
 

Impact of Domain Knowledge and Multi-Modality on Intelligent
Molecular Property Prediction: A Systematic Survey
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Abstract: The  precise  prediction  of  molecular  properties  is  essential  for  advancements  in  drug  development,

particularly  in  virtual  screening  and  compound  optimization.  The  recent  introduction  of  numerous  deep

learningbased  methods  has  shown  remarkable  potential  in  enhancing  Molecular  Property  Prediction  (MPP),

especially improving accuracy and insights into molecular structures. Yet, two critical questions arise: does the

integration of  domain knowledge augment the accuracy of  molecular  property prediction and does employing

multi-modal data fusion yield more precise results than unique data source methods? To explore these matters,

we  comprehensively  review  and  quantitatively  analyze  recent  deep  learning  methods  based  on  various

benchmarks.  We  discover  that  integrating  molecular  information  significantly  improves  Molecular  Property

Prediction (MPP) for both regression and classification tasks. Specifically, regression improvements, measured

by  reductions  in  Root  Mean  Square  Error  (RMSE),  are  up  to  4.0%,  while  classification  enhancements,

measured  by  the  area  under  the  receiver  operating  characteristic  curve  (ROC-AUC),  are  up  to  1.7%.

Additionally, we discover that, as measured by ROC-AUC, augmenting 2D graphs with 3D information improves

performance  for  classification  tasks  by  up  to  13.2% and  enriching  2D  graphs  with  1D  SMILES  boosts  multi-

modal  learning  performance  for  regression  tasks  by  up  to  9.1%.  The  two  consolidated  insights  offer  crucial

guidance for future advancements in drug discovery.

Key words:  Molecular  Property  Prediction  (MPP); Deep Learning  (DL); domain  knowledge; multi-modality; drug

discovery

1　Introduction

The field  of  drug development  has  always been at  the
forefront  of  adopting  innovative  scientific  techniques
to  enhance  the  discovery  and  optimization  of
therapeutic  compounds.  Central  to  this  process  is  the
prediction  of  molecular  properties,  a  task  that  bears
significant  implications  for  drug  screening  and

compound  optimization[1].  Accurately  predicting  key
molecular  properties  can  significantly  reduce  the  time
and  resources  required  in  drug  development,  thereby
hastening  the  journey  towards  innovative  medical
treatments.

In  the  landscape  of  computational  methods  for
Molecular  Property  Prediction  (MPP),  Deep  Learning 
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(DL)  has  recently  emerged  as  a  transformative  force,
distinguishing  itself  markedly  from  traditional
techniques,  such  as  Quantitative  Structure-Activity
Relationships  (QSAR)  and  molecular  dynamics
simulations. While conventional methods have laid the
groundwork,  DL  significantly  advances  accuracy  and
analysis depth, enabling a more intricate exploration of
the  relationships  between  molecular  structures  and
their properties[2].

Despite  the  advancements  in  DL for  MPP,  the  field
continues  to  face  ongoing  evolution  and  challenges.
Two significant  trends  are  currently  shaping  the  field.
The  first  trend  is  the  increasing  integration  of  domain
knowledge  into  DL  models.  This  includes  a  broad
spectrum  of  scientific  information,  such  as  chemical
and  physical  property  relations,  atom  and  bond
characteristics,  and  detailed  insights  into  functional
groups  and  molecular  fragments.  The  integration  of
this knowledge aims to enhance the predictive accuracy
of these models.  This  leads us  to  the critical  question:
Does more comprehensive domain knowledge actually
improve the effectiveness of MPP? The second trend is
the rising adoption of multi-modality techniques, which
involve the fusion of various data types, like sequence-
based,  graph-based,  and  pixel-based  formats.  This
approach  is  driven  by  the  goal  of  achieving  more
accurate  predictions  in  a  field  characterized  by  its
complexity and data diversity, prompting the question:
Is  multi-modality  more  effective  for  MPP  than
methodologies  that  rely on uni-model  data  source? To
explore  these  questions,  our  paper  begins  with  an  in-
depth  review  of  the  current  DL  approaches  in  MPP,
focusing  on  how  the  domain  knowledge  and  multi-
modal  data  integrate  on  encoder  architecture  and
training strategy.

Our  review  begins  with  an  examination  of  various
unique  data  encoder  architectures  for  MPP,  such  as
Recurrent  Neural  Network  (RNN)[3–5],  Graph  Neural
Network  (GNN)[6–10],  Transformer[11–14],  and
Convolutional  Neural  Network  (CNN)[15–17] models,
and  also  reviews  the  multi-modal  methods[18–21].  We
focus  on  how  these  architectures  are  aligned  with
existing  molecular  structural  knowledge  and  their
integration  of  domain  knowledge.  This  exploration
highlights  the  synergy  between  advanced
computational  techniques  and  fundamental  molecular
understanding,  a  crucial  aspect  in  enhancing  the
accuracy of MPP. Also, we review a variety of training

strategies,  such  as  self-supervised[22–24],  semi-
supervised[25–27],  transfer  learning[28–30],  and  multi-
tasks learning[31, 32]. A particular emphasis is placed on
strategies that effectively utilize unlabeled data, a vital
consideration  given  the  frequent  scarcity  of  labeled
data in this  domain,  and we focus on how the domain
knowledge  and  multi-modal  data  to  be  used  in  the
training  strategy.  Accompanying  this  review  are
comprehensive  diagrams  that  systematically  elucidate
the nuances of these encoder architectures and training
strategies,  offering  a  clearer  understanding  of  their
complex  mechanisms.  The  overview  of  our  paper  is
shown in Fig. 1.

Our study then proceeds to empirically evaluate these
DL  methods,  utilizing  pivotal  benchmarks  like
MoleculeNet[33].  These  benchmarks,  encompassing  a
diverse  range  of  datasets  each  focused  on  specific
molecular properties, allow for an extensive assessment
of  different  DL  approaches.  A  key  aspect  of  our
analysis  is  determining  the  impact  of  multi-modality
techniques  versus  single  modeling.  Specifically,  we
investigate  the  effectiveness  of  integrating  atom-bond
level  domain  knowledge  and  substructures,  such  as
functional  groups  and  fragments,  into  the  models.
Additionally, we quantify the contributions of different
data  formats  and  conduct  experiments  to  ascertain
whether  multi-modal  fusion  can  enhance  the
generalization  performance  of  the  models.  This
evaluation not only provides comparative insights into
the varied methods, but also seeks to pinpoint essential
factors that bolster the efficacy of DL in MPP.

In summary, our main contributions are as follows:
• We identify two pivotal  issues when applying DL

for  MPP:  domain  knowledge  integration  and  multi-
modal data utilization.
• We comprehensively review DL methods for MPP,

featuring  in-depth  analyses  of  encoder  architectures
and training strategies.
• We  discover  that  integrating  molecular

substructure  information  results  in  a  4.0%
improvement on average in regression tasks and a 1.7%
increase on average in classification tasks.
• We discover that enriching 2D graph models with

1D  SMILES  or  3D  information  boosts  multi-modal
learning,  enhancing  performance  by  9.1% to  13.2%
over single-modality models.

2　Molecular Modality

In  the  field  of  molecular  science,  a  wide  variety  of
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molecular  modalities  have  been  developed,  which  are
essential  for  computational  modeling  and  analysis.
These  formats  are  generally  classified  into  three  main
types:  text-based,  graph-based,  and  pixel-based
formats.  Each  type  offers  unique  insights  into
molecular  structures,  contributing  significantly  to
various  aspects  of  molecular  analysis.  These  diverse
formats  are  illustrated  in Fig.  2,  which  showcases  the
array of molecular modality available for DL methods.

2.1　Sequence-based data

Text-based  formats  are  among  the  most  commonly
used representations in MPP due to their simplicity and
efficiency.  The  most  prominent  of  these  is  Simplified
Molecular  Input  Line  Entry  System  (SMILES)[34],
which encodes molecules in linear strings, representing
atoms  and  bonds  in  a  compact  and  readable  format.
Variants  of  SMILES,  such  as  Canonical  SMILES[35]

and  Isomeric  SMILES[36],  offer  additional  specificity,
including  stereochemistry  information.  Other  notable
text-based  formats  include  molecular  fingerprints,  like
ECFP[37],  Morgan,  and  MACCS[38],  which  encode  the
presence  of  certain  molecular  features,  and  self-
referencing embedded strings (namely SELFIES)[39],  a
newer  format  designed  for  robustness  in  machine

learning  applications.  Additionally,  IUPAC[40] and
InChI[41] codes  are  vital  text-based  molecular
representations.  IUPAC  provides  systematic  chemical
nomenclature for clear scientific communication, while
InChI  offers  standardized  textual  identifiers  for
chemical  substances.  These  formats  facilitate  various
computational  tasks,  from  database  searching  to  the
generation of novel molecules using AI.

2.2　Graph-based data

In  drug  discovery,  graph-based  representations,  which
depict  atoms as  nodes  and bonds  as  edges,  effectively
capture  molecular  structures,  making  them  ideal  for
analyzing  both  topological  and  relational  aspects  of
molecules.  The  method  includes  the  use  of  a  2D
adjacency  matrix  or  a  set  of  edges  to  outline  atom
connectivity. This representation can be enhanced with
3D  information,  such  as  bond  lengths  and  atom
positions,  transforming  it  into  a  3D  graph.
Incorporating  a  3D  atom  distance  matrix  further
enriches this model, offering a comprehensive view of
the  molecular  spatial  structure.  Graph-based  formats,
including  2D and  3D molecular  structures,  are  crucial
in  drug  discovery  for  conducting  detailed  molecular
analyzes  and  enhancing  the  understanding  of  complex
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Fig. 1    Overview  of  our  survey.  we  review  the  impact  of  domain  knowledge  and  multi-modality  on  molecular  property
prediction  from  three  critical  aspects:  input  data,  model  architectures,  and  training  strategy.  The  detailed  information  is
explained in the following sections.
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molecular behaviors.

2.3　Pixel-based data

Pixel-based molecular data formats, such as 2D images
and  3D  grids,  are  essential  components  of  molecular
property prediction. These formats, easily generated by
tools,  like  RDKit[42] and PyMol[43] for  2D images and
Libmolgrid[44] for  3D  grids,  offer  clear  and
comprehensible  visual  representations  of  molecular
structures. This visual aspect allows for straightforward
human  interpretation,  aiding  in  the  recognition  of
molecular  patterns  and  the  understanding  of  spatial
relationships in computational modeling. This clarity in
visualization  is  crucial  for  effectively  analyzing
molecular geometries and interactions.

3　Domain Knowledge

Domain  knowledge,  from  fields  such  as  physics,
chemistry,  and  biology,  plays  a  crucial  role  for  MPP.
This knowledge is methodically grouped into four key
categories:  atom-bond  property,  molecular
substructure,  chemical  reactions,  and  molecular
characteristics.  Each  category  is  integral  for  a
comprehensive  understanding  and  accurate
interpretation  of  molecular  data. Figure  3 showcases
these categories in detail, providing an in-depth look at
the  essential  aspects  of  molecular  information
interpretation.

3.1　Atom-bond property

In  MPP,  a  deep  understanding  of  atomic  and  bonding
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Fig. 2    Molecular modality. Using the caffeine molecule as an example, we demonstrate the various molecular modalities that
are  essential  for  MPP.  This  is  demonstrated  across  three  primary  categories:  sequence-based,  graph-based,  and  pixel-based
formats.  Each  format  is  derived  from  the  SMILES  representation  of  caffeine,  using  Python  packages  such  as  RDKit  and
software  tools  like  PyMol.  (a)  Sequence-based  data  section  includes  formats  like  SMILES  and  its  variants  (Canonical  and
Isomeric  SMILES),  molecular  fingerprints  (ECFP,  Morgan,  MACCS),  and  SELFIES,  highlighting  their  roles  in  encoding
molecular structures.  (b)  Graph-based data represent caffeine as a graph with atoms as nodes and bonds as edges,  enriched
with 3D information for detailed structural insights. (c) Pixel-based data showcase 2D images and 3D grids of caffeine, which
are crucial for visual analysis and spatial interpretation.
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attributes  is  vital  for  accurately  modeling  molecular
behaviors. Understanding atomic properties is essential
for  molecular  analysis.  For  example,  isotope  numbers
influence  molecular  weight  and  stability,  and  chirality
is  crucial  for  interactions  and  reactions  within
biological  systems.  Hybridization  types  impact
bonding  patterns  and  molecular  geometry.  Atomic
valence, number, mass, formal charge, and aromaticity
significantly  influence  a  molecule’s  chemistry.  Bond
attributes,  like bond type and stereochemistry,  are  key
in  determining  molecular  connectivity,  reactivity,  and
shape,  influencing  interactions  with  biological  targets.
The direction and length of bonds also provide insights
into  spatial  arrangement.  These  detailed  atomic  and
bond  attributes  collectively  provide  a  comprehensive
framework  for  molecular  structure  analysis,  essential
for effective predictive modeling in drug discovery.

3.2　Molecular substructure

In  the  realm  of  MPP,  a  deep  comprehension  of

molecular  substructures  is  indispensable.  These
substructures,  including  functional  groups,  molecular
fragments,  and  pharmacophores,  are  fundamental  in
dictating the functions and interactions of molecule.

These  substructures,  such  as  functional  groups,
molecular  fragments,  and  pharmacophores,  play  key
roles  in  understanding  a  molecule’s  behavior.
Functional  groups,  such  as  hydroxyl  (—OH)  and
carboxyl  (—COOH),  are  specific  group  of  atoms
within  a  molecule  that  is  responsible  for  the
characteristic  chemical  reactions of  that  molecule,  and
are particularly influential in determining a molecule’s
chemical  behavior  and  interactions.  For  example,  a
hydroxyl  group  can  significantly  increase  water
solubility,  thereby  impacting  a  drug’s  absorption,
distribution, and overall pharmacokinetics.

Molecular  fragments  are  larger  portions  of
molecules,  encompassing  various  structural  elements
like  rings  or  chains.  Similarly,  molecular  fragments
like  benzene  rings  affect  a  molecule’s  stability  and
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Fig. 3    Molecular  domain  knowledge.  This  figure  categorizes  molecular  expert  knowledge  essential  for  MPP  into  four
domains, using the molecule C = (CC(= C)c1cc(C(= O)O)cnc1C(C)CC as an example. (a) In the atom-bond property section, we
examine aspects, such as the molecule’s atomic number, mass, valence, and bond types. (b) Molecular substructure includes the
functional  groups,  molecular  fragments,  and  pharmacophores  of  this  molecule,  illustrating  their  influence  on  the  chemical
behavior  and  interactions.  (c)  Molecular  property  covers  a  range  of  properties  from  quantum  mechanics  to  physiology,
showcasing  how  these  properties  affect  the  molecule’s  behavior  in  drug  development.  (d)  Chemical  reaction  discusses  the
mechanisms of molecular transformations, highlighting the molecule’s reactivity.
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electronic,  which  in  turn  can  alter  its  interaction  with
biological  receptors  or  enzymes,  impacting  biological
activity.  Common  molecular  fragment  methods  are
Breaking  of  Retrosynthetically  Interesting  Chemical
Substructure  (BRICS)[45],  REtrosynthetic
Combinatorial  Analysis  Procedure  (RECAP)[46],
Murcko  scaffolds[47],  eMolFrags[48],  and
rdScaffoldNetwork[49].

A pharmacophore is an abstract representation of the
molecular features that are necessary for a molecule to
interact  with  a  specific  biological  target  to  produce  a
desired biological effect. A pharmacophore with both a
hydrogen  bond  donor  and  an  acceptor  in  a  specific
spatial  arrangement,  for  instance,  can  be  crucial  for
binding to biological targets like enzymes or receptors,
influencing  the  molecule’s  effectiveness  as  a
therapeutic  agent.  The  accurate  identification  and
understanding  of  these  substructures  are  key  to
developing  new  pharmaceuticals,  offering  detailed
insights into molecular interactions.

3.3　Chemical reaction

Chemical  reactions  involve  the  transformation  of
substances  through  the  breaking  and  forming  of
chemical  bonds,  leading  to  the  creation  of  new
molecules with specific properties. For example, in the
reaction  C  =  CC(=  C)c1cc(C(=  O)O)cc(NC(=  O)C)
c1C(C)CC  +  SOCl2  →  C  =  CC(=  C)c1cc(C(=  O)O)
cnc1C(C)CC + HCl + SO2, the reactant interacts with
thionyl  chloride,  resulting  in  a  new  product  plus
byproducts.  This  process  highlights  the  roles  of
reactants,  products,  and  catalysts  in  affecting  reaction
outcomes and mechanisms. Such knowledge is vital for
predicting  reaction  paths,  designing  new  molecules
with  desired  properties,  and  developing  effective
pharmaceuticals and novel compounds.

3.4　Molecular property

MPP in drug discovery is a multidisciplinary field, with
each discipline offering detailed insights into molecular
behavior. Quantum mechanics, for example, delve into
electronic  properties  like  ionization  potentials,  crucial
for  understanding  reaction  mechanisms.  Physical-
chemistry examines molecular stability, reactivity, and
phase  behaviors,  which  can  significantly  impact  drug
formulation.  Biophysics  explores  molecular
interactions within biological systems, crucial for drug-
target  binding  studies.  Physiology,  on  the  other  hand,
assesses  drug  effects  at  an  organismal  level,

influencing  pharmacodynamics  and  pharmacokinetics.
These interconnected properties,  such as how a drug’s
solubility  impacts  absorption  and  bioavailability,
highlight  the  need  for  a  comprehensive  understanding
across  levels,  from  atomic  to  organismal,  to  predict
molecular  properties  accurately  and  develop  effective
pharmaceuticals.  This  integrative  approach,
encompassing  everything  from electron  distribution  to
organismal  response,  is  vital  in  the  nuanced  field  of
drug development.

4　Modeling Method

Our  paper  provides  a  concise  yet  comprehensive
examination  of  current  DL methods  in  MPP.  We  first
review  molecular  encoder  architectures,  and  explore
how  these  encoders  align  with  the  prior  structural
knowledge of molecules and how domain knowledge is
integrated  into  them.  Our  review  further  emphasizes
the  utilization  of  unlabeled  data,  encompassing  an
exploration  of  self-supervised,  semi-supervised,
transfer learning, and multi-task learning strategies. To
aid in understanding these intricate concepts, our paper
includes  detailed  diagrams,  which  elucidate  these
advanced  computational  methods  and  their  integration
with  fundamental  molecular  insights,  thereby
contributing to the advancement of MPP.

4.1　Encoder

In  MPP,  encoder  architectures  play  a  key  role  in
transforming  raw  molecular  data  into  meaningful
representations. A range of encoder architectures, each
suited  to  a  particular  molecular  modality  and
complexity,  are  examined  in  this  section.  We
categorize  four  main  types  of  encoders  for  single  data
sources:  RNN-based,  GNN-based,  Transformer-based,
and  CNN-based.  Each  type  is  analyzed  for  its
alignment  with  molecular  prior  structural  knowledge
and  the  integration  of  domain-specific  information.
Additionally,  we  examine  multi-modality  based
encoders,  which  handle  multiple  data  sources,
highlighting  their  unique  characteristics,  applications,
and  the  challenges  they  address  in  molecular
representation  learning.  The  detailed  aspects  of  these
encoder  architectures  are  illustrated  in  the Figs.  4
and 5.
4.1.1　RNN-based method
RNNs, like Long Short-Term Memory (LSTM)[59] and
Gated  Recurrent  Unit  (GRU)[60],  are  adept  at
processing  sequential  data,  with  a  unique  internal
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Fig. 4    Molecular  encoder  method  summary.  We  categorize  molecular  encoder  method  into  five  types:  RNN-based,  GNN-
based,  Transformer-based,  CNN-based,  and  multi-modality-based.  For  each  category,  key  techniques  and  notable
advancements utilized in various influential studies are highlighted, showcasing the evolution and diversification of approaches
in molecular encoding.
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visualization highlights how each encoder type uniquely processes and interprets the molecular structure for MPP.
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memory  feature  that  allows  them  to  maintain  context
and  order  in  sequences.  This  capability  makes  RNNs
highly  effective  for  tasks  involving  sequences  data.
Nowadays  some  work  uses  RNN-based  model  to
analyze 1D molecular data, such as SMILES.

Recently,  RNN-based  models  have  been  used  in  an
increasing  amount  of  works  lately  to  assess  1D
molecular  data,  including  SMILES.  Lin  et  al.[4] first
transformed  SMILES  into  sample  vectors,  which  are
then  processed  using  bidirectional  GRU  neural
networks to predict molecular properties, illustrating an
innovative  approach  in  training  models  for  molecular
property  prediction.  Lv  et  al.[5] introduced
Mol2Context-vec  to  address  the  challenge  of
representing  molecular  substructures  and  their
polysemous  nature,  integrating  different  internal  state
levels  for  dynamic  representations.  To  highlight  the
SMILES  characters  that  are  more  important  for  the
prediction tasks,  Wu et  al.[50] utilized the bidirectional
LSTM  attention  network  in  which  they  employed  a
novel  multi-step  attention  mechanism  to  facilitate  the
extracting  of  key  features  from  the  SMILES  strings.
Nazarova et al.[61] used the single-layer Elman RNN to
identify correlations between the structure of polymers
of  the  norbornene  class  and  their  permittivity,  while
using  the  SMILES  notation  in  binary  and  decimal
representations.  Wang  et  al.[62] employed  a  tree-
structured LSTM network with signature descriptors to
automatically  generate  expressive  signatures  for
molecular  structures,  enabling  the  efficient
representation  of  their  structural  information  and
connectivity in a single-step process.

These  works  demonstrate  the  effectiveness  of  RNN
in  extracting  semantic  information  from  SMILES
sequences,  paralleling  methods  in  Natural  Language
Processing  (NLP).  However,  they  face  challenges
when  incorporating  varied  expert  knowledge  and
managing  long  SMILES  sequences,  and  the  focus  of
RNN-based  models  on  adjacent  characters  hampers
effective  interactions  between  distant  atoms.  This
limitation  can  affect  their  ability  to  capture  extensive
structural  relationships,  especially  when  important
atoms  within  the  same  functional  group  are  distantly
placed in the sequence.
4.1.2　GNN-based method
Molecules  can  be  effectively  represented  as  graphs,
with  atoms  as  nodes  and  chemical  bonds  as  edges.
GNNs are well-suited to learn from this representation,

utilizing layers that enable message passing. In GNNs,
node  embeddings  are  updated  by  aggregating
information  from  neighboring  nodes,  allowing  the
network  to  capture  molecular  features  through  atom-
level  interactions.  This  method  provides  a  detailed
understanding  of  molecular  structures  by  considering
both  individual  atomic  characteristics  and  their
interconnections  within  the  molecule.  Yang  et  al.[51]

constructed molecular encodings by using convolutions
centered  on  bonds  instead  of  atoms,  thereby  avoiding
unnecessary loops during the message passing phase of
the  algorithm.  AttentiveFP[10] characterizes  the  atomic
local  environment  by  propagating  node  information
across  varying  distances,  enhancing  the  representation
of  molecular  structures.  Additionally,  it  incorporates
nonlocal  intramolecular  effects  through  the  use  of  a
graph  attention  mechanism.  Withnall  et  al.[63]

introduced attention  and edge  memory schemes  to  the
existing  message  passing  neural  network  framework.
To address insufficient bond information extraction, Li
et al.[64] explicitly dropped the matrix mapping of edge
features  and  employed  a  triplet  message  mechanism.
This mechanism calculates messages from atom-bond-
atom  information  and  updates  the  hidden  states  of
neural  networks.  Zhang  et  al.[65] proposed  CoAtGIN,
which  uses  k-hop  convolution  to  capture  long-range
neighbor  information  at  the  local  level  and  utilizes
linear  attention  to  aggregate  the  global  graph
representation  according  to  the  importance  of  each
node and edge at the global level.

But  these  methods  focus  on  atom  (node)  or  bond
(edge) information. To address this issue, Song et al.[8]

proposed  a  communicative  message  passing  neural
network  to  improve  molecular  embedding  by
strengthening  the  message  interactions  between  nodes
and  edges  through  a  communicative  kernel.  SC-
NMP[66] aggregates  the  node  representations  of  the
current  step  and  the  graph  representation  of  the
previous  step,  and  proposes  densely  self-connected
neural  message  passing,  which  connects  each  layer  to
every other layer in a feed-forward fashion. To extract
useful  interactions  between  a  target  atom  and  its
neighboring atomic groups, Li et al.[67] proposed a new
graph  learning  paradigm  based  on  a  block  design
named block-based GNN, which demonstrates that the
network  degradation  problem  can  be  reduced  by
applying  a  block  design  with  normalization  and  skip-
connection.  Ma  et  al.[68] employed  cross-dependent
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message passing strategy to integrate the node-centered
and  edge-centered  encoders.  Liu  et  al.[69] developed  a
hypergraph-based  topological  framework  to
characterize  detailed  molecular  structures  and
interactions  at  the  atomic  level.  They  have  recently
proposed  embedding  homology  and  persistent
homology.  Feng  et  al.[70] transformed  each  molecular
graph  into  a  heterogeneous  atom-bond  graph  to  fully
utilize the bond attributes,  and designed unidirectional
position  encoding  for  such  graphs.  Biswas  et  al.[31]

passed  additional  atomic  and  molecular  features,
including 2D RDKit descriptors, Abraham parameters,
QM  descriptors,  and  3D  geometries,  to  improve  the
model performance. Hasebe[71] proposed a knowledge-
embedded message passing neural network that can be
supervised  together  with  nonquantitative  knowledge
annotations  by  human  experts  on  a  chemical  graph.
This  graph  contains  information  on  the  important
substructure  of  a  molecule  and  its  effect  on  the  target
property. Yang et al.[72] extracted physical information
with  a  neural  physical  engine  that  learns  molecular
conformations by simulating molecular  dynamics with
parameterized  forces.  They  then  employed  this
physical  information  as  supplementary  data  for
predicting molecular properties.

However,  most  methods  essentially  attribute
predictions  to  individual  nodes,  edges,  or  node
features.  This  kind  of  interpretability  is  only  partially
compatible  with  chemists’ intuition  at  best.  Chemists
are  more  accustomed  to  comprehending  the  causal
relationship  between  molecular  structures  and
properties  in  terms  of  chemically  meaningful
substructures,  such  as  functional  groups,  rather  than
individual  atoms or  bonds.  Zang et  al.[73] decomposed
the  molecular  graph  by  BRICS  and  additional
decomposition  to  construct  a  motif-level  graph,  in
which  corresponding  multi-level  generative  and
predictive tasks are designed as self-supervised signals.
As the graph pooling technique for learning expressive
graph-level  representation  is  critical  yet  still
challenging,  Liu  et  al.[74] proposed  master-orthogonal
attention,  a  novel  cross-level  attention  mechanism
specifically designed for hierarchical graph pooling. To
fully  explore  higher-order  substructure  information,
Gao  et  al.[75] proposed  substructure  interaction
attention,  which  takes  both  the  information  of
neighbors’ substructures  and  the  interaction
information  among  them  into  account  during  the

aggregation  process.  To  retain  locality  and  linear
network  complexity,  Bouritsas  et  al.[7] employed  a
topologically-aware message passing scheme based on
substructure  encoding,  which  does  not  attempt  to
adhere  to  the  Weisfeiler-Leman hierarchy.  Addressing
the  oversmoothing  problem  in  multi-hop  operations,
Ye  et  al.[76] constructed  a  composite  molecular
representation  with  multi-substructural  feature
extraction and processed such features effectively with
a  nested  convolution  plus  readout  scheme  to  capture
interacting  substructural  information.  Zhu  et  al.[77]

utilized  corepresentation  learning  of  molecular  graphs
and  chemically  synthesizable  BRICS  fragments.
Furthermore,  a  plug-and-play  feature-wise  attention
block  is  first  designed  in  the  model  architecture  to
adaptively recalibrate atomic features after the message
passing  phase.  To  accurately  model  the  complex
quantum interactions inherent in molecules, Lu et al.[78]

utilized  a  sophisticated  hierarchical  graph  neural
network, which directly extracts features from both the
conformation and spatial information of molecules, and
then  integrates  these  features  through  multilevel
interactions.  Fey  et  al.[79] took  in  two  complementary
graph  representations:  the  raw  molecular  graph
representation  and  its  associated  junction  tree,  where
nodes  represent  meaningful  clusters  in  the  original
graph.  Focusing  on  the  molecular  hierarchical
relationship,  Han  et  al.[6] proposed  a  simple  yet
effective  rescaling  module,  called  contextual  self-
rescaling,  that  adaptively  recalibrates  molecular
representations  by  explicitly  modeling
interdependencies between atom and motif  features.  Ji
et al.[52] modeled a molecule as a heterogeneous graph
and  leveraged  metapaths  to  capture  latent  features  for
chemical  functional  groups.  They  also  designed  a
hierarchical  attention  strategy  to  aggregate
heterogeneous  information  at  both  the  node  and
relation  levels.  To  extract  functional  groups  as  motifs
for  small  molecules,  Wu  et  al.[80] constructed  a
heterogeneous  molecular  graph  with  both  atom-level
and  motif-level  nodes,  and  adopted  a  heterogeneous
self-attention  layer  to  distinguish  the  interactions
between multi-level nodes.

Since  different  3D structures  may  lead  to  dissimilar
molecular  properties  despite  having  the  same  2D
molecular  topology.  Recently,  many  works  utilizing
molecular  3D  structures  have  been  introduced.  To
emphasize  equivariant  constraints,  Fuchs  et  al.[81]
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utilized the explicit increase of equivariance constraints
in  self-attention  mechanisms.  As  rotation-invariant
representations  struggle  to  convey  directional
information,  Schutt  et  al.[82] proposed  rotationally
equivariant  message  passing,  exemplified  by  the
polarizable  atom  interaction  neural  network
architecture. Brandstetter et al.[83] expanded equivariant
graph  networks  to  include  not  only  invariant  scalar
attributes but also covariant information, like vectors or
tensors.  This  model  consists  of  steerable  MLPs,
capable  of  incorporating  geometric  and  physical
information  within  its  message  passing  and  updating
functions. Gasteiger et al.[84] showed the universality of
spherical representations, employed a two-hop message
passing mechanism with directed edge embeddings for
rotationally  equivariant  predictions,  and  utilized
symmetric message passing, augmented with geometric
information,  to  enhance  our  model’s  efficacy in  MPP.
Gasteiger  et  al.[85] integrated  directional  information
and  interatomic  distances  by  embedding  and  updating
messages between atoms, using a spherical 2D Fourier-
Bessel  basis  to  jointly  represent  distances  and  angles.
To  model  angular  relationships  among  neighboring
atoms  in  a  GNN,  ensuring  constraints  like  rotation
invariance  and  energy  conservation,  Shuaibi  et  al.[86]

utilized  a  per-edge  local  coordinate  frame  and
innovated a spin convolution, thereby securing rotation
invariance in edge messaging. Fang et al.[53] proposed a
self-supervised  framework  using  molecular  geometric
information  by  constructing  a  new  bond  angle  graph,
where  the  chemical  bonds  within  a  molecule  are
considered as nodes and the angle formed between two
bonds is considered as the edge.

The  GNN-based  model  section  concludes  by
recognizing  that  while  GNN  excel  in  capturing
molecular  topological  information  and  integrating
domain  knowledge,  their  effectiveness  is  hindered  by
the small-world phenomenon. This characteristic leads
to  over-smoothing  in  deeper  networks,  where  nodes
lose  feature  distinctiveness,  impacting  predictive
accuracy.  Additionally,  the  specialized  structure  of
GNN  makes  it  challenging  to  scale  up  with  increased
parameters,  limiting  their  capability  to  handle  large
molecular datasets effectively.
4.1.3　Transformer-based method
Originally  excelling  in  NLP,  the  Transformer
architecture  is  renowned  for  its  self-attention
mechanism,  which  allows  for  parallel  processing  of

entire  sequences.  This  capability  enables  it  to
efficiently  manage  long-range  dependencies  within
data,  making  it  highly  effective  in  MPP.  Its  adeptness
at  understanding  detailed  contextual  relationships
enhances the accuracy and computational efficiency in
predictive modeling.

Wang  et  al.[87] and  Chithrananda  et  al.[55] used
Transformer  to  extract  molecular  information  from
SMILES,  which  is  treated  as  natural  language.  Wang
et  al.[88] proposed  two  significant  advances  in
molecular  data  processing:  structural  fingerprint
tokenization  for  more  efficient  molecule  graph
tokenization  and  normalized  graph  raw  shortcut-
connection  to  enhance  latent  representations  in
complex model structures. To address challenges in the
validity  and  robustness  of  SMILES  representations,
Yüksel  et  al.[56] uniquely  utilized  SELFIES,  a  robust
and  flexible  molecular  representation  format,  to  learn
high-quality  molecular  features,  enhancing  the
reliability  of  molecular  data  analysis  in  computational
chemistry.  To  predict  activity  coefficients  in  binary
mixtures,  Winter  et  al.[89] integrated  information  from
two  SMILES  strings  representing  the  mixture
components, along with temperature and token position
data,  into  a  unified matrix  for  input  encoding.  Ross  et
al.[12] delves into the differences between absolute and
relative  position  embeddings  in  SMILES
representation,  proposing  an  efficient  linear  attention
approximation  for  the  RoFormer  model[90],  which
focuses  on  relative  positioning,  to  enhance  molecular
SMILES processing in deep learning applications.

The Transformer architecture, originally designed for
sequence  data,  has  been  effectively  adapted  for
molecular  graph  representation  in  recent  research.  Its
proficiency  in  handling  global  molecular  information
enhances  its  utility  in  molecular  property  prediction,
showcasing  its  versatility  beyond  traditional  sequence
analysis.  Maziarka  et  al.[91] proposed  the  molecule
attention  Transformer,  which  adapts  the  Transformer
architecture,  augmenting  the  self-attention  mechanism
with  inter-atomic  distances  and  molecular  graph
structure.  Li  et  al.[9] focused  on  chemical  bonds  in
molecular  representations,  employing  molecular  line
graphs  to  illustrate  edge  adjacencies  in  original
molecular  graphs.  Each  graph  is  augmented  with  a
knowledge  node  containing  molecular  descriptors  and
fingerprints,  connected  to  its  original  nodes.  Rong
et  al.[11] combined  message  passing  networks  with  a
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Transformer-style  architecture,  extracted  vectors  as
queries, keys, and values from nodes of the graph, then
fed  them  into  the  attention  block.  Park  et  al.[92]

introduced  graph  relative  positional  encoding,  which
effectively  encodes  graph  structures  by  concurrently
addressing  node-topology  and  node-edge  interactions,
bypassing  the  need  for  linearization.  Hussain  et  al.[93]

developed  the  edge-augmented  graph  Transformer,
employing  global  self-attention  rather  than  traditional
static convolutional aggregation. This design facilitates
dynamic  and  long-range  node  interactions,  and
incorporates  edge  channels  for  evolving  structural
information,  enabling  direct  predictions  on  edges  and
links.  Masters  et  al.[94] integrated  a  substantial
message-passing  module  with  a  biased  self-attention
layer to facilitate both localized biases and broad-scale
communication.  Chen  et  al.[95] proposed  graph
propagation  attention,  which  explicitly  handles  node-
to-node,  node-to-edge,  and  edge-to-node  interactions,
allowing  for  comprehensive  information  propagation.
Yin  and  Zhong[13] developed  a  method  that  alternates
between  GNN  and  Transformer  layers,  and  repeats  in
sequence.  This  approach  effectively  blends  local  and
global  information,  allowing the graph Transformer to
comprehensively integrate node data from both nearby
and  distant  sources.  To  extrace  the  coarse-grained
view, Ren et al.[96] made the molecular graph first enter
the  message  passing  phase  of  the  traditional  GNN
layers to update the node embeddings, then enter graph
transformation  layers  to  learn  different  granular
information. To achieve one encoder for extracting 2D
or  3D  information,  Luo  et  al.[14] used  two  separated
channels  to  encode  2D  and  3D  structural  information
and  incorporated  them  with  the  atom  features  in  the
network  modules.  To  fully  leverages  chemical
knowledge,  Gao  et  al.[97] constructed  an  embedding
unit  comprising  a  GNN and  a  Transformer  to  balance
the neighboring and distant interactions of an atom, and
more  attention  is  given  to  conjugated  systems,
unsaturated  bonds,  heteroatoms  and  the  molecular
topology.  To  extract  the  molecular  fragment
information, Jiang et al.[98] designed a pharmacophoric-
constrained multi-view molecular representation graph,
enabling  PharmHGT  to  extract  vital  chemical
information from functional substructures and chemical
reactions.

Transformer  have  demonstrated  effectiveness  in
recent  work,  particularly  with  sequence  data  like

SMILES,  where  they  treat  it  similarly  to  natural
language.  Their  global  information  extraction
capabilities  also  extend  to  molecular  graph
representation.  Recent  innovations  combine
Transformer  with  GNN,  enabling  simultaneous  local
and  global  data  analysis.  This  blend  showcases
Transformer’s  strength  in  handling  large  molecular
datasets  and  extracting  comprehensive  insights,  which
is vital in MPP.
4.1.4　CNN-based method
CNN, known for processing grid-like topology data, is
adept  at  extracting  features  through  convolutional
layers  and  efficiently  detecting  local  patterns.  This
makes  it  highly  effective  for  image  and  pattern
recognition tasks, which is a trait utilized extensively in
MPP.

To  extract  the  local  pattern  of  1D  molecular  data,
Hirohara et  al.[99]’s  innovative application of  CNNs to
SMILES  data  for  chemical  motif  detection  marks  a
significant step in computational drug discovery. Chen
and  Tseng[16] highlighted  the  impact  of  SMILES
molecular  enumeration  on  CNNs’ performance  in
solubility prediction.

As  DL  methods  have  achieved  great  success  in  the
image processing field, some work use CNN to extract
2D  molecular  image,  but  the  size  of  the  same
atom/structure  is  vibrational  in  different  molecules,
because of the fixed size of the whole molecular image.
To address this issue, Zhang et al.[57] introduced ABC-
Net,  predicting graph structures by representing atoms
and  bonds  as  points,  utilizing  CNN-generated  heat-
maps.  Jiang  et  al.[100] proposed  an  equal-sized
molecular  persistent  spectral  image,  and  encodered  it
with CNN model to extract molecular representation.

As  the  visual  representation  of  molecular  structure,
3D molecular grid is important for extracting molecular
3D information. However, a direct 3D representation of
a molecule with atoms localized at voxels is too sparse,
which  leads  to  poor  performance  of  the  CNNs.  To
address  this  issue,  Kuzminykh  et  al.[101] presented  a
novel  approach where atoms are extended to fill  other
nearby voxels with a transformation based on the wave
transform.  Liu  et  al.[17] utilized  an  atom-centered
Gaussian  density  model  for  3D  molecular
representation,  which  involves  defining  multiple
channels for different spatial resolutions corresponding
to  each atom type.  Sunseri  and Koes[44] facilitated  the
use  of  grid-based  molecular  representations  in  DL,
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generating  3D  arrays  of  voxelized  molecular  data
compatible with various DL frameworks.

The  research  we  have  reviewed  indicates  that  the
CNN-based  networks  excel  at  encoding  pixel-based
data,  like  2D  images  and  3D  grids,  understandable  to
humans. This ability of CNN to efficiently extract local
and  global  information  from such  data  is  essential  for
analyzing molecular behaviors.
4.1.5　Multi-modality-based method
Multi-modal  learning,  initially  prominent  in  computer
vision,  is  now  widely  applied  in  various  fields  for  its
ability  to  handle  and  integrate  different  data  types.  Its
key  benefit  is  enhancing  model  robustness  by  using
complementary data  sources.  In  the  field  of  molecular
property prediction, this method has gained popularity.

Due  to  the  significant  local  chemical  information
contained in fingerprints may assist  models to achieve
superior  results,  Cai  et  al.[102] and  Wang  et  al.[103]

termed  fingerprints  and  graph  neural  networks,  which
combine  and  simultaneously  learn  information  from
molecular  graphs  and  fingerprints  for  MPP.  Not  only
fingerprint,  work  in  Ref.  [104],  MolFM[105],  work  in
Ref.  [106],  GraSeq[21],  and  GIT-Mol[107] employ
different  encoders  to  process  information  from
SMILES strings  and molecular  graphs.  Tang et  al.[108]

encoded  molecule  by  using  molecular  descriptors  and
fingerprints,  molecular  graph,  and  SMILES  text
notation.  Liu  et  al.[58] combined  molecular  structural
data  and  textual  knowledge  to  enhance  molecular
comprehension, jointly learning the chemical structures
of  molecules  and  textual  knowledge.  Zhang  et  al.[109]

used  molecular  mass  spectrum  as  another
representation  to  provide  supplement  information,
which  is  not  contained  in  the  graph  data.  To  address
neglects 3D stereochemical information, Chen et al.[110]

proposed  an  algebraic  graph-assisted  bidirectional
Transformer  framework  by  fusing  SMILES  and
algebraic  graph  representations.  By  broad  learning  of
many  molecular  descriptors  and  fingerprint  features,
MolMap[111] is developed for mapping these molecular
descriptors  and  fingerprint  features  into  robust  two-
dimensional  feature  maps.  To  integrate  the  3D
coordinates  information,  Zhou  et  al.[54] employed  the
atom  distance  matrix  as  the  position  encoding.  Liu
et  al.[112] incorporated  comprehensive  relational  data,
including  distance,  angle,  and  torsion  information
between atoms, extending beyond the traditional edge-
based  1-hop  interactions.  Wang  et  al.[113] embedded

both  molecular  graphs  and  sequences,  then  created  a
joint  embedding  space  alongside  modality-specific
spaces  to  ensure  that  the  multi-modal  data  maintain
both  its  distinctive  characteristics  and  a  consistent
representation across different modalities.

In  conclusion,  the  above  work  underscores  the
effectiveness of multi-modal learning in the context of
MPP. This approach facilitates the seamless integration
of  various  molecular  modality,  including  sequences,
graph  data  types,  and  molecular  descriptors.  By
amalgamating  these  diverse  sources  of  information,
multi-modal  learning  provides  a  richer  and  more
nuanced  understanding  of  molecular  properties,  which
is essential for achieving accurate predictions.

4.2　Training strategy

In  this  section,  we  introduce  all  approaches  used  to
train  DL  models.  While  supervised  learning  has  been
traditionally predominant, its reliance on scarce labeled
data  presents  limitations.  To  circumvent  this,  recent
approaches  have  shifted  towards  unsupervised,  self-
supervised,  and  semi-supervised  learning  methods,
capitalizing  on  the  abundance  of  unlabeled  data.
Transfer  learning  is  also  employed  to  utilize  models
pretrained  on  unrelated  data,  enhancing  the  model’s
performance on specific tasks. Additionally, multi-task
learning  strategies  are  adopted  to  leverage  related
labeled  data,  further  refining  the  model’s  accuracy  in
predicting  molecular  properties.  As Figs.  6 and 7
shown,  the  details  of  training  strategy  are  as
followings.
4.2.1　Self-supervised learning
Self-supervised  learning,  widely  used  in  NLP[124, 125],
utilizes  unlabeled  data  to  extract  prior  knowledge,
proving  effective  in  addressing  labeled  data  scarcity.
This method empowers models to learn comprehensive
representations  from  abundant  unlabeled  data,
enhancing  their  learning  capabilities  and  insight
extraction.

Inspired  by  NLP,  Wang  et  al.[87],  Chithrananda
et  al.[55],  Zhang et  al.[126],  Ahmad et  al.[127],  and Irwin
et  al.[128] employed  Masked  Language  Modeling
(MLM)  on  large  scale  unlabeled  data  to  generate
context-sensitive  representation,  treating  SMILES  as
natural  language.  Ma  et  al.[3] used  auto-encoder
strategy in pretrain stage, first converted SMILES to a
vector  representation,  and  then  reconstructed
representation back to SMILES to update the network.
Furthermore,  Guo  et  al.[21] fused  the  molecular  graph
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and  SMILES  representation  to  reconstruct  the
SMILES.  Except  using  SMILES  as  input,  Yuksel  et
al.[56] employed  MLM  in  SELFIES  representations  in
order  to  obtain  their  concise,  flexible,  and  meaningful
representations.  To  let  nodes  appear  in  similar
structural contexts to nearby embeddings, Hu et al.[129]

proposed a context prediction task by using subgraphs
to  predict  their  surrounding  graph  structures.  To
address  GNN  oversmoothing  and  encourage  latent
node  diversity,  Godwin  et  al.[130] employed  denoise
technique, in which they corrupted the input graph with
noise,  and  added  a  noise  correcting  node-level  loss.
Zeng  et  al.[15] implemented  an  auto-encoder  for
molecular  image  reconstruction,  using  a  discriminator
to distinguish between real and fake molecular images.
To  expand  atom  vocabulary,  Xia  et  al.[118] used  a
context-aware tokenizer to encode atom attributes into
meaningful  discrete  codes,  then randomly masked and
recovered  these  codes  to  efficiently  pretrain  their
encoder.  Intrinsically,  for  molecules,  a  more  natural
representation  is  based  on  their  3D  geometric
structures,  which  largely  determine  the  corresponding
physical  and  chemical  properties.  To  overcome  the
challenge  of  attaining  the  coordinate  denoising
objective,  Liu  et  al.[131] employed  an  SE(3)-invariant
score matching strategy to successfully transform such
objective  into  the  denoising  of  pairwise  atomic
distances.  To capture  the  anisotropic  characteristics  of
molecules,  Feng  et  al.[132] proposed  a  novel  hybrid
noise strategy, including noises on both dihedral angel

and  coordinate,  and  also  decoupled  the  two  types  of
noise  and  designed  a  novel  fractional  denoising
method,  which  only  denoise  the  latter  coordinate  part.
For effectively learning 3D spatial representation, Zhou
et  al.[54] employed  3D  position  recovery  and  masked
atom  prediction  as  pretrain  task.  Furthermore,  Jiao  et
al.[133] exploited  the  Riemann-Gaussian  distribution  to
ensure  the  loss  to  be  E(3)-invariant,  enabling  more
robustness.  To  guild  by  the  molecular  domain
knowledge  and  extract  chemical  information  like
chemists,  Li  et  al.[9, 24] leveraged  the  molecular
descriptors  and  fingerprints,  which  serves  as  the
semantics  lost  in  the  masked  graph  to  guide  the
prediction of the masked nodes, thus making the model
capture  the  abundant  structural  and  semantic
information from large-scale unlabeled molecules.  Wu
et al.[119] proposed atom property prediction to discern
finer  differences  between  atoms,  and  MACCS
fingerprints  prediction,  enabling their  model  to extract
and learn predefined molecular features. Gao et al.[134]

used  atom  charges  and  3D  geometries  as  inputs,  with
molecular  energies  as  the  target  labels,  aiming  to
effectively  leverage  energy  information  for  enhanced
molecular  analysis.  To  optimize  multi-task  integration
and  avoid  ineffective  transfer,  Wang  et  al.[135]

introduced  a  fusion  strategy  that  utilizes  a  surrogate
metric  based  on  the  total  energy  of  all  atoms  in  a
molecule  during  the  pretraining  stage.  Zang  et  al.[73]

designed three generative tasks that predict bond links,
atom  types,  and  bond  types  with  the  atom
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strategy

Self-supervised learning

Contrastive learning: Multi-view GraphMVP[18];
DVMP[114]; Zhu et al.[20]

Contrastive learning:
Domain knowledge boost

KANO[23]; MoCL[115];
iMolCLR[116]

Contrastive learning:
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MolCLR[22]; GraphCL[117];
ImageMol[15]

Encoder-recovery/prediction KPGT[24];
Mole-BERT[118]; K-BERT[119]

Substructure enhance SME[120]; FragCL[121]; HiMol[73]
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Pseudo label ASGN[25]; InstructBio[122]

Transfer learning Property-molecule
relation enhance Meta-GAT[123]; GS-Meta[30]

Multi-task learning Biswas et al.[31]
 
Fig. 6    Training  strategy  summary.  We  categorize  training  strategies  into  four  key  types:  self-supervised  learning,  semi-
supervised  learning,  transfer  learning,  and  multi-task  learning.  Each  category  includes  a  detailed  description  of  the  main
focuses  and  considerations  prevalent  in  renowned  studies,  illustrating  the  diverse  approaches  and  priorities  within  each
training strategy for optimizing molecular property prediction.
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representations, and designed two predictive tasks that
predict  the  number  of  atoms  and  bonds  with  the
molecule  representation.  Zeng  et  al.[136] and  Broberg
et  al.[137] developed  methods  to  predict  the  product
molecular  SMILES  based  on  the  reactant  molecular
embedding. This approach allows for the extraction of
chemical  information  from  chemical  reactions,
providing  insights  into  the  molecular  transformations
involved in the reaction process.

Contrastive  learning,  a  method  distinguishing
positive and negative molecule pairs, has become a key
strategy in encoder pretraining for its ability to enhance
molecular  structure  discernment.  This  technique  is
extensively  utilized  in  numerous  studies,  making  it  a
cornerstone  for  improving  molecular  structure

recognition  in  various  models.  For  the  SMILES
augmentation,  Wu  et  al.[50] and  Zhang  et  al.[138]

implemented  SMILES  enumeration,  a  technique  that
varies starting atoms and traversal orders to represent a
molecule  with  different  SMILES,  thereby  uncovering
more  intricate  patterns  from  complex  SMILES
structures. Wu et al.[119] and Abdel-Aty and Gould[139]

utilized  SMILES  permutation  as  a  data  augmentation
technique,  involving the rearrangement of  atoms in an
SMILES  string  to  create  different  representations
without altering the underlying molecular structure. For
molecular  graph  augmentation,  techniques  like  node
dropping,  edge  perturbation,  attribute  masking,  and
subgraph  masking  are  commonly  used[22, 117, 140, 141].
However,  these  random  masking  methods  may  not
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Fig. 7    Training  strategy.  The  high  cost  of  experiments  often  results  in  a  scarcity  of  labeled  data,  leading  to  challenges  like
overfitting  and  poor  generalization.  To  address  this,  this  figure  illustrates  various  advanced  training  strategies.  (a)  Self-
supervised  learning,  such  as  contrastive  learning  and  masking  recovery,  utilizes  unlabeled  data  for  pretraining  encoders,
enabling  them to  learn  molecular  domain  knowledge  effectively.  (b)  Semi-supervised  learning  methods,  like  pseudo-labeling
and  co-training,  leverage  both  labeled  and  unlabeled  data,  enhancing  the  encoder’s  understanding  of  data  distribution.  (c)
Transfer learning strategy capitalizes on pre-trained models from source tasks to boost performance on target tasks. (d) Multi-
task learning approaches combine related datasets to predict multiple properties simultaneously, benefiting from the relational
aspects of molecular data.
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effectively  guide  the  encoder  to  identify  the  most
crucial  chemical  information,  and  might  result  in  the
creation of less accurate positive and negative molecule
pairs  for  the  training  process.  To  capture  important
molecular  structure  and  higher  order  semantic
information,  Liu  et  al.[142] adopted  the  graph  attention
network as the molecular graph encoder, and leveraged
the  learned  attention  weights  as  masking  guidance  to
generate molecular augmentation graphs. Lin et al.[143]

first  modeled  the  underlying  semantic  structure  of  the
graph data via clustering semantically similar graphs to
select  the  positive  and  negative  pair,  and  then
reweighted  its  negative  samples  based  on  the  distance
between their prototypes and the query prototype, such
that  those  negatives  having  moderate  prototype
distance  enjoy  relatively  large  weights.  Cui  et  al.[144]

utilized  the  GNN  encoder  and  its  momentum-update
version[145] to  generate  positive  samples  at  the
representation level, and selected the negative pairs by
the semantic  importance of  nodes,  which is  calculated
by  eigenvector  centrality  iteration[146].  Wang  et  al.[147]

employed  a  generative  probabilistic  model  to  learn
molecular graph structures for topology augmentations,
and simultaneously developed feature selectors to mask
less  critical  atom  features,  thus  generating  effective
attribute-level  augmentations.  To  gain  deeper  insights
into  chemical  information,  many  researchers
incorporate  domain  knowledge  into  their  contrastive
learning approaches. By using backbone and side-chain
information,  Liu  et  al.[148] employed  side-chain
repetition,  side-chain  generation,  backbone  disruption,
and  backbone  disruption+side-chain  deletion  strategy
to  generate  hard  positive,  soft  positive,  soft  negative
and hard negative samples, respectively.

Sun  et  al.[115] replaced  a  valid  substructure  by  a
bioisostere  that  introduces  variation  without  altering
the  molecular  properties  too  much,  and  treats  them as
positive  pairs.  Also,  they  optimized  the  similarity  of
molecule pairs embedding to be close to the similarity
of  their  ECFP.  To  avoid  faulty  negative  pairs,  Wang
et  al.[116] mitigated  negative  contrastive  instances  by
considering ECFP similarities between molecule pairs.
Wang et  al.[149] calculated  the  weight  vector  using the
self-attention  mechanism  to  determine  the  selection
probability  of  each  character  in  SMILES,  and
generated  positive  samples  using  three  masked
strategies:  roulette  masking,  top  masking,  and  random
masking.  To  maintain  semantics  between  conformers,

Moon et  al.[150] randomly selected molecules  from the
conformer  pool  instead  of  selecting  the  most  stable
molecules to learn the 3D structure abundantly. Kuang
et  al.[151] considered  conformations  with  the  same
SMILES as positive pairs and the opposites as negative
pairs,  while  keeping  the  weight  to  indicate  the  3D
conformation  descriptor  and  fingerprint  similarity.
Knowledge  Graph  (KG)  is  a  semantic  network
composed  of  entities  and  their  relations  in  the  real
world[152]. Hua et al.[153] used the atoms in SMILES as
indices to query the embedding matrix to obtain entity
and  relation  embeddings.  For  the  entity  and  relation
vectors of different atoms, they obtained the entity and
relation  embeddings  of  the  SMILES  through  linear
mapping,  and  finally  concatenated  the  two  vectors  to
obtain  the  final  embedding  representation.  Fang
et  al.[154] first  constructed  a  chemical  element  KG
based  on  periodic  table  of  elements,  to  describe  the
relations  between  elements  and  their  basic  chemical
attributes,  Furthermore,  Fand  et  al.[23] constructed
another  chemical  element  KG  based  on  the  periodic
table  and  Wikipedia  pages  to  summarize  the  basic
knowledge  of  elements  and  the  closely  related
substructure.  Those  KGs  offer  a  comprehensive  and
standardized  view  from  a  chemical  element
perspective, and help to augment the original molecular
graph with the guidance of KG.

In  the  realm  of  MPP,  a  deep  understanding  of
molecular  substructures  is  increasingly  recognized  as
crucial.  Many  recent  studies  leverage  this  domain
knowledge  to  effectively  identify  and  analyze
important  substructural  information,  significantly
enhancing the understanding of molecular behavior. Xu
et  al.[155] aimed  to  preserve  local  similarities  between
graph  instances  by  aligning  embeddings  of  related
subgraphs  and  differentiating  these  from  unrelated
pairs. They also implemented hierarchical prototypes to
represent  the  latent  distribution  of  graph  datasets,
enhancing  data  likelihood  with  respect  to  both  GNN
parameters  and  these  hierarchical  structures.  Xu  et
al.[156] aimed  to  capture  both  intra- and  inter-space
relationships  in  group  representations,  and  also
introduced  an  attention-based  mechanism  for
generating  groups,  aiming  at  identifying  diverse
molecular  substructures  effectively.  Wang  et  al.[116]

employed  BRICS  to  decompose  different
substructures,  which  are  considered  as  contrastive
negative  pairs.  Motifs,  including  chemical  functional
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groups  or  fragments,  serve  as  self-generated  labels
determined  by  their  presence  or  absence  in  the  graph.
Shen  et  al.[157] and  Rong  et  al.[11] used  these  labels  to
pretrain  their  encoders.  To  learn  the  local  semantics,
Luo  et  al.[158] used  graph  clustering  techniques  to
partition  each  whole  graph  into  several  subgraphs,
while  preserving  as  much  semantic  information  as
possible,  and  treated  the  molecular  graph  and  the
clustering  graph  as  positive  pair.  Benjamin  et  al.[159]

extracted  substructure  information  by  setting  the
junction tree (through a tree decomposition algorithm)
reconstruction  and  fingerprint  prediction  task.  To
analyze molecular GNN strictly in terms of chemically
meaningful fragments, Wu et al.[120] identified the most
crucial  set  of  substructures  (BRICS  and  Murckoand
functional  groups)  in  a  molecule  that  are  responsible
for  a  model’s  prediction.  HeGCL[160] introduces  the
meta-path  view  that  provides  semantic  information,
and encodes graph embeddings by maximizing mutual
information  between  global  and  semantic
representations  obtained  from  the  outline  and  meta-
path view, separately. Hierarchical molecular graph is a
usual  way  to  extract  the  substructure  molecular
representations.  Zhu  et  al.[77] extracted  hierarchical
information  by  utilizing  co-representation  learning  of
molecular graphs and chemically synthesizable BRICS
fragments, and also used a feature-wise attention block
to  adaptively  recalibrate  atomic  features  after  the
message  passing  phase.  Kim  et  al.[121] constructed  a
bag  of  fragments  from  a  molecule  through
fragmentation,  treating  a  complete  or  incomplete  bag
as a positive or negative view of the original molecule,
respectively.  Xie et  al.[161] proposed a Fragment-based
Molecular  Graph  (FMG)  to  represent  the  topological
relationship  between  chemistry-aware  substructures
within  a  molecule.  They  then  pretrained  it  on  a
fragment  level  using  contrastive  learning  with  well-
designed  hard  negative  pairs  to  extract  node
representations  in  FMGs.  Ji  et  al.[162] decomposed  the
molecular  graph  using  a  more  reasonable  method  to
construct  the  fragment  graph.  They  selected
positive/negative  pairs  based  on  similarities  between
two-level  molecule  pairs,  and  employed  a  contrastive
loss  function,  as  proposed  by  Hadsell  et  al.[163],  to
pretrain the encoder.

Diverse  data  formats  have been shown to  be crucial
for MPP, and the multi-modal approach, merging these
formats,  enhances  prediction  accuracy  by  offering  a

holistic  view  of  molecules.  This  technique,
increasingly  adopted  in  research,  combines  different
data  types  for  a  more  detailed  molecular  analysis.  To
leverage  two  popular  molecular  representations  and
augmentations  for  each  modality,  Pinheiro  et  al.[164],
Zhang  et  al.[165],  Zhu  et  al.[114],  and  Sun  et  al.[106]

exploited  two  molecular  representations  that  can  be
easily  acquired  from  chemical  space:  the  SMILES
string and the molecular graph, and then made them as
positive  pairs.  Li  et  al.[19] utilized  self-supervised
learning by exploiting the relationship and consistency
between 2D topological and 3D geometric structures of
molecules.  Additionally,  Liu  et  al.[18] applied  a
generative  self-supervised  learning  approach  that
focuses  on  intra-data  knowledge,  reconstructing  key
features  at  the  individual  data  point  level  to  enhance
the  understanding  of  molecular  structures.  3D
Infomax[166] maximizes  the  mutual  information
between  learned  3D  summary  vectors  and  the
representations of a GNN. Zhu et al.[20] implemented a
multifaceted  pretraining  strategy  involving  the
reconstruction  of  masked  atoms  and  coordinates,
generating 3D conformations based on 2D graphs, and
creating  2D  graphs  from  3D  conformations.  Kim  et
al.[121] focused  on  extracting  explicit  3D  geometric
information  by  proposing  a  solution  for  predicting
torsional angles between adjacent molecular fragments,
thereby  enhancing  the  depth  and  accuracy  of  3D
molecular  analysis.  Zhu  et  al.[167] aimed  to  integrate
multiple molecular feature views, including 2D and 3D
graphs,  Morgan  fingerprints,  and  SMILES  strings,
ensuring  cohesive  embedding  consistency  between
these  among  representations  for  a  more  unified
molecular analysis.

The  reviewed  works  show  that  self-supervised
learning,  particularly  through  methods  like  encoder-
recovery  and  contrastive  learning,  effectively  utilizes
unlabeled  data  to  improve  model  generalization  in
MPP. These methods excel in learning prior knowledge
through  various  pretraining  tasks,  allowing  for
integration  of  multi-modal  data  and  domain
knowledge.  This  approach  significantly  enhances  the
adaptability  and  performance  of  models  in  molecular
property prediction scenarios.
4.2.2　Semi-supervised learning
Semi-supervised  learning  effectively  alleviates  the
scarcity  of  labeled  molecular  data  in  fields  like  MPP.
By blending a small subset of labeled data with a larger
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pool of unlabeled data, it bridges the gap between fully
supervised and unsupervised learning methods.

Consistency  regularization  is  based  on  the  idea  that
applying  realistic  perturbations  to  unlabeled  data
should  not  significantly  alter  predictions,  ensuring
stability  and  reliability  in  the  learning  process.
InfoGraph*[26] employs  mean-teacher  method[168] to
maximize  the  mutual  information  between
unsupervised  graph  representations  and  the
representations learned by existing supervised methods
in semi-supervised scenarios.  Chen et  al.[169] predicted
chemical toxicity and trained the network by the mean-
teacher  SSL  algorithm,  which  updates  the  weights  in
teacher  model  by  applying  the  exponential  moving
average. Zhang et al.[27] proposed a data augmentation,
which  constructs  new  adjacency  matrix  and  randomly
masks  the  edges,  calculates  the  average  of  all  data
augmentation  distributions,  and  then  employs
MixMatch[170] label guessing and sharpening method to
minimize entropy and accurately guess labels based on
the label distribution center.

Proxy-label strategy, assigning temporary labels to
unlabeled  data,  expands  the  training  dataset  when
labeled  data  are  limited.  This  approach  enhances  the
model’s  learning  process,  with  the  proxy  labels  being
iteratively  refined  for  improved  accuracy  and
generalization.  ASGN[25] adopts  a  teacher-student
framework  to  jointly  exploit  information  from
molecular structure and molecular distribution to learn
general  representation,  then  employs  the  active
learning  strategy  in  terms  of  molecular  diversities  to
select informative data. Yu et al.[171] developed a semi-
supervised  drug  embedding  model,  that  combines
unsupervised  learning  from  the  chemical  structures  of
drugs and drug-like molecules with supervised learning
based  on  hierarchical  relations  from  an  expert-crafted
drug  hierarchy.  This  approach  ensures  a  robust  and
comprehensive  representation  of  drug  properties.  Ma
et  al.[172] employed  teacher-student  framework,  which
used  several  epochs  as  an  iteration,  updating  teacher
model by the best student model. As the Cross-Entropy
(CE)  loss  function  is  not  proved  to  be  robust  to  label
noise  during  the  training,  they  employed  generalized
CE[173] loss  to  boost  the  self-training.  To  address  data
imbalance,  Liu  et  al.[174] analyzed  the  distribution  of
imbalanced  annotated  data  and  identified  label  ranges
needing  adjustment,  and  then  used  high-quality
pseudo-labels  to  create  graph  examples  to  augment

under-represented areas, striving for an ideal balance in
training  data.  Wu  et  al.[122] introduced  an  instructor
model  to  provide  the  confidence  ratios  as  the
measurement  of  pseudo-labels’ reliability.  These
confidence  scores  then  guide  the  target  model  to  pay
distinct  attention  to  different  data  points,  avoiding  the
over-reliance  on  labeled  data  and  the  negative
influence of incorrect pseudo-annotations.

This approach not only enhances model performance
by utilizing the comprehensive information available in
unlabeled  data,  but  also  addresses  the  challenge  of
acquiring  extensive  labeled  datasets,  which  is  a
common issue in MPP.
4.2.3　Transfer learning
Transfer learning strategies,  widely adopted in various
fields  to  address  data  scarcity,  focus  on  enhancing
prediction  performance  for  tasks  with  limited
data[175–177].  These  strategies  involve  transferring
knowledge  from  a  data-rich  source  task  to  improve
learning in a data-scarce target task. Recently, there has
been  a  significant  increase  in  methods  employing
transfer  learning,  showcasing  its  growing  importance
and application across different domains.

Sun  et  al.[28] enhanced  chemical  and  physiological
property  predictions  by  applying  transfer  learning,
integrating  insights  from  physics  and  physical
chemistry  to  improve  training  outcomes.  Li  et  al.[178]

developed  a  framework  for  accurately  estimating  task
similarity,  which,  as  demonstrated  in  comprehensive
tests,  provides  valuable  guidance  for  enhancing  the
prediction  performance  of  transfer  learning  in
molecular property analysis.

Meta-learning,  focusing  on  rapid  adaptation  to  new
tasks  with  minimal  data,  is  effective  in  addressing  the
lack  of  labeled  molecular  data.  Many  recent
works[179–183] are  based  on  Model-Agnostic  Meta-
Learning  (MAML),  enabling  rapid  adaptation  and
learning in data-limited scenarios. To effectively utilize
correlations  of  molecules  and  properties,  Lv  et  al.[123]

constructed  a  molecule-property  relation  graph,  where
nodes represent molecules and properties connected by
property  labels,  and  then  redefined  a  meta-learning
episode  as  a  subgraph  within  it,  containing  a  target
property  node  along  with  related  molecules  and
auxiliary  property  nodes.  Chen  et  al.[29] developed
ADKF-IFT,  a  model  that  separately  trains  a  subset  of
parameters  with  meta-learning  loss  and  adapts  others
using maximum marginal likelihood for each task. This
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method, unlike previous ones using a single loss for all
parameters,  effectively  utilizes  meta-learning’s
regularization  to  prevent  overfitting.  MTA[184] is
mainly  conducting  task  augmentations  by  generating
new labeled samples through retrieving highly relevant
motifs  from  a  pre-defined  motif  vocabulary  as  an
external memory. To utilize many-to-many correlations
of  molecules  and  properties,  Zhuang  et  al.[30]

constructed  a  Molecule-Property  relation  Graph
(MPG),  reformulated an episode in  meta-learning as  a
subgraph of the MPG, and then scheduled the subgraph
sampling  process  with  a  contrastive  loss  function,
which  considers  the  consistency  and  discrimination  of
subgraphs. Guo et al.[185] developed a model where the
importance  of  different  property  prediction  tasks  in
few-shot  learning  is  gauged  using  a  self-attentive  task
weight, calculated by averaging molecular embeddings
from  each  task’s  query  set,  to  represent  task
significance.  Wang  et  al.[186] proposed  a  property-
aware embedding function for context-based molecular
adaptation  and  an  adaptive  relation  graph  module  for
molecular relation and embedding refinement, and then
employed  selective  meta-learning  strategy  for  task-
specific  parameter  updates,  effectively  harmonizing
shared  knowledge  and  unique  aspects  in  property
prediction  tasks.  Yao  et  al.[187] picked  out  some
molecules  sharing  common  properties  and  used
multiple  property-aware  graph  neural  networks  to
extract  molecular  representation,  then  employed  the
Spearman’s correlation to build property-aware matrix.
In the few-shot MPP task, the meta-learning strategy is
adopted  to  learn  common  prediction  knowledge  from
the meta-training categories.

In conclusion, transfer learning has gained popularity
for  its  ability  to  enhance  model  generalization  in
scenarios  with  limited  labeled  data.  This  method  is
particularly  effective  in  exploiting  the  relationships
between  molecules  and  properties,  identifying  shared
information, such as the role of molecular substructures
across  different  tasks,  which  is  crucial  for  developing
more informed and accurate predictive models.
4.2.4　Multi-task learning
Multi-task  learning  is  a  machine  learning  approach
where  a  model  is  trained  on  multiple  related  tasks
simultaneously,  rather  than  training  on  each  task
independently.  This  strategy  leverages  the
commonalities  and  differences  across  tasks,  allowing
the model to learn more generalizable features.

Ma  et  al.[3] established  a  multi-label  supervised
model  on  a  combined  dataset  with  missing  labels.  the
input  to  prediction  network  is  a  data  matrix  with
multiple  property  label  information,  which  can  be  an
original dataset collected from specialized experiments.
Tan  et  al.[32] constructed  our  multitask  models  by
stacking  a  base  regressor  and  classifier,  enabling
multitarget  predictions  through  an  additional  training
stage on the expanded molecular feature space. Biswas
et  al.[31] employed  a  multitask  training  method  for  a
single  model  to  predict  critical  properties  and acentric
factors,  while  also  adjusting  target  weights  in  the  loss
function to correct data imbalance.

These works we have reviewed show that multi-task
learning is highly effective in MPP, as it capitalizes on
the  interrelation  of  various  molecular  properties.  This
enhances a model’s capacity to simultaneously predict
multiple  properties,  which  is  a  particularly  valuable
trait when dealing with the challenge of limited labeled
data.

5　Evaluation and Benchmark

In evaluating the performance of models in MPP, it  is
crucial  to  consider  a  variety  of  benchmarks,  each
offering distinct datasets and posing unique challenges.
Key  benchmarks  include  MoleculeNet[33],
ADMETlab[188],  MoleculeACE[189],  DrugOOD[190],
MD17[191], TUDataset[192] (comprising MUTAG, PTC,
NCI,  PROTEINS,  D&D,  and  ENZYMES),  and
PCQM4Mv2[193];  their  details  are  shown  in Table  1.
MoleculeNet,  our  primary  focus,  offers  a  diverse
collection  of  datasets  in  quantum  mechanics,  physical
chemistry, biophysics, and physiology, which is crucial
for  multifaceted  molecular  property  predictions.
ADMETlab,  is  vital  for  assessing  drug  safety  and
efficacy,  providing  data  on  ADMET  properties.
MoleculeACE focuses on QSAR modeling challenges,
notably activity cliffs.  DrugOOD, based on ChEMBL,
emphasizes  out-of-distribution  generalization  in  AI-
aided drug discovery. MD17 is essential for validating
models  in  computational  chemistry  with  its  molecular
dynamics  trajectories.  TUDataset  includes  varied
datasets  like  DD,  ENZYMES,  PROTEINS,  and
MUTAG,  each  presenting  unique  graph-based
bioinformatics  challenges.  Lastly,  PCQM4Mv2  from
the Open Graph Benchmark offers large-scale quantum
mechanical  property  prediction  challenges  for  graph
neural  network  models.  Among  these,  MoleculeNet
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stands out due to its comprehensive coverage and wide
usage,  making  it  an  exemplary  benchmark  for  our
evaluation.

MoleculeNet,  a  frequently  used  benchmark  in  MPP,
offers a diverse range of datasets categorized into four
groups:  quantum  mechanics,  physical  chemistry,
biophysics,  and  physiology.  Each  group  provides
specialized  datasets  to  assess  different  aspects  of
molecular properties.  Quantum mechanics: Datasets in
this  group  are  centered  around  electronic  properties
derived  from  quantum  mechanical  calculations.
Physical  chemistry:  Datasets  in  this  group  focus  on
physical  and  chemical  properties  of  molecules,
including solubility and lipophilicity.  Biophysics: This
category  includes  datasets  related  to  biological
interactions  and  processes,  such  as  protein-ligand
binding affinities.  Physiology: Datasets here pertain to
organism-level  effects,  like  toxicity  and drug efficacy.
Evaluating  models  across  these  diverse  datasets  from
MoleculeNet allows for a comprehensive assessment of
their predictive capabilities in various aspects of MPP.

Consistent  with  prior  studies,  we  adopt  the  area
under  the  receiver  operating  characteristic  curve
(namely  ROC-AUC)  as  the  evaluation  metric  for
classification  datasets,  which  is  a  widely  used  metric
for  assessing  the  performance  of  binary  classification

tasks.  For  the  regression  datasets,  we  utilize  Root-
Mean-Squared Error (RMSE) as the evaluation metric.
It  is  important  to  note  that  many  studies  in  this  field
adopt either random or scaffold splits for dividing their
datasets,  though  not  uniformly.  A  random  split
involves  randomly  dividing  the  dataset  into  training,
validation,  and  test  sets,  regardless  of  molecular
structures. On the other hand, a scaffold split organizes
molecules  based  on  their  core  chemical  scaffolds,
ensuring that the model is tested on chemically distinct
molecules from those it is trained on, providing a more
stringent  test  of  its  generalization  ability.  The  choice
between these splitting methods can significantly affect
the outcomes and interpretations of model performance
evaluations.

6　Discussion

6.1　Domain knowledge integration

This  part  aims  to  analyze  the  contribution  of  domain
knowledge  for  MPP,  as  the  model  input.  It  is  divided
into  3  part:  atom-bond  property,  molecular  structure,
and molecular property relation.

As more research utilizes atom and bond properties,
the efficiency of MPP has improved. However, it raises
the  question:  Does  integrating  additional  atom  and

 

Table 1    Overview of datasets for molecular property prediction. This table encapsulates key benchmarks, highlighting their
scale, scope, and specific applications in the fields of molecular modeling, drug discovery, and computational chemistry.

Benchmark Description Number of molecules Application/Challenge

MoleculeNet[33]
A diverse collection of datasets across quantum mechanics,
physical chemistry, and biophysical properties, pivotal for
various molecular property predictions.

785 951
Multifaceted challenges in

molecular property
predictions

ADMETlab[188]
It provides extensive data on ADMET properties, which is
crucial for drug safety and efficacy assessments, enhancing drug
development processes.

94 387 Drug development and
safety evaluation

MoleculeACE[189]
It focuses on QSAR modeling challenges, especially activity
cliffs where minor structural changes cause significant
bioactivity variations, testing the robustness of ML models.

48 707 Model accuracy in subtle
molecular variations

DrugOOD[190]
Based on ChEMBL, it emphasizes Out-Of-Distribution (OOD)
generalization, crucial for advancing AI in drug discovery under
limited and varied data scenarios.

930 314 OOD generalization in AI-
aided drug discovery

MD17[191]
It contains molecular dynamics trajectories, essential for
developing and validating models in computational chemistry
and molecular simulations.

3 817 604
Molecular dynamics

model development and
validation

TUDataset[192]

It includes datasets like DD, ENZYMES, PROTEINS, and
MUTAG, each offering unique bioinformatics challenges in
graph-based analysis, such as protein structure and enzyme
function classification.

−
Bioinformatics

applications in graph-
based learning

PCQM4Mv2[193]
A dataset from the Open Graph Benchmark, providing large-
scale quantum mechanical property prediction challenges for
graph neural network models.

3 746 619
Quantum mechanical
property prediction in

molecular systems
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bond properties into the model input necessarily lead to
higher model performance? Wojtuch et al.[194] analyzed
the  impact  of  atomic  features  in  graph  convolutional
neural  networks,  comparing  twelve  hand-crafted  and
four  literature-based  feature  combinations.  Findings
indicate  that  feature  importance  is  task-specific  and
linked to their prevalence in the dataset. Reducing less
frequent or redundant features,  such as formal charges
or  aromaticity,  improves  performance.  These  insights
also  apply  to  advanced  models  like  graph
Transformers,  though  optimal  feature  selection  varies
by model.

Increasingly,  molecular  structure  information  is
being  incorporated  into  MPP,  with  several  studies
leveraging  it  to  derive  coarse-grained  molecular
insights from hierarchical graphs. Recent methods, like
MoLGNN[157],  HiGNN[77],  MISU[159],  CAFE[161],  and
iMolCLR[116],  have  used  molecular  substructure
knowledge,  such  as  BRICS  or  functional  groups,  to

construct  hierarchical  graphs  treating  fragments  as
nodes.  These  methods  have  shown  improved  results
over  those  not  using  substructure  information.  As
Tables 2 and 3 demonstrate, the ablation studies reveal
a  notable  enhancement  in  methodology  efficacy  when
fragment or functional group information is integrated.
Specifically,  we  observe  a  3.98% improvement  in
regression  tasks,  measured  using  RMSE,  and  a  1.72%
improvement  in  classification  tasks,  measured  using
ROC-AUC.  These  results  confirm  the  significant
impact  of  incorporating  substructure  domain
knowledge  into  these  deep  learning  models.  We
present  two  compelling  case  studies  that  illustrate  the
impact  of  molecular  substructure information obtained
via  the  BRICS  methodology.  The  first  example
involves  the  molecule “CC(C)(C)NCC(O)c1ccccc1F”.
When  employing  BRICS  fragmentation,  the  model
identifies  the  fluorine  atom  and  the  tertiary  amine  as
critical  features.  These  fragments  are  known  to

 

Table 2    ROC-AUC  comparison  of  DL  methods  for  MPP  classification  tasks  with  substructure  domain  knowledge  in
MoleculeNet.  This table contrasts various models,  focusing on classification tasks.  Each model is  evaluated with and without
substructure  information,  as  indicated  by  original  and  ablation  study  rows.  The “−” symbol  marks  the  absence  of  data  for
some datasets, while “avg. imp.” shows the average performance improvement due to substructure information integration.

(%)

Model Splitting
Classification

avg. imp.
BBBP Tox21 ToxCast SIDER ClinTox BACE HIV

MoLGNN[157] (MoLGNN, only
GINVAE) Random

88.9 − − 63.6 94.2 87.4 78.0
1.09

89.2 − − 61.7 93.7 87.1 76.3

HiGNN[77] (HiGNN, without HI) Random
93.2 85.6 − 65.1 93.0 89.0 −

0.25
93.0 85.2 − 65.4 92.6 88.7 −

MISU[159] (MISU, without
JTVAE) Scaffold

66.7 76.3 62.8 59.7 78.0 70.5 −
1.93

65.9 76.2 62.3 58.4 76.1 67.1 −
CAFE[161] (CAFE-MPP, only

Graphormer) Random
96.5 80.5 − 65.8 98.2 93.9 −

3.93
93.6 79.3 − 61.8 94.3 89.1 −

iMolCLR[116] (iMolCLR and
MolCLR) Scaffold

76.4 79.9 73.6 69.9 95.4 88.5 80.8
1.39

73.6 79.8 72.7 68.0 93.2 89.0 80.6

 

Table 3    RMSE comparison of DL methods for MPP regression tasks with substructure domain knowledge in MoleculeNet.
This  table  contrasts  various  models,  focusing  on  regression  tasks.  Each  model  is  evaluated  with  and  without  substructure
information, as indicated by original and ablation study rows. The “−” symbol marks the absence of data for some datasets,
while “avg. imp.” shows the average performance improvement due to substructure information integration.

Model Splitting
Regression

avg. imp.
ESOL FreeSolv Lipo QM7 QM8

HiGNN[77](HiGNN, without HI) Random
0.532 0.915 0.549 − −

2.78%0.536 0.941 0.575 − −
CAFE[161](CAFE-MPP, only

Graphormer) Random
0.687 1.276 0.684 43.75 0.0141 1.37%0.782 1.303 0.718 40.69 0.0138

iMolCLR[116](iMolCLR and
MolCLR) Scaffold

1.130 2.090 0.640 66.30 0.0170 7.78%1.110 2.200 0.650 87.2 0.0174
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significantly  affect  CNS  activity  due  to  their
lipophilicity, which is a crucial determinant for Blood-
Brain  Barrier  (BBB)  penetration.  The  second  case
focuses  on  CC(C)(O)C(C)(O)c1ccc(Cl)cc1,  where
BRICS  fragmentation  reveals  the  delicate  balance
between  hydrophilic  hydroxyl  groups  and  lipophilic
chlorinated benzene components.  This  balance plays a
pivotal  role  in  the  molecule’s  ability  to  penetrate  the
BBB.  Both  examples,  depicted  in Fig.  8,  showcase
enhanced  performance  of  HiGNN[77] when  integrating
substructure  information,  confirming  the  model’s
superior  ability  to  predict  BBB  penetration  by
capturing intricate substructure information.

Identifying  a  fundamental  set  of  properties  for
molecular  prediction  tasks  is  crucial  for  future
research.  Many  studies,  including  multi-task  learning
methods,  have  shown  that  fundamental  molecular
properties  can  enhance  other  prediction  tasks.  For
instance,  Sun  et  al.[28] improved  the  training  of
chemical  and  physiological  property  predictors  by
incorporating related physics property prediction tasks.
Additionally,  Biswas  et  al.[31] demonstrated  the
significance  of  critical  properties  and  acentric  factors,
along  with  four  phase  change  properties  as  auxiliary
targets.

However,  the  integration  of  domain  knowledge  into
molecular  property  prediction  models  is  not  without
challenges.  Firstly,  there  is  still  a  lot  of  domain
knowledge that  is  not  digitized or  gathered,  even with
the  advances  in  tools  like  RDKit.  It  is  possible  to

overlook important subtleties when converting intricate
expert information into an electronic format that is easy
to use. Secondly, this integration process can introduce
biases  due  to  subjective  interpretations  by  domain
experts,  potentially  skewing  model  outcomes  and
impacting scalability and adaptability to new molecular
data  types.  Lastly,  the  requirement  to  customize  deep
learning  architectures  to  incorporate  such  knowledge
significantly  increases  complexity  and  computational
costs, complicating model development and training.

In  conclusion,  while  domain  knowledge  integration
is  beneficial,  it  necessitates  a  careful  and  balanced
approach.  It  is  crucial  to  maintain  the  flexibility,
scalability, and objectivity of models. These challenges
highlight  the  need  for  ongoing  efforts  to  capture  and
digitize  comprehensive  domain  knowledge,
maintaining  a  critical  balance  between  accuracy  and
the practical application of these predictive models.

6.2　Multi-modal data utilization

This  part  aims  to  analyze  the  contribution  of  different
modalities  in  multi-modal  models  for  MPP.  It  delves
into  understanding  how  individual  and  combined
modalities  affect  prediction  performance.  Data  from
various studies are collated and analyzed, emphasizing
the  contribution  of  different  modalities  to  MPP  tasks,
with  models  in Table  4.  Apart  from  ClinTox,  there  is
uniformity  in  the  predictive  prowess  displayed  by  all
models  across  a  spectrum  of  tasks.  Nonetheless,
ClinTox  predictions  are  prone  to  biases  in
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Fig. 8    Case  study  of  molecular  fragment  information  enhance  for  the  BBBP  task.  This  figure  compares  the  predictions  of
HiGNN[77] for  two  molecules,  Flerobuterol  and  Phenaglycodol,  with  and  without  the  use  of  BRICS-derived  molecular
substructure  information.  In  (a),  Flerobuterol’s  molecular  structure  without  substructure  information  leads  to  an  incorrect
BBBP  prediction,  while  in  (b),  incorporating  key  fragments  like  the  fluorine  atom  and  tertiary  amine  yields  an  accurate
prediction,  highlighting  these  features’ role  in  CNS  activity  and  BBB  penetration.  Similarly,  for  Phenaglycodol,  BRICS
fragmentation reveals  critical  hydrophilic  and lipophilic  components,  resulting  in  a  correct  BBBP prediction,  demonstrating
the model’s improved predictive capability when domain knowledge is applied.
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Transformer-based  models  due  to  data  distribution
peculiarities,  which  results  in  polarized  predictions.
Graph-based  models  like  GraphMVP,  MoMu,  and
GIT-Mol(2d)  demonstrate  a  reduction  in  such  bias,
albeit with compromised performance in ClinTox.

From  an  input  modality  perspective,  taking  the
BBBP  task  of  2d  graph  and  SMILES  information
fusion as an example from GIT-Mol[107], the size of the
test  dataset  by  scaffold  split  is  204.  We  select  study
cases  in  which  the  results  are  superior  to  the  baseline
(SciBERT)  after  modality  fusion,  as  shown  in Fig.  9.

This illustration reveals the beneficial role of SMILES
modality  data  in  augmenting  graph2d  data,  whereby
the  integrated  representation  vectors  can  rectify
erroneous  predictions  to  a  certain  extent.  Conversely,
accurate  predictions  from  graph2d,  when  paired  with
incorrect  SMILES  predictions,  can  also  prevent
potential  mistakes,  showcasing  the  complementary
strengths of integrating diverse modalities in enhancing
predictive accuracy.

In  the  examining  pre-training  strategies,  contrastive
learning  clearly  demonstrates  significant  benefits.

 

✓

Table 4    Comparison  (ROC-AUC)  of  multi-modal  learning  methods  in  MoleculeNet.  The “Method” column  specifies  the
learning strategy: “T” denotes the use of textual data, “S” denotes the use of SMILES data, “2d” and “3d” refer to the use of
2D and 3D molecular graphs, “CL” indicates contrastive learning, and “CA” stands for cross-attention fusion. In the column of
“Type of input data”, “ ” highlights the types of input data utilized by the models, with the possibility of multiple selections.
The best results are emboldened, and the second-best results are highlighted in red.

(%)

Model Method Index
Type of input data Classification

Average
S 2d 3d BBBP Tox21 ToxCast SIDER ClinTox BACE

KV-PLM [195] − 0 ✓ − − 72.0 70.0 55.0 59.8 89.2 78.5 70.8
GIN [196] − 1 − ✓ − 65.4 74.9 61.6 58.0 58.8 72.6 65.2

GraphMVP [18]

(GIN, SchNet)
CL (2d, 3d) 2 − ✓ − 68.5 74.5 62.7 62.3 79.0 76.8 71.7

CL (2d, 3d), CL (2d) 3 − ✓ − 72.4 74.4 63.1 63.9 77.5 81.2 72.1
MoMu-S [197]

CL (S, 2d)

4 − ✓ − 70.5 75.6 63.4 60.5 79.9 76.7 71.1
MoMu-K [197] 5 − ✓ − 70.1 75.6 63.0 60.4 77.4 77.1 70.6

MoleculeSTM [58]

(MegaMolBART, GIN)
6 ✓ − − 70.8 75.7 65.2 63.7 86.6 82.0 74.0
7 − ✓ − 70.0 76.9 65.1 61.0 92.5 80.8 74.4

MolFM [105]

(KV-PLM, GIN)
CL (S, 2d), CA

8 − ✓ − 72.2 76.6 64.2 63.2 78.6 82.6 72.9
9 ✓ ✓ − 72.9 77.2 64.4 64.2 79.7 83.9 73.7

GIT-Mol [107]

(SciBERT, MoMu-S)

10 ✓ − − 71.9 73.9 62.1 60.1 83.5 68.4 70.0
11 − ✓ − 71.1 75.4 65.3 58.2 78.9 65.8 69.1
12 ✓ ✓ − 73.9 75.9 66.8 63.4 88.3 81.1 74.9

MolLM [198] CL (T, 2d), CL (T, 3d) 13 − ✓ ✓ 75.7 80.0 68.2 71.0 91.1 84.1 78.4
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Fig. 9    Case studies of multi-modal fusion for the BBBP Task. Some molecules, such as pentazocine and triamcinolone, may
give incorrect predictions when based solely on 2D graph data. However, integrating SMILES information can correct these
results.  On  the  other  hand,  predictions  based  on  2D graphs  for  molecules  like  fluphenazine  are  accurate,  whereas  SMILES
predictions are not. Nevertheless, combining both modalities does not compromise the overall accuracy of the final assessment.
This underscores the integration of 2D graph modality data with SMILES information, which can enhance the model’s ability
to correct erroneous predictions and safeguard against potential interferences.
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However,  the  integration  of  cross-attention  might
inadvertently  reduce  the  impact  of  the  singular
modalities.  Nonetheless,  the  strategic  implementation
of  cross-attention  promotes  an  effective  fusion  of
SMILES  and  graph2d,  resulting  in  combined  vectors
that outperform the individual modalities. As shown in
Table  4,  the  methods  involving  modality  alignment,
which  utilize  contrastive  learning  between  SMILES
and 2D graphs, improve the model’s performance from
65.2% (Index  1  ) to  72.0% (average  of  Indexes  4,  5,
and  7).  Furthermore,  the  methods  integrating  cross-
attention  mechanisms  for  modality  fusion  further
enhance the model’s performance to 74.3% (average of
Indexes  9  and  12).  GraphMVP,  using  contrastive
learning  between  2D  and  3D  graphs,  elevates  the
performance  from 65.2% to  71.7% (Indexes  1  and  2).
The  MolLM  achieves  the  optimal  performance  of
78.4% (Index 13) through contrastive learning and the
fusion  of  2D  and  3D  graphs.  This  reveals  that
multimodal  learning  based  on  2D  graphs  offers  a
performance increase of 6.5% (71.7%−65.2%) to 6.8%
(72.0%−65.2%) over single-modality learning, with the
attention  fusion  mechanism  providing  an  additional
2.3% (74.3%−72.0%) to 6.7% (78.4%−71.7%) boost.

In  the  realm  of  molecular  property  prediction,  the
application  of  multi-modality  methods  introduces
significant  challenges  and  limitations.  Key  among
these  is  the  substantial  increase  in  computational
resource consumption required for processing complex
multi-modal  data.  This  issue  is  particularly  evident
when  generating  detailed  3D  representations  from
standard  molecular  formats  like  SMILES,  which
demands  extensive  resources.  Concurrently,  these
methods  often  contend  with  processing  redundant
information,  as  a  result  of  overlapping  content  among
various  modalities,  such  as  SMILES,  2D  graphs,  and
3D structures.  This  overlap  leads  to  inefficiencies  due
to  the  repeated  processing  of  identical  molecular
characteristics.  Additionally,  integrating  different  data
forms  into  a  cohesive  model  adds  another  layer  of
complexity,  necessitating  a  strategic  approach  for
effective  data  combination  to  enhance  predictive
accuracy.

Despite these challenges, the conclusion drawn from
our  findings  is  clear:  by  anchoring  on  2D  graphs  and
enriching  them  with  1D  SMILES  or  3D  graph
information,  multi-modal  learning  has  achieved  a
significant  ROC-AUC  uplift  of  9.1% to  13.2%

compared  to  single-modality  models  (results  from
Indexes 1, 9, 12,  and 13 in Table  4).  These  results
underscore  the  substantial  advantages  and  vast
potential  of  modality  fusion  techniques  in  providing
more  holistic  and  comprehensive  insights  into
molecular  structures,  thus  enhancing  the  overall
predictive accuracy in molecular property prediction.

7　Conclusion

In  this  paper,  we  discuss  the  significant  role  of  multi-
modal  data  and  domain  knowledge  in  enhancing
molecular  property  prediction  through  DL  methods.
We  explore  various  molecular  modalities  and  domain
knowledge,  crucial  in  understanding  molecular
complexities.  Our  review  of  recent  encoder
architectures  and  training  strategies  highlights  how
integrating  domain  knowledge  and  multi-modal  data
advances  these  models.  By  benchmarking  prominent
works,  we  provide  a  comparative  analysis  of  their
effectiveness.  Ultimately,  our  discussion  reveals  the
profound  impact  of  domain  knowledge  and  multi-
modal  data  in  DL  approaches,  marking  a
transformative  advancement  in  drug  discovery  and
computational molecular analysis.
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