Nixon,  N.  L.  Sevilla,  A.
Swaid,  et  al., STEM: An  open  source  tool  for  disease
modeling, Health  Secur.,  vol. 17,  no. 4,  pp. 291–306,
2019.

[23]

 S. M. Jenness, S. M. Goodreau, and M. Morris, EpiModel:
An  R  package  for  mathematical  modeling  of  infectious
disease over networks, J. Stat. Softw., vol. 84, p. 8, 2018.

[24]

 A.  A.  Toda,  Susceptible-Infected-Recovered (SIR)
dynamics  of  COVID-19  and  economic  impact,  arXiv
preprint arXiv: 2003.11221, 2020.

[25]

 P.  Wątroba  and  P.  Bródka,  Influence  of  information
blocking  on  the  spread  of  virus  in  multilayer  networks,
Entropy, vol. 25, no. 2, p. 231, 2023.

[26]

 D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J.
Schunemann, Schunemann,  and  COVID-19  Systematic
Urgent  Review  Group  Effort (SURGE) study  authors,
physical  distancing,  face  masks,  and  eye  protection  to
prevent  person-to-person  transmission  of  SARS-CoV-2
and  COVID-19: A  systematic  review  and  meta-analysis,
Lancet, vol. 395, no. 10242, pp. 1973–1987, 2020.

[27]

 D. J. McGrail,  J.  Dai, K. M. McAndrews, and R. Kalluri,
Enacting  national  social  distancing  policies  corresponds
with dramatic reduction in COVID19 infection rates, PLoS
One, vol. 15, no. 7, p. e0236619, 2020.

[28]

 M. Alene,  L.  Yismaw, M. A.  Assemie,  D.  B.  Ketema,  B.
Mengist,  B.  Kassie,  and  T.  Y.  Birhan, Magnitude  of
asymptomatic  COVID-19  cases  throughout  the  course  of
infection: A  systematic  review  and  meta-analysis, PLoS
One, vol. 16, no. 3, p. e0249090, 2021.

[29]

 P.  Holme  and  J.  Saramaki, Temporal  networks, Phys.
Rep., vol. 519, no. 3, pp. 97–125, 2012.

[30]

 R.  Michalski,  T.  Kajdanowicz,  P.  Bródka,  and  P.
Kazienko, Seed selection for spread of influence in social
networks: Temporal  vs.  static  approach, New  Gener.
Comput., vol. 32, nos. 3&4, pp. 213–235, 2014.

[31]

 R.  Michalski  and  P.  Kazienko,  Maximizing  social
influence in real-world networks — the state of the art and
current  challenges,  in Propagation  Phenomena  in  Real
World  Networks,  D.  Król,  D.  Fay,  and  B.  Gabryś,  eds.
Cham, Switzerland: Springer, 2015, pp. 329–359.

[32]

 I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone,
and F. Schweitzer, Causality-driven slow-down and speed-
up of diffusion in non-Markovian temporal networks, Nat.
Commun., vol. 5, no. 1, p. 5024, 2014.

[33]

    652 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 



 F.  Karimi and P.  Holme, Threshold model  of  cascades in
empirical temporal networks, Physica A,  vol. 392, no. 16,
p. 3476–3483, 2013.

[34]

 M. Nurek and R. Michalski, Combining machine learning
and  social  network  analysis  to  reveal  the  organizational
structures, Appl. Sci., vol. 10, no. 5, p. 1699, 2020.

[35]

 R.  Albert  and  A.  L.  Barabasi, Statistical  mechanics  of
complex  networks, Rev.  Mod.  Phys.,  vol. 74,  no. 1,  pp.
47–97, 2002.

[36]

 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U.
Hwang, Complex networks: Structure and dynamics, Phys.
Rep., vol. 424, nos. 4&5, pp. 175–308, 2006.

[37]

 Z. Liu, X. Wu, and P. M. Hui, An alternative approach to
characterize  the  topology  of  complex  networks  and  its
application  in  epidemic  spreading, Front.  Comput.  Sci.
China, vol. 3, no. 3, pp. 324–334, 2009.

[38]

 L. Lü, D. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang, and
T.  Zhou, Vital  nodes  identification  in  complex  networks,
Phys. Rep., vol. 650, pp. 1–63, 2016.

[39]

 S. Forouzandeh, A. Sheikhahmadi, A. R. Aghdam, and S.
Xu, New centrality measure for nodes based on user social
status  and  behavior  on  Facebook, Int.  J.  Web  Inf.  Syst.,
vol. 14, no. 2, pp. 158–176, 2018.

[40]

 K.  Berahmand,  N.  Samadi,  and  S.  M.  Sheikholeslami,
Effect of rich-club on diffusion in complex networks, Int.
J. Mod. Phys. B, vol. 32, no. 12, p. 1850142, 2018.

[41]

 M.  E.  Dickison,  M.  Magnani,  and  L.  Rossi, Multilayer
Social  Networks.  Cambridge,  UK: Cambridge  University
Press, 2016.

[42]

 A. Sadaf,  L.  Mathieson,  and K.  Musial,  Effects  of  global
and local  network structure on number of  driver  nodes in
complex  networks,  in Cyber  Security  and  Social  Media
Applications,  S.  T.  Özyer  and  B.  Kaya,  eds.  Cham,
Switzerland: Springer, 2023, pp. 81–98.

[43]

 B. Wang, L. Gao, Q. Zhang, A. Li, Y. Deng, and X. Guo,
Diversified control paths: A significant way disease genes
perturb the human regulatory network, PLoS One, vol. 10,
no. 8, p. e0135491, 2015.

[44]

 S. Wuchty, Controllability in protein interaction networks,
Proc.  Natl.  Acad.  Sci.  USA,  vol. 111,  no. 19,  pp.
7156–7160, 2014.

[45]

 L.  Rossi  and  M.  Magnani, Towards  effective  visual
analytics  on  multiplex  and  multilayer  networks, Chaos
Solitons Fractals, vol. 72, pp. 68–76, 2015.

[46]

 T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S.
Handcock, New  specifications  for  exponential  random
graph  models, Sociological  Methodology,  vol. 36,  no. 1,
pp. 99–153, 2006.

[47]

 U. Brandes, A faster algorithm for betweenness centrality,
J. Math. Sociol., vol. 25, no. 2, pp. 163–177, 2001.

[48]

 L.  C.  Freeman, Centrality  in  social  networks  conceptual
clarification, Soc. Netw., vol. 1, no. 3, pp. 215–239, 1978.

[49]

 J.  X.  Zhang,  D.  B.  Chen,  Q.  Dong,  and  Z.  D.  Zhao,
Identifying  a  set  of  influential  spreaders  in  complex
networks, Sci. Rep., vol. 6, p. 27823, 2016.

[50]

 K.  Berahmand,  A.  Bouyer,  and  N.  Samadi, A  new
centrality  measure  based  on  the  negative  and  positive
effects  of  clustering  coefficient  for  identifying  influential
spreaders  in  complex  networks, Chaos  Solitons  Fractals,
vol. 110, p. 41–54, 2018.

[51]

 P.  Bródka,  J.  Jankowski,  and  R.  Michalski, Sequential
seeding  in  multilayer  networks, Chaos,  vol. 31,  no. 3,  p.
033130, 2021.

[52]

 C.  O’Connor  and  J.  Weatherall, Scientific  polarization,
Eur. J. Philos. Sci., vol. 8, no. 3, p. 855–875, 2018.

[53]

 J.  Weatherall  and  C.  O’Connor,  Do as  I  say,  not  as  I  do,
or, conformity in scientific networks, arXiv preprint arXiv:
1803.09905, 2019.

[54]

 J.  Weatherall  and  C.  O’Connor,  Endogenous  epistemic
factionalization: A network epistemology approach, arXiv
preprint arXiv: 1812.08131.

[55]

 J. O. Weatherall, C. O’Connor, and J. Bruner, How to beat
science  and  influence  people: Policymakers  and
propaganda in epistemic networks, Br. J. Philos. Sci., vol.
71, no. 4, pp. 1157–1186, 2020.

[56]

 P.  Erdös  and  A.  Rényi, On  the  evolution  of  random
graphs, Publ.  Math.  Inst.  Hung.  Acad.  Sci.,  vol. 5,  no. 1,
pp. 17–60, 1960.

[57]

 B.  Bollobás,  C.  Borgs,  J.  Chayes,  and  O.  Riordan,
Directed scale-free graphs, in Proc. 14th Annu. ACM-SIAM
Symp.  Discrete  Algorithms,  Baltimore,  MD,  USA,  2003,
pp. 132–139.

[58]

 A.  A.  Hagberg,  D.  A.  Schult,  and  P.  J.  Swart,  Exploring
network structure, dynamics, and function using networkx,
in Proc. 7th Python in Science Conf., Pasadena, CA, USA,
2008, pp. 11–15.

[59]

 U. Wilensky, NetLogo: Center for connected learning and
computer-based  modeling, http://ccl.northwestern.edu/
netlogo, 2023.

[60]

Michał  Czuba is  a  PhD  candidate  at
Wrocław  University  of  Science  and
Technology,  Poland,  in  the  discipline  of
information  and  communication
technology  with  a  focus  on  computational
network  science,  namely  problems  of
influence  maximisation  and  phenomena
spreading  in  multilayer  networks.  He  also

has  industrial  expertise  in  machine  learning,  computer  vision
systems,  and  MLOps  engineering  in  projects  concerning  the
commercialisation of research outcomes.

Mateusz  Nurek is  a  PhD  candidate  at
Wrocław  University  of  Science  and
Technology,  Poland.  His  research  area
includes  network  science  and  machine
learning.  He  is  primarily  interested  in
using  computational  intelligence  to  study
social  aspects;  therefore,  his  current
research  focuses  on  problems,  such  as  the

classification  of  human  relationships  or  predicting  personality
traits based on communication patterns.

  Michał Czuba et al.:  Network Diffusion Framework to Simulate Spreading Processes in Complex Networks 653

 



Damian  Serwata is  a  PhD  candidate  at
Wrocław  University  of  Science  and
Technology,  Poland.  His  research focus  is
concentrated  on  leveraging  network
science models and tools to study complex
social  systems  and  their  adaptive  abilities.
Currently, he is devoted to research on the
social learning process, with regards to the

investigation  of  different  approaches  to  represent  social
structures, bringing the models closer to reality.

Yu-Xuan  Qiu presently  serves  as  a
postdoctoral  research  assistant  at
University  of  Technology  Sydney,
Australia. He received the BEng and Meng
degrees  in  computer  science  from
Shenzhen  University,  China  in  2015  and
2018,  respectively,  and  the  PhD  degree
from  University  of  Technology  Sydney,

Australia  in  2023.  His  primary  research  interest  is  graph  data
mining and management.

Mingshan Jia is a lecturer at University of
Technology  Sydney,  Australia.  He
received  the  BEng  degree  in  information
engineering  from  Xi’an  Jiaotong
University,  China  in  2008,  the  MEng
degree  in  information  and
telecommunication  systems  from
University  of  Technology  of  Troyes,

France  in  2011,  and  the  PhD  degree  from  University  of
Technology  Sydney,  Australia  in  2022.  Controllability  of
networks,  data  mining,  and  machine  learning  applications  in
social networks belong to his main research interests.

Katarzyna  Musial received  the  MEng
degree in computer science from Wrocław
University  of  Science  and  Technology,
Poland  in  2006,  the  another  MEng degree
in software engineering from the Blekinge
Institute  of  Technology,  Sweden  in  2006,
and  the  PhD  degree  from  Wrocław
University  of  Science  and  Technology,

Poland in 2009. In the same year, she was appointed as a senior
visiting research fellow at Bournemouth University, UK, where
she  has  been  a  lecturer  in  informatics  since  2010.  She  joined
King’s  College  London  as  a  lecturer  in  computer  science  in
2011.  In  2015,  she  returned  to  Bournemouth  University,  UK,
where  she  was  an  associate  professor  of  computing,  as  well  as
the  head  of  the  SMART  Technology  Research  Group  and  a
member  of  the  Data  Science  Initiative.  In  2017,  she  moved  to
Australia and started working as a professor of network science
at  Data  Science  Institute,  University  of  Technology  Sydney,
Australia,  where  she  co-leads  the  Complex  Adaptive  Systems
Lab.  She  is  particularly  interested  in  social  networks,  graph
controllability, and complex systems.

Radosław  Michalski is  an  associate
professor  at  Department  of  Artificial
Intelligence,  Wrocław  University  of
Science and Technology, Poland, where he
co-leads  the  Network  Science  Lab  and
leads the Blockchain Exploration Research
Group  (BERG).  His  research  interests
include  social  influence,  diffusion

processes  in  complex  networks,  and  machine  learning.  He  has
co-authored more than 50 publications in these areas.

Piotr  Bródka is  an  associate  professor  at
Department  of  Artificial  Intelligence,
Wrocław  University  of  Science  and
Technology,  Poland.  He  received  the
MEng  degree  in  computer  science  from
Wrocław  University  of  Technology,
Poland in 2008, and the PhD degree in late
2012.  In  2012,  he  also  received  another

MEng  degree  in  computer  science  from  Blekinge  Institute  of
Technology, Sweden. In 2020, he received a Habilitation (DSc)
in information and communication technology. He was a visiting
scholar at Stanford University, Australia in 2013, and a visiting
professor at University of Technology Sydney, Australia in 2018
and  2019.  He  has  authored  over  100  scholarly  and  research
articles  on  a  variety  of  areas  related  to  complex  networks  and
computational  network  science,  focusing  on  the  extraction  and
dynamics  of  communities  within  social  networks,  spreading
processes  in  complex  networks,  and  the  analysis  of  multilayer
networks.

    654 Big Data Mining and Analytics, September 2024, 7(3): 637−654

 


