
 

EPIMR: Prediction of Enhancer-Promoter Interactions by
Multi-Scale ResNet on Image Representation
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Abstract: Prediction  of  enhancer-promoter  interactions  (EPIs)  is  key  to  regulating  gene  expression  and

diagnosing genetic diseases. Due to limited resolution, biological experiments perform not as well as expected

while  precisely  identifying  specific  interactions,  giving  rise  to  computational  biology  approaches.  Many  EPI

predictors have been developed, but their  prediction accuracy still  needs to be enhanced. Here, we design a

new model named EPIMR to identify enhancer-promoter interactions. First, Hilbert Curve is utilized to represent

sequences  to  images  to  preserve  the  position  and  spatial  information.  Second,  a  multi-scale  residual  neural

network (ResNet)  is  used to learn the distinguishing features of  different  abstraction levels.  Finally,  matching

heuristics are adopted to concatenate the learned features of enhancers and promoters, which pays attention

to  their  potential  interaction  information.  Experimental  results  on  six  cell  lines  indicate  that  EPIMR  performs

better  than  existing  methods,  with  higher  area  under  the  precision-recall  curve  (AUPR)  and  area  under  the

receiver  operating  characteristic  (AUROC)  results  on  benchmark  and  under-sampling  datasets.  Furthermore,

our model is pre-trained on all cell lines, which improves not only the transferability of cross-cell line prediction,

but  also  cell  line-specific  prediction  ability.  In  conclusion,  our  method  serves  as  a  valuable  technical  tool  for

predicting enhancer-promoter interactions, contributing to the understanding of gene transcription mechanisms.

Our code and results are available at https://github.com/guofei-tju/EPIMR.
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1　Introduction

Promoters and enhancers are short regions of DNA that
regulate  gene  expression  in  a  spatiotemporal
manner[1−3].  In most cases, these two elements need to
make  physical  contact  with  each  other  to  transmit

transcriptional  regulatory  information[4−6].  One  of  the
classical models shows that the CCCTC-binding factor
(CTCF)  and  the  cohesin  complex  help  to  stabilize  the
enhancer-promoter  interactions  (EPIs)[7].  A
transcription  factor  (TF)  binds  to  an  enhancer  to 
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facilitate  the  transient  recruitment  of  the  mediator
complex, which delivers RNA polymerase II (Pol II) to
the target  promoter  to  initiate  transcription[8].  To date,
many  studies  indicate  that  genetic  mutations  and
disturbance  of  genome  organization  can  disrupt  EPIs
and thus result in diseases[9−12]. Apparently, identifying
enhancer-promoter  interactions  is  of  momentous
practical significance for understanding mechanisms of
gene  regulatory  networks[13−16] and  helping  with
genetic disease diagnosis.

Recent studies have demonstrated that chromosomes
form topologically associating domains (TADs) where
chromatin  interactions  are  conducted  on  the  order  of
tens to hundreds of  kilobases[4, 17, 18].  However,  due to
the  presence  of  enhancer-promoter  contacts  that  cross
TAD  boundaries,  TADs  do  not  play  as  significant  a
role  in  gene  control  as  previously  thought[19].
Enhancers  can  stimulate  distal  target  promoters  even
within  the  same  TAD  by “skipping” nearby  genes[20].
Moreover,  one  enhancer  can  activate  more  than  one
promoter,  whereas  one  promoter  can  be  regulated  by
several  enhancers[21−23].  Overall,  the  multiplicity  of
enhancer-promoter  relationships  makes  it  difficult  to
identify their interactions.

Over  the  last  few  decades,  chromosome
conformation  capture  and  its  derivatives  (3C,  4C,  5C,
Hi-C, etc.)[24−28] have been developed to study genomic
organization  of  chromatin  interactions.  Therefore,  Hi-
C,  the  most  widely  used  biotechnologies,  allowed
kilobase-scale  resolution  analysis  but  required  a
significant  sequencing  effort  with  sequencing  depth  at
a  billion-read  scale[17, 29].  Another  limitation  is  the
requirement  for  extensive input  materials[30].  Different
methods  have  been  developed,  for  example,  capture
Hi-C[31] offered  a  high  resolution  to  interrogate
regulatory  interactions  but  introduced  additional
technical  biases[32].  Other  alternative  approaches,  such
as  ChIA-PET[33] and  HiChIP[34],  reported  more
enhancer-promoter interactions but might require more
biomaterials[29].  Hence,  using  these  3C-based
techniques are laborious and prohibitively expensive to
examine specific contacts, motivating the development
of computational ways.

To  circumvent  the  limitations  of  experimental
approaches,  machine  learning  algorithms  have  made
some  progress  in  identifying  enhancer-promoter
interactions.  There  are  two  types  of  approaches  for
precisely  detecting  EPIs  on  a  genome-wide  scale:  one
based on functional genomic data, and the other based

on sequence information.  The first  approach uses  data
from  genomic  signals  detected  by  sequencing
technologies,  including  DNA  methylation,  gene
expression,  histone  modification,  transcription  factors,
chromatin  accessibility,  and  so  on.  Early  EPIs
prediction  models,  such  as  RIPPLE[35] and
TargetFinder[36],  were based on the enrichment  degree
of  these  characteristic  signals  to  determine  whether
there  is  an  interaction.  However,  such  data  mainly
come  from  biological  experiments,  which  are  limited
and  difficult  to  obtain.  Alternatively,  sequences  of
promoters  and  enhancers  are  directly  used  to  extract
features.  One  of  the  most  intuitive  strategies  is  to  use
one-hot to convert DNA sequences into binary matrices
that  a  model  can  understand.  For  example,  SPEID[37]

utilizes  convolutional  neural  network  (CNN) and  long
short-term memory (LSTM) to identify EPIs, believing
that  LSTM  can  commendably  learn  the  long-range
dependence  of  sequences.  In  SimCNN[38] model,  a
simple  CNN  architecture  combined  with  transfer
learning  is  used  for  prediction.  And  EPIANN[39]

incorporated an attention-based mechanism to network
model to detect EPIs.

In order to extract fixed-length sequence embedding
features and retain the context  information,  EP2vec[40]

was inspired by doc2vec in natural language processing
(NLP), taking DNA sequences as sentences and k-mers
as  words.  And  gradient  boosted  regression  trees
classifier (GBRT) was used to construct the prediction
model. Analogously, PEP[41] used word2vec to build a
PEP-Word module, together with a PEP-Motif module
figuring out the occurrence frequencies of transcription
factor  binding  site  (TFBS)  motifs,  to  elucidate
sequence-based instructions.

On  this  basis,  EPIVAN[42],  EPI-DLMH[43],
EPIHC[44],  and  EPnet[45] models  used  dna2vec[46]

algorithm  to  pre-train  DNA  vectors  on  the  entire
human genome, so that they contained richer and more
accurate  sequence  feature  information  that  was  more
suitable  for  large-scale  prediction  models.  As  for
classification algorithms, they adopted neural networks
such as CNN and bidirectional gated recurrent unit (Bi-
GRU),  combined  with  strategies  like  attention
mechanism  and  matching  heuristic  algorithm  for
further  optimization.  Furthermore,  in  the  cause  of
preserving  spatial  position  information  between
enhancers  and  promoters,  EPIsHilbert[47] extracted
features in a new way. According to Hilbert Curve[48],
one-dimensional  DNA  sequences  were  mapped  into
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three-dimensional  matrix-vector,  illustrating  enhancer-
promoter interaction at a distance.

Taken  together,  these  existing  methods  exploited
different  ways  to  ccapture  more  information  on  EPIs,
and  have  made  considerable  progress  on  EPIs
prediction.  But  there  is  still  some  room  for
improvement. First, in most of the above models, one-
hot  or  k-mers  embedding  is  used  to  transform
enhancers  and  promoters  into  network  inputs,  which
have  certain  limitations  since  they  will  lose  some
spatial  information  of  sequences.  Second,  the  existing
model  architectures  are  very  simple,  which  could  be
detrimental  to  learn  distinguishing  features  during
feature  extraction.  Finally,  most  EPIs  prediction
methods  directly  concatenate  the  learned  features  of
enhancers  and  promoters,  thus  neglecting  potential
interaction information between them.

In this paper, we propose a new deep learning model
called  EPIMR  to  identify  enhancer-promoter
interactions  by  learning  information  of  different
abstraction  levels  from  the  sequences  characterized
into  image  forms,  as  presented  in Fig.  1.  We
demonstrate  by  experimental  results  that  our  model
outperforms  existing  models  on  benchmark  datasets
and  under-sample  datasets.  To  be  specific,  we
introduce  a  multi-scale  residual  neural  network
(ResNet)  to  represent  different  abstraction  levels  of
enhancer  or  promoter  features.  And  we  utilize
matching  heuristic  layers  like  concatenation,  element-

wise  product,  difference,  dot,  and  addition  to  acquire
interaction information. It is shown that these methods
learn  respective  and  communicative  features,  and
improve  predictive  performances.  Also,  we  adopt  a
pre-trained  model  among  them,  thereby  improving
cross-cell line and cell line-specific prediction. Finally,
we  verify  the  validity  of  EPIMR on  the  reconstructed
datasets  with  low  data  dependence,  indicating  the
practical  applications  of  pre-trained  EPIMR  for
predicting EPIs on cell lines that lack data.

2　Material and Method

2.1　Benchmark dataset

Following existing works,  we also  adopt  a  benchmark
dataset  from  TargetFinder[36] in  this  study.  Several
human  cell  lines  are  used  in  this  study,  including
IMR90,  HUVEC,  HeLa-S3,  K562,  GM12878,  and
NHEK.  A  total  of  annotated  enhancers  and  promoters
are  derived  from  ENCODE  Project[49] and  Roadmap
Epigenomics  Project[50].  To  achieve  sequences  with  a
fixed length, the enhancers and promoters are extended
by adjustable flanking regions or randomly cut to 3000 bp
and 2000 bp long,  respectively,  where bp is  base pair.
It  is  important  to  note  that  an  enhancer  and  promoter
pair  that  interact  with  each  other  are  labeled  as  a
positive  sample.  Otherwise,  they  are  categorized  as
negative samples.

As  shown  in Table  1,  we  analyze  each  cell  line
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Fig. 1    Framework of our proposed method with the detailed multi-scale representation of ResNet34.
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dataset  in  detail,  which  reveals  that  the  ratio  for  EPIs
and non-EPIs is 1:20, similar to the actual distribution
of genes in the genome.

2.2　Sequence encoding

2.2.1　Hilbert Curve
To  capture  long-range  interactions  efficiently,  we  use
the  Hilbert  Curve[48] to  represent  sequences.  As  a
continuous fractal space-filling curve, each of elements
is  mapped  to  a  pixel  to  map  a  1D line  to  a  2D image
with the Hilbert Curve.

2n×2n

The  Hilbert  Curve  is  constructed  recursively.  In  the
first iteration, its image is a unit square composed of 4
regions,  arranged  two  by  two.  Then,  each  part  is
divided  into  4  smaller  regions  on  each  iteration.
Eventually,  the  Hilbert  Curve  yields  an  image  of  size

,  where n represents  iteration  numbers.  Curve
thereupon  calls  the  rotation  function  to  fill  the  entire
square, as shown in Fig. 2. As discussed in Section 2.1,

26×26 (= 64×64)

the longest sequence is 3000 bp. To accommodate this
length,  we set  the  iteration number  to  6  to  ensure  that
Hilbert  Curve  image is  enough to  represent  sequences
with a size .
2.2.2　Sequence representation
Here,  we  take  inspiration  from  Hilbert  Curve.  One
sequence is represented as a curve, and nucleobases are
the elements filled in the sub-squares.

26×26 (= 64×64).

First, we place biological sequences in digital forms.
Since DNA sequences are composed of 4 nucleobases,
we  use  one-hot  to  encode  enhancers  and  promoters,
storing  the  nucleotides  as  A(1,  0,  0,  0),  C(0,  0,  1,  0),
G(0,  0,  0,  1),  and  T(0,  1,  0,  0).  Thus,  enhancers  are
mapped  as  (3000,  4)  vectors,  whereas  promoters  are
encoded  as  (2000,  4)  vectors.  Then,  we  map  per
nucleobase  to  a  pixel  with  Hilbert  Curve  to  fill  image
that  has  a  size  The  4  features
encoded by one-hot can be regarded as channels in an

 

Table 1    EPIs benchmark datasets.

Cell line
Number

All Positive Negative
IMR90 26 254 1254 25 000

HUVEC 31 924 1524 30 400
HeLa-S3 36 540 1740 34 800

K562 41 477 1977 39 500
GM12878 44 313 2113 42 200

NHEK 26 891 1291 25 600
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Fig. 2    Sequence  embedding  of  Hilbert  Curve.  Figure  2a  descripts  the  different  images  filling  with  the  Hilbert  Curve  with
different iteration numbers (n = 1, 2, …, 6). Figures 2b–2d show detailed steps to extract Hilbert Curve embeddings when the
iteration number is set to 2 for convenience.

  Qiaozhen Meng et al.:  EPIMR: Prediction of Enhancer-Promoter Interactions by Multi-Scale ResNet... 671

 



image as shown in Fig. 2.
Actually,  due  to  the  chromatin  folding  in  the

genome,  the  proximal  nuclear  bases  on  a  DNA
sequence  can  remain  adjacent  to  each  other,  while
remote  elements  may  also  have  very  small  spatial
distances.  The Hilbert  Curve algorithm can effectively
preserve  the  local  features  of  the  sequence,  while  its
spatial  folding  can  integrate  the  long-range
characteristics,  thereby  obtaining  more  useful
information.  Now  that  the  sequences  are  mapped  to
images,  we  can  construct  networks  that  are  good  at
dealing with graphics.

2.3　Network architecture

2.3.1　ResNet
Deep  neural  networks  have  brought  a  series  of
breakthroughs  for  image  classification[51−55].  So  we
consider that a deeper network could be used to obtain
effective  classification  ability.  However,  adding  too
many layers to deep models may cause the problem of
vanishing/exploding  gradients,  and  thus  lead  to  a
higher  training error  and lower  accuracy.  As a  way to
mitigate  this  issue,  He  et  al.[56] proposed  ResNet,
motivated by the concept of highway networks.

Shortcut  connections  enable  ResNet  to  skip  some
layers,  preserving  the  information  from  previous
layers, and transferring it directly to subsequent layers.

ResNet  models  normally  use  double- or  triple-layer
skips  containing  nonlinearities  (rectified  linear  unit
(ReLU)),  followed  by  batch  normalization,  that  are
referred  to  as  residual  blocks.  A  certain  number  of
similar  residual  blocks  are  stacked  in  series  to  form
four  stages,  where  one  projection  shortcut  is  used  to
match  dimensions  between  two  stages,  and  other
identity shortcuts  are used to increase network depths,
and  finally  form  the  ResNet.  Specifically,  we  choose
ResNet34 as the backbone of our network.
2.3.2　Multi-scale representation
In  our  model,  we  propose  a  multi-scale  method  to
make  improvements  based  on  ResNet34  as  shown  in
Fig. 1.

As  the  depth  of  the  network  increases,  the  features
extracted  from  different  stages  of  ResNet34  contain
different  levels  of  information  and  are  highly
complementary.  The  shallower  parts  of  the  network
have smaller receptive fields and tend to focus on local
details.  Conversely,  the  deeper  levels  of  the  network
have  larger  receptive  fields  and  are  prone  to  produce
highly-abstracted  features  with  more  spatial

information[57, 58].  As  shown  in Fig.  1,  we  integrated
four  feature  groups  which  are  obtained  from  different
deep  layers  to  final  representations[59].  These  four
groups,  GAP1,  GAP2,  GAP3,  and  GAP4,  learned
information at different levels.

Global average pooling can convert feature maps to a
vector  by  calculating  the  average  value  of  these
features.  Accordingly,  we  extract  the  output  of  four
scales from ResNet and concatenate them together after
global average pooling layers. Then, we add a dropout
layer  to  further  decrease  the  phenomenon  of  over-
fitting.  In  this  way,  we  integrate  the  features  at
different  levels  to  capture  complementary  information
at multiple scales.

2.4　Matching heuristics

To  capture  explicit  information  about  enhancer-
promoter  interactions,  we  use  matching  heuristics
developed  in  natural  language  inference[60−65].  Owing
to the enormous data volume, we are more inclined to
adopt  the  approaches  that  are  effective  in  capturing
relationships  between  E-P  pairs,  but  remain  low
complexity.

Now that both of the input sequences are represented
in  vectorial  form,  five  heuristic  matching  layers  are
applied  to  the  learned  features  of  enhancers  and
promoters:

● Concatenation.
● Dot.
● Element-wise difference.
● Element-wise product.
● Element-wise addition.
Here,  the  outputs  from  five  matching  methods  are

concatenated together,  which can be performed by the
following formula:
 

m =
[
e, p,e− p,e◦ p,e+ p,e · p] ,

◦ ·where “ ” denotes  element-wise  product,  and “ ”
denotes  dot  operation.  By  this  means,  concatenation
can  preserve  all  the  information  of  two  sequences,
difference  and  addition  calculate  the  degree  of
distributional  inclusion  in  each  dimension,  whereas
product  and  dot  are  certain  measure  of  the  interactive
communications of the two features.

At  last,  we  feed  the  concatenated  output m for  final
classification.

2.5　Model training

The  model  was  developed  in  Keras  using  the  binary
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cross-entropy loss function, a learning rate of 10−5, and
an  Adam  optimization  algorithm.  It  takes  50  epochs
with  the  early-stopping  method.  Also,  as  mentioned
before,  we adopt  a  dropout  layer  with a  probability  of
p =  0.75  to  further  decrease  the  phenomenon of  over-
fitting.  For  each  cell  line,  using  random  selection,  we
divided  the  dataset  into  training,  test,  and  validation
sets in a ratio of 8:1:1.

As shown in Table 1, the benchmark dataset we use
in  this  study  has  a  drastically  imbalanced  pattern  of
negative  and  positive  samples.  The  negative  samples
are approximately 20 times as plentiful  as the positive
samples,  which  is  more  in  line  with  real  EPI
distribution.  However,  the  traditional  classification
algorithms  which  emphasize  total  accuracy  tends  to
pay more attention to the majority class makes learning
robust  models  difficult.  While  training  the  classifier,
positive  samples,  which  belong  to  the  minority  class,
are  given  greater  weight  in  proportion  to  the  ratio  of

negative to positive samples.

2.6　Performance evaluation

As  stated,  the  extremely  imbalanced  datasets  render
accuracy  not  appropriate  for  performance  evaluation.
In light of this,  we adopt the area under the precision-
recall  curve  (AUPR)[66] and  area  under  the  receiver
operating characteristic (AUROC)[67] as our evaluation
metrics.

3　Result and Discussion

3.1　Ablation experiment

As  shown  in Tables  2 and 3,  we  perform  ablation
experiments  to  determine  whether  our  model  choices
are effective.  First,  we compare our predictor with the
one without a multi-scale representation of ResNet. For
different cell lines, the increments of AUPR range from
4.07% to  11.28%.  In  four  of  six  cell  lines,  AUROC
increased results by about 1%, while on the other two,

 

Table 2    Performance  comparison with  different  modeling  choices  and various  methods  on six  cell  lines  in  accordance  with
AUPR values.

Model
AUPR value

IMR90 HUVEC K562 GM12878 NHEK HeLa-S3

Ablation experiment

Without multi-scale ResNet 0.601 0.578 0.661 0.552 0.770 0.661
Three dense layers instead of matching layers 0.651 0.629 0.630 0.550 0.743 0.694

Concatenation layer only 0.672 0.664 0.665 0.577 0.771 0.711
Matching layers without subtract layer 0.686 0.664 0.684 0.585 0.777 0.713
Matching layers without multiply layer 0.684 0.670 0.672 0.582 0.789 0.716

Matching layers without addition and dot layers 0.692 0.674 0.711 0.593 0.809 0.720

Existing method
SPEID 0.313 0.298 0.314 0.348 0.394 0.396

SimCNN 0.388 0.348 0.395 0.403 0.540 0.496
EPIsHilbert 0.608 0.537 0.686 0.538 0.752 0.685

Proposed method EPIMR 0.698 0.691 0.729 0.603 0.811 0.730

 

Table 3    Performance  comparison  with  different  modeling  choices  and  various  methods  on  six  cell  lines  based  on  AUROC
values.

Model
AUROC value

IMR90 HUVEC K562 GM12878 NHEK HeLa-S3

Ablation experiment

Without multi-scale ResNet 0.916 0.898 0.940 0.896 0.979 0.911
Three dense layers instead of matching layers 0.913 0.900 0.920 0.891 0.971 0.915

Concatenation layer only 0.918 0.903 0.914 0.905 0.974 0.907
Matching layers without subtract layer 0.927 0.913 0.934 0.905 0.977 0.923
Matching layers without multiply layer 0.916 0.914 0.936 0.901 0.976 0.916

Matching layers without addition and dot layers 0.930 0.916 0.937 0.906 0.977 0.924

Existing method
SPEID 0.896 0.885 0.909 0.869 0.936 0.897

SimCNN 0.907 0.897 0.922 0.896 0.947 0.912
EPIsHilbert 0.894 0.874 0.895 0.901 0.945 0.914

Proposed method EPIMR 0.923 0.916 0.941 0.913 0.979 0.933
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results  increased essentially the same. In short,  adding
multi-scale  representation  in  ResNet  can  achieve  the
best performances in most cases.

We  also  try  to  remove  some  parts  of  the  matching
heuristic  modules  in  Section  2.4.  We  concatenate  the
enhancer and promoter features, seamlessly integrating
them into one/three dense layers, which are denoted as
the  items “concatenation  layer  only” and “three  dense
layers instead of matching layers”. We also attempt to
build  models  without  one  or  two  layers  of  matching
heuristics.  The  results  show  that  our  matching
operations  are  different  from the simple  concatenation
of  features  or  the  use  of  multiple  dense  layers.  And
four  different  kinds  of  matching layers  make different
contributions  to  the  final  results.  But  overall  EPIMR
with additional  matching heuristic  steps is  effective in
improving predictive performances on nearly all of the
six  cell  lines.  It  can  be  concluded  that  the  refinement
steps  employed  in  our  EPIMR  can  capture  more
information  not  only  for  enhancer  or  promoter
sequences  but  also  for  their  interactive
communications.

3.2　Comparison with state-of-the-art method

To  verify  model  validity,  we  also  compare  the
performances  of  EPIMR  with  that  of  several  other
existing models,  including SPEID[37] and SimCNN[38],
which  use  one-hot  to  represent  DNA  sequences,  and
EPIsHilbert[47].  Each predictor is trained and tested on
the same original imbalanced dataset on each cell line.
And all of the compared models are trained through the

process described in their papers. The prediction results
of AUPR and AUROC for all models on six cell lines
are  presented  in Fig.  3, Table  2,  and Table  3,
respectively.

Although the existing models have reported excellent
results  with  data  augmentation  and  some  training
strategies,  they  did  not  perform  well  on  benchmark
datasets. In contrast, EPIMR achieves better results on
AUPR  and  AUROC.  For  AUPR  in  particular,  our
model  is  at  least  4.35% higher  than  the  runner-up
models  on  all  of  the  cell  lines.  It  demonstrates  that
EPIMR  can  better  deal  with  the  datasets  that
approximate  the  actual  distribution  of  EPIs.  With
regard to AUROC, EPIMR also outperforms the state-
of-the-art  methods  on  six  cell  lines,  with  an  over  1%
increment  in  most  cases.  We  are  of  the  opinion  that
using  Hilbert  Curve  to  extract  features  can  better
represent  sequence  location  information  and  spatial
information than simply using one-hot.

3.3　Pre-training  strategy  for  cross-cell  line
prediction

The  enhancer-promoter  interactions  are  cell  line-
specific,  giving  rise  to  different  interaction  principles
among  different  cell  lines.  To  confirm  this,  we  apply
models  established  on  specific  cell  lines  to  cross-cell
line  prediction. Figure  4 illustrates  the  AUPR  and
AUROC results of cross-cell  line prediction using cell
line-specific  models.  Not  surprisingly,  our  proposed
model performs well when the training set and test set
come from the same cell line, especially with AUROC
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Fig. 3    Performances of different models in AUPR and AUROC metrices on six cell lines.
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values exceeding 0.9 (the diagonal results in Fig. 4). In
comparison,  the  prediction  performances  are  abysmal
for cross-cell line evaluation. It indicates that the model
trained  on  a  particular  cell  line  cannot  accurately
predict  EPIs  on  other  cell  lines,  since  they  can  only
learn  the  interaction  patterns  of  a  single  cell  line  and
lack  generalization  ability  across  datasets  of  different
cell lines. In other words, cell line-specific interactions
exist.

It is quite clear that the corresponding models trained
for  each  cell  line  can  capture  EPI  cell  line-specific
features.  Further,  we  intend  to  complement  features
that are common among all six cell lines to improve the
prediction  ability.  Here,  we  adopt  a  pre-training
strategy, and the procedure is described as follows:

Dall
tr● Create  a  new training  set  by  aggregating  the

training set of six cell lines.
Dall

tr●  Pre-train  a  model  for  15  epochs  on  the ,  a

training set created in the first step.

Ds
tr

● Continue to train an additional 20 epochs using the
target cell line’s training set .

Ds
ts● Evaluate the specific test set  of this cell line.

Figure  5 reveals  the  AUPR  and  AUROC  values
based  on  the  pre-trained  models.  Compared  with  the
heat maps in Fig. 4, it can be perceived that the cross-
cell  line  prediction  performances  are  dramatically
increased.  Generally,  AUPR  scores  increase  by
30%−50% and  AUC  scores  also  have  at  least  30%
increases  after  applying  the  pre-training  approach.  An
obvious  example  is  that  when  we  adopt  a  pre-trained
model  with  a  target  cell  line  K562 to  identify  EPIs  of
five other cell lines, we obtain AUC values of 0.864 to
0.940,  a  significant  increase  over  that  from  the  cell-
specific  models.  For  predicting  particular  cell  lines,
pre-trained  models  achieve  better  results  as  well,
suggesting that there are many of the features extracted
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Fig. 4    Performances of cell line-specific models for cross-cell line prediction.

 

0.64 0.57 0.58 0.46 0.66 0.47

0.53 0.74 0.59 0.49 0.53 0.46

0.53 0.55 0.71 0.54 0.61 0.53

0.46 0.49 0.61 0.70 0.57 0.39

0.48 0.59 0.51 0.52 0.74 0.54

0.48 0.53 0.49 0.33 0.44 0.82

GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

Test cell line

GM12878

HeLa-S3

HUVEC

IMR90

K562

NHEK

Tr
ai

ni
ng

 c
el

l l
in

e

GM12878

HeLa-S3

HUVEC

IMR90

K562

NHEK

Tr
ai

ni
ng

 c
el

l l
in

e

0.33

0.40

0.50

0.60

0.70

0.80

0.93 0.88 0.90 0.89 0.91 0.92

0.87 0.92 0.88 0.90 0.89 0.89

0.90 0.89 0.93 0.88 0.92 0.94

0.87 0.87 0.88 0.93 0.90 0.90

0.88 0.91 0.86 0.90 0.95 0.94

0.87 0.88 0.85 0.85 0.86 0.98

GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

Test cell line

0.85
0.86

0.88

0.90

0.92

0.94

0.96

0.98

(a) AUPR (b) AUROC

AU
PR

AU
R

O
C

 
Fig. 5    Performances of pre-trained models for cross-cell line prediction.
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from EPIs shared in different cell lines. Therefore, our
pre-trained  model  not  only  prominently  outperforms
the  former  one  while  recognizing  EPIs  in  various  cell
lines,  but  also  has  a  good  ability  for  cell  line-specific
prediction.

3.4　Evaluation on under-sampling datasets

Since  the  benchmark  datasets  are  highly  imbalanced,
we  execute  under-sampling  algorithms  to  balance  the
two  classes.  To  be  specific,  for  each  cell  line,  we
randomly  remove  samples  from  the  majority  class  to
get a balanced dataset  with equal numbers of negative
samples and positive samples.

We  evaluate  the  performances  of  AUPR  and
AUROC  of  our  model  on  these  under-sampling
datasets,  as  shown  in Tables  4 and 5.  It  is  clear  that

AUPR has made significant progress on these balanced
datasets.  The AUPR and AUROC values are basically
above 0.9.

In  addition,  we compare EPIMR with other  existing
models  on  these  datasets,  as  illustrated  in Fig.  6 (full
details  are  given  in Tables  4 and 5).  Even  on  the
IMR90 cell line, EPIMR can obtain outstanding results
with  AUPR  score  1.92% higher  and  AUROC  score
1.51% higher  than  the  second.  The  numbers  leap  to
11.02% and  9.23% on  the  HUVEC  cell  line.  So  it  is
evident  that  EPIMR  also  performs  well  on  balanced
datasets.

3.5　Verification on re-formulated datasets

Cao  and  Fullwood[68] raised  some  issues  with
TargetFinder datasets. They suggested that positive E-P
pairs  had  highly  overlapping  windows  with  other
positive samples in the same dataset, thus causing high
similarity  between  training  and  test  sets,  which  would
exaggerate  model  prediction  performances.  In
response, Whalen and Pollard[69] re-formulated datasets
to predict chromatin interactions between genomic bins
to  reduce  dependence  and  overcome  generalization
issues.  Therefore,  we  verify  the  performances  of
EPIMR on these reconstructed sample sets.

27×27

Since all sequences are 5000 bp long, we need to set
the number of iterations as 7 while constructing Hilbert
Curve images, acquiring a map of  to ensure that
it is enough to represent sequences. Although we chose
the  minimum number  of  iterations,  most  of  the  pixels
in  maps  are  still  unused.  Thus,  cropping  image  by
removing  unused  parts  of  the  images  can  increase  the
proportion of pixels that are used. We end up with (64,

 

Table 4    Performances  of  different  models  on  under-
sampling datasets in terms of AUPR.

Model
AUPR value

IMR90 HUVEC K562 GM12878 NHEK HeLa-S3
SPEID 0.677 0.770 0.742 0.800 0.821 0.862

SimCNN 0.717 0.754 0.804 0.779 0.872 0.864
EPIsHilbert 0.880 0.851 0.880 0.845 0.865 0.929

EPIMR 0.899 0.961 0.932 0.925 0.961 0.970

 

Table 5    Performances  of  different  models  on  under-
sampling datasets in terms of AUROC.

Model
AUROC value

IMR90 HUVEC K562 GM12878 NHEK HeLa-S3
SPEID 0.779 0.847 0.801 0.836 0.881 0.901

SimCNN 0.800 0.834 0.846 0.827 0.903 0.892
EPIsHilbert 0.876 0.862 0.852 0.825 0.843 0.903

EPIMR 0.891 0.955 0.901 0.910 0.944 0.959
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Fig. 6    Performances of different models on under-sampling datasets in terms of AUPR and AUROC.
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96, 4) matrices.
We  choose  three  cell  lines  from  the  re-formulating

datasets including GM12878, IMR90, and K562. These
three  datasets  differ  greatly  in  size,  as  shown  in
Table  6.  A  1:10  ratio  of  positives  to  negatives  still
exists in these new datasets.

We  evaluate  model  performances  using  cell  line-
specific  models  and  pre-trained  models.  As  shown  in
Fig.  7, Table  7,  and Table  8,  we  find  that  our  model
performs lower on imbalanced datasets than it does on
benchmark datasets. Meanwhile, our pre-trained model
still  maintains  a  good  predictive  ability  after  pre-
training  on  three  cell  lines,  with  AUPR  and  AUROC

results rising sharply. Specifically, AUPR scores surge
by about 15%−50%, whereas AUROC gains 9%−28%.
Furthermore, the smaller the sample size of the cell line
is,  the more growth it  can get  through the pre-training
approach. In other words, the pre-training strategy can
greatly improve prediction results, especially may have
practical  applications  for  predicting  EPIs  in  cell  lines
with little data.

3.6　Visualisation of multi-scale representation

As  we  all  know,  the  shallow  network  can  extract
concrete features, whereas the deep network can extract
more  abstract  and  comprehensive  features.  To
understand feature distribution at different scales of the
model,  as  shown  in Fig.  8,  uniform  manifold
approximation  and  projection  (UMAP)[70] is  used  to
visualize  the  outputs  of  GAP1,  GAP2,  GAP3,  and
GAP4  of  multi-scaling  features  in  four  stages  in  our
model.

Based  on  the  re-formulating  datasets  after  pre-
training,  a  multi-scale  ResNet  model  was  constructed
for the K562 cell line. Due to the large amount of data,
we  randomly  under-sample  the  dataset  to  ensure  that
there  is  a  balance  between  negative  and  positive
samples.  Then  we  visualize  the  results  for  each  GAP
layer.  It  can be found that  all  these four scale features
have  classification  abilities  by  observing  that  two
categories of samples have their convergence trend and
are  separated.  However,  the  classification  abilities
differ  in  performance  due  to  their  different  scales  of
concern.  For  example,  the  features  from  GAP1  of
enhancers  that  only  concern  local  information  are
separated  into  two  classes  based  on  their  labels
although not as clear as GAP4 which focuses on global
information.  In  brief,  the  respective  features  of  EPIs
and non-EPIs are gradually visualized into two classes,
and the differences in feature distributions from GAP1
to  GAP4  increase  progressively.  Accordingly,  four
scale  features  calculated  from  various  depths  of  the
network  exhibit  different  performances  and  contribute
distinctive contributions to classification results.

4　Conclusion

Here,  we  propose  an  enhanced  promoter-enhancer
interaction  model  called  EPIMR,  which  uses  only
sequence  information.  We  encode  sequences  into
images  by  using  the  Hilbert  Curve.  Compared  with
other sequence encoding methods, it allows us to retain
more  sequence  location  information  and  spatial

 

Table 6    Details of EPIs re-formulated datasets.

Cell line
Number

Positive Negative
IMR90 3882 41 215

GM12878 6260 63 676
K562 1533 15 882
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Fig. 7    Performances  of  our  model  compared  with  that
using  pre-training  strategy  in  terms  of  AUPR and AUROC
on  the  re-formulating  datasets.  The  values  show  the
percentage  improvement  of  the  corresponding  metric  after
using the pre-training strategy.
 

Table 7    Performances  of  our  model  on  the  re-formulating
datasets.

Dataset AUPR AUROC
GM12878 0.439 0.714

IMR90 0.324 0.639
K562 0.231 0.611

 

Table 8    Performances  of  our model  using the  pre-training
strategy on the re-formulating datasets.

Dataset AUPR AUROC
GM12878 0.592 0.805

IMR90 0.618 0.837
K562 0.727 0.892
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information.  Specifically,  we  introduce  a  multi-scale
ResNet  that  integrates  local  and  concrete  features
extracted  from  the  shallow  part  of  the  network  with
comprehensive and abstract features obtained from the
deep network, which is not considered in previous EPI
prediction models. We use UMAP for visualization and
intuitively  exhibit  the  feature  distributions  of  different
depths  of  the  network.  Finally,  we  use  matching
heuristics  to  match  features  between  enhancer  and
promoter,  focusing  on  the  potential  interaction
information  between  them.  Experiments  illustrate  that
EPIMR  produces  better  results  on  the  benchmark
datasets  and  under-sampling  datasets  than  the  most
advanced  methods  available,  and  makes  a  great
contribution  to  the  prediction  of  EPIs  on  both  the
benchmark  datasets  and  the  reconstructed  datasets.  In
addition, we focus on cross-cell line prediction and pre-
train our models among all cell lines so that model can
capture  both  specific  as  well  as  common  features  of
cell  lines,  which  verifies  the  transferability  of  our
model.  It  also  indicates  that  EPIMR  has  potential
practical applications for identifying EPIs on cell lines
that lack data.
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