
 

Local Region Frequency Guided Dynamic Inconsistency
Network for Deepfake Video Detection
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Abstract: In  recent  years,  with  the  rapid  development  of  deepfake  technology,  a  large  number  of  deepfake

videos  have  emerged  on  the  Internet,  which  poses  a  huge  threat  to  national  politics,  social  stability,  and

personal privacy. Although many existing deepfake detection methods exhibit excellent performance for known

manipulations, their detection capabilities are not strong when faced with unknown manipulations. Therefore, in

order  to  obtain  better  generalization  ability,  this  paper  analyzes  global  and  local  inter-frame  dynamic

inconsistencies from the perspective of spatial and frequency domains, and proposes a Local region Frequency

Guided  Dynamic  Inconsistency  Network  (LFGDIN).  The  network  includes  two  parts:  Global  SpatioTemporal

Network  (GSTN)  and  Local  Region  Frequency  Guided  Module  (LRFGM).  The  GSTN  is  responsible  for

capturing  the  dynamic  information  of  the  entire  face,  while  the  LRFGM  focuses  on  extracting  the  frequency

dynamic  information  of  the  eyes  and  mouth.  The  LRFGM  guides  the  GTSN  to  concentrate  on  dynamic

inconsistency  in  some  significant  local  regions  through  local  region  alignment,  so  as  to  improve  the  model’s

detection  performance.  Experiments  on  the  three  public  datasets  (FF++,  DFDC,  and  Celeb-DF)  show  that

compared with many recent advanced methods, the proposed method achieves better detection results when

detecting deepfake videos of unknown manipulation types.
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1　Introduction

In  recent  year,  with  the  continuous  development  and
advancement of deep learning technology and deepfake
generation  techniques,  various  face-swapping
applications  have  emerged,  such  as  Deepfakes[1],
DeepfaceLab[2],  FaceSwap[3],  etc.  While  enriching

people’s  cultural  and  entertainment  life,  these
applications  have  also  been  abused  by  malicious
individuals,  causing  many  social  problems  and  posing
great  challenges  to  politics,  justice,  criminal
investigation,  reputation  protection,  and  even  social
stability. In 2020, CCTV News reported that criminals
used  AI  face-swapping  to  cheat  face  recognition
systems  for  account  and  financial  fraud.  During  the
Russia-Ukraine  conflict  in  2022,  a  generated  video
depicting  Ukrainian  President  Zelenskyy  calling  on
Ukrainian  soldiers  to  lay  down  their  weapons  was
widely  spread  on  the  Internet,  causing  significant
turmoil in the situation. Negative news about deepfake
facial  images  and videos  continues  to  emerge,  leading
countries to pay more attention to the management and
control of deepfakes. In September 2018, the European
Union  issued  the “Code  of  Conduct  against
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Disinformation” to  combat  online  rumors.  In  2020,
China  implemented  the “Management  of  Internet
Audio  and  Video  Information  Services” regulation,
whose  Article  11  explicitly  prohibits  the  production,
dissemination, and distribution of false news using new
technologies based on deep learning and virtual reality.
In  November  2023,  at  the  first  AI  Security  Summit
hosted  by  the  United  Kingdom,  28  countries  and  the
European  Union  signed  the “Bletchley  Declaration”,
containing discussions on fake news control.

In  addition  to  the  strict  legislative  control  of
deepfake in various countries, more and more research
is  devoted  to  controlling  the  malicious  abuse  of
deepfake  through  deepfake  video  detection.  These
studies can be divided into two categories according to
whether  they  utilize  inter-frame  information  or  not:
intra-frame methods[4−9] and inter-frame methods[10−18].
Intra-frame methods first classify video frames (usually
key  frames)  using  the  detection  methods  for  deepfake
image, and then make comprehensive decisions on the
detection  results  of  these  frames  to  obtain  the  final
video detection results. These methods detect deepfake
by exploring facial  manipulations and artifacts present
in facial frames. Consequently, the features learned by
most  intra-frame  methods  are  highly  correlated  with
manipulation  methods  in  the  training  set,  resulting  in
easy  overfitting  of  known  manipulations  and  poor
generalization  to  unknown  manipulations.  To
overcome  this  problem,  inter-frame  methods  are
proposed.  Since  existing  deepfake  video  technologies
usually  do  not  add  restrictions  on  the  temporal
dimension,  inter-frame  methods  exploit  the
inconsistencies  among  multiple  frames  for  deepfake
video  detection.  These  methods  reveal  the  inter-frame
inconsistencies  unrelated  to  manipulation  methods
through  in-depth  exploration  from  different
perspectives,  such  as  temporal  inconsistencies[10],
optical  flow  changes[11],  and  dynamic
characteristics[13], thus showing stronger generalization
ability than the intra-frame methods. However, existing
inter-frame methods still  have some shortcomings:  (1)
They  either  do  not  focus  on  some  significant  local
regions  (such  as  eyes,  mouth,  etc.),  or  they  do  not
consider  them  comprehensively  enough;  (2)  When
extracting  dynamic  inconsistent  features,  they  mainly
consider  performing  it  in  the  spatial  domain,  without
the consideration of important frequency domain.

To  solve  the  above  problems,  this  paper  proposes  a

Local  region  Frequency  Guided  Dynamic
Inconsistency  Network  (LFGDIN)  for  deepfake  video
detection.  In  addition  to  global  face,  this  model  also
takes  into  account  the  significant  local  regions  of  the
eyes and mouth. It uses the frequency features of these
local  regions  to  guide  global  face  network  to  learn
dynamic  inconsistencies  for  deepfake  video  detection,
allowing  it  to  obtain  more  accurate  and  general
detection results.

The main contributions of this paper are as follows:
• Proposing  the  LFGDIN  for  deepfake  video

detection. The LFGDIN uses the frequency features of
highly discriminative local  regions to  guide the global
face  network  to  effectively  learn  the  dynamic
inconsistencies among frames.
• Designing  a  Local  Region  Frequency  Guidance

Module (LRFGM) for guiding the global face network.
It includes two stages: frequency feature extraction and
local  region  guidance.  The  former  effectively  extracts
the frequency dynamic information of significant local
regions.  The  latter  generates  an  interest  attention  map
to guide the global spatiotemporal features to pay more
attention to the significant local regions.
• Compared  with  multiple  benchmark  models,  the

proposed network is  verified its  superiority,  especially
in terms of generalization performance.

2　Related Knowledge

2.1　Deepfake manipulation and deepfake detection

(1) Deepfake technology
Deepfake is a type of image and video manipulation

technique  based  on  deep  learning,  which  can  be
divided  into  four  types  of  face  manipulation:  entire
face  synthesis,  attribute  manipulation,  identity  swap,
and  facial  reenactment.  Entire  face  synthesis  usually
uses  Generative  Adversarial  Network  (GAN)[19] to
create  completely  non-existent  faces.  Attribute
manipulation  also  uses  GAN  to  modify  certain
attributes  of  the  face,  such  as  skin  or  hair  color,  age,
and gender, etc. Identity Swap replaces a source face in
an image or video with a target face, commonly using
techniques  such  as  Deepfakes[1] and  FaceSwap[3].
Facial  reenactment  modifies  the  facial  expressions  of
source  face  in  an  image  or  video,  commonly  using
techniques,  such  as  Face2Face[20] and
NeuralTextures[21].  As  shown  in Fig.  1,  the  typical
deepfake  image  manipulation  process  is  divided  into
three stages: (1) face extraction; (2) face manipulation;
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and (3) face blending.
In  the  first  stage,  the  process  of  face  extraction  can

be expressed as
 

xτ = E (D (iτ)) = E (cτ) , τ ∈ {t, s} (1)

iτ xτ cτ
τ t it xt ct

τ s is xs cs

D ( )
E ( )

it is

ct cs

ct cs

xt xs

where  represents input image;  represents face; 
represents face coordinates.  When  is , , ,  and 
represent input target image, target face, and target face
coordinates,  respectively;  when  is , , ,  and 
represent  input  source  image,  source  face  and  source
face coordinates, respectively.  is face localization
operation,  and  is  face  extraction  operation.  The
face  localization  and  preprocessing  operations  are
performed on  and  to obtain target face coordinates

,  and  source  face  coordinates .  Then,  the  face
extraction operations are applied based on  and  to
obtain target face  and source face .

In the second stage, the process of face manipulation
can be expressed as
 

x f = M (xt, xs) (2)

M ( )

xt xs

x f

where  is  a  face  manipulation  method,  such  as
Deepfakes,  FaceSwap,  Face2Face,  etc.  This  process
applies  the  required  face  manipulation  method  to  the
target face  and source face  to obtain manipulated
face .

In the third stage, the process of face blending can be
expressed as
 

i f = B (is, cs, x f ) (3)

B ( )

x f x f

is

cs

i f

where  is  a  face  blending  operation.  This  process
performs  deformation  operations  and  color  correction
on  the  manipulated  face ,  and  blends  into  the
source  image  based  on  the  source  face  coordinates

.  Then,  some  post-processing  operations  are
performed to obtain final deepfake image .

The  manipulation  process  of  deepfake  videos  is
similar  to  that  of  deepfake  images.  The  difference  is

that  it  first  splits  the  video  into  different  frames,  then
performs deepfake image manipulation on each frame,
and  finally  combines  all  the  manipulated  deepfake
frames to obtain the deepfake video.

(2) Deepfake detection technology
Deepfake  detection  refers  to  determine  whether  the

given  image  or  video  is  deepfake  or  not  through
analyzing  manipulation  traces.  For  deepfake  image
detection,  since  deepfake  images  mostly  blend  target
faces into source images and there are some differences
between  the  target  faces  and  source  images,  some
manipulation traces appear. As shown in Fig. 2a, there
are  some  obvious  manipulation  traces  in  the  deepfake
facial  images,  such  as  visible  boundaries,  shape
distortion,  facial  blur,  and  color  differences.  These
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Fig. 1    Workflow of deepfake image manipulation.
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Fig. 2    Traces of manipulation in fake images and videos.
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traces are often caused by post-processing operations in
the  deepfake  manipulation  process.  As  shown  in
Fig.  2b, deepfake facial  images not only have obvious
artifacts  in  the  spatial  domain,  but  also  have  traces  of
manipulation in the frequency domain. Based on these
manipulation  traces,  many  Convolutional  Neural
Networks  (CNNs)  for  deepfake  image  detection  have
been  proposed.  The  detection  process  is  shown  in
Fig.  3.  It  can be roughly divided into two stages:  face
extraction and deepfake face detection.

In  the  first  stage,  the  process  of  face  extraction  can
be expressed as
 

x = E (D (i)) (4)

i

x

where  represents the input image. This stage performs
face localization on the input image,  and then extracts
the facial image .

In  the  second  stage,  the  process  of  deepfake  face
detection can be expressed as
 

p = IF (x), p ∈ {0, 1} (5)

IF ( )
x IF

p

where  represents deepfake facial  image detector.
The  facial  image  is  fed  into  the  detector  for
detection to obtain the final prediction result. If  is 1,
it  indicates  that  the  input  is  a  deepfake  image,
otherwise it is a real image.

Since  most  of  the  deepfake  videos  are  generated  by
merging  deepfake  images  generated  frame  by  frame,
they  often  exhibit  inter-frame  inconsistencies,  such  as
different  facial  expression  changes  and  facial  organ
movements,  as  shown  in Fig.  2c.  Based  on  these
inconsistencies,  the  deepfake  video  detection  process
can  also  be  roughly  divided  into  two  stages:  face
extraction and deepfake face detection.

In the first  stage,  the required number of  frames are
extracted from the video to be detected. The process of
this stage can be represented as
 

xµ = E (D ( jµ)), µ ∈ {1, 2, . . . , n} (6)

j
n

n xµ

where  represents input video frame. In this stage, the
face localization is performed on  input frames, of the
video, and then  facial images  are extracted.

In  the  second  stage,  the  process  of  deepfake  face
detection can be expressed as
 

p = VF (x1, , x2, . . . , xn), p ∈ {0, 1} (7)
VF ( )

n xµ VF
p

where  represents deepfake facial video detector.
 facial  images  are  fed  into  the  detector  to

obtain the final  prediction result.  If  is  1,  it  indicates
that the input is a deepfake video, otherwise it is a real
video.

2.2　Related work on deepfake video detection

In  order  to  mitigate  the  security  threats  that  deepfake
videos  may  pose,  researchers  have  proposed  many
methods  for  deepfake  video  detection.  These  methods
can  be  divided  into  two  categories  based  on  whether
they utilize inter-frame information or not: intra-frame
methods and inter-frame methods.

Intra-frame methods typically decompose each video
into  frames  to  explore  the  authenticity  discrimination
features within a single frame, then classify each frame
(usually  the  key  frames)  as  real  or  fake,  and  finally
integrate  the  results  of  all  the  considered  frames  to
obtain  the  final  video  detection  result.  Most  of  these
methods  attempt  to  explore  subtle  manipulation  traces
in  deepfake  facial  frames  from  the  spatial  domain  or
frequency  domain.  Lin  et  al.[4] proposed  a  deepfake
detection  method  that  combines  multi-scale  features
and Vision Transformer, which can effectively capture
face  details  and  global  information  at  different  scales.
Zhao  et  al.[5] proposed  a  method  based  on  a  multi-
attention  mechanism,  which  effectively  captures  the
texture information of local regions and has good intra-
dataset  detection  performance  for  high-quality  frame
images. Li et al.[6] proposed the method Face X-ray in
consideration  of  the  blending  boundaries  existing  in
forged  frames.  Li  et  al.[7] proposed  an  adaptive
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Fig. 3    Workflow of deepfake image detection.
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frequency  feature  generation  module  to  extract
frequency features,  and introduced a single center loss
function to reduce the intra-class difference and enlarge
the  inter-class  difference.  This  method  has  excellent
intra-dataset  performance  on  various  datasets  with
different  compression qualities.  Qian et  al.[8] proposed
F3-Net  composed  of  two  frequency-aware  branches.
This  method  also  has  excellent  intra-dataset
performance  in  challenging  low-quality  frame  image
detection.  However,  these  intra-frame  methods  have
good  performance  in  intra-dataset  detection  tasks  but
have  limited  generalization  ability  to  unknown
manipulations.  This  is  because  they  learn
discriminative  features  that  are  highly  related  to  the
manipulation  methods  in  the  training  set,  resulting  in
overfitting to known manipulations.

Inter-frame  detection  methods  explore  forgery
features by analyzing inconsistencies between multiple
frames  and  use  them to  detect  deepfake  videos.  Since
video  manipulations  often  result  in  inconsistencies
between  frames,  and  these  features  are  often
independent  of  the  manipulation  methods,  the  inter-
frame  methods  can  better  address  the  problem  of
overfitting  to  known  manipulations  of  the  intra-frame
methods  and  improve  the  generalization  ability  to
detect  unknown  manipulated  videos.  Liu  et  al.[10]

utilized  the  temporal  inconsistencies  between  video
frames  for  deepfake  detection.  They  trained  a  model
using  GRU  and  triplet  loss,  and  their  method
demonstrates  good  generalization  ability  on  unknown
datasets.  Caldelli  et  al.[11] proposed using optical  flow
to  capture  temporal  inconsistencies  along  the  video
timeline,  and  their  method  also  exhibits  good
generalization  ability.  Since  deepfake  algorithms  are
typically  trained  on  face  images  with  open  eyes,
Saealal  et  al.[12] used  blink  frequency  for  deepfake
facial video detection. Wang et al.[13] utilized the facial
dynamic  inconsistencies  between  frames  in  deepfake
videos, fusing local dynamic information from the lips
and  global  dynamic  information  from  the  entire  face
through complementary cross-dynamic fusion. Ding et
al.[18] explored  short-term  inter-frame  inconsistencies
using  multiple  RGB  video  frames  and  interactively
fused  reconstructed  frames  based  on  the  frequency
domain  phase,  thereby  better  capturing  spatiotemporal
inconsistencies for deepfake video detection. However,
existing  methods  that  utilize  inter-frame
inconsistencies  for  detection  still  have  some

limitations.  Firstly,  these  methods  either  do  not  focus
on significant local regions (such as eyes and mouth) or
do  not  consider  them  comprehensively.  The
experiments  in  Ref.  [22]  demonstrate  that  eyes  and
mouth are the most indicative regions for the detection
of  authenticity  in  facial  local  regions.  Therefore,  it  is
crucial  to  consider  these  significant  local  regions
comprehensively  for  deepfake  detection.  Secondly,
current  inter-frame methods primarily  focus on spatial
domain when extracting dynamic inconsistent features,
without  incorporating  important  frequency  domain
information.  Frequency  features  can  effectively  reveal
manipulation  artifacts  in  frame  images  from  a
frequency domain perspective.

3　Method

The structure of the LFGDIN proposed in this paper is
shown in Fig. 4. It mainly consists of two parts: GSTN
and  LRFGM.  The  two  parts  handle  the  global  region
(entire  face)  and  the  local  regions  (eyes  and  mouth),
respectively.  The  LRFGM  extracts  local  frequency
features to guide GSTN in paying more attention to the
dynamic changes in significant local regions.

3.1　GSTN

The  goal  of  GSTN  is  to  capture  the  dynamic
information  and  the  long-range  dependency
relationship  of  the  global  face  in  the  video.  In  GSTN,
UniformerV2[23] based on Vision Transformer (ViT)[24]

is  employed  as  the  backbone,  combined  with  the
Region Of Interest (ROI) attention maps obtained from
LRFGM  to  guide  the  model.  This  guidance  allows
GSTN  to  pay  more  attention  to  the  dynamic
inconsistency of significant local regions.

Regarding  the  backbone  of  GSTN,  UniformerV2
inherits the advantages of ViT and effectively captures
the  global  dependencies  within  frames.  Additionally,
with the help of its global UniBlock, UniformerV2 can
learn  long-range  dependency  relationship  across
frames, thereby enhancing the network’s understanding
and representation capability of videos. Specifically, as
shown  in Fig.  4,  the  global  UniBlock  consists  of
Dynamic  Position  (DynPos)  encoding,  Multi-Head
Relation  (MHRel)  aggregator,  and  Feed-Forward
(FeedFwd) network. Firstly, the DynPos encoding uses
3D  convolution  to  encode  positional  information,
allowing  for  better  learning  of  global  spatiotemporal
features  by  maintaining  spatiotemporal  order.
Secondly,  the  MHRel  aggregator  employs  a  learnable
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classification  token  (namely  CLS)  as  the  query  and
uses  multi-head  cross-attention  to  model  long-range
dependencies  between  the  query  and  global
spatiotemporal  features,  converting  the  query  into  a
video  representation.  Finally,  the  FeedFwd  network
including  two  linear  layers  enhances  the  video
representation.

3.2　LRFGM

T

Due  to  the  importance  of  capturing  dynamic
inconsistency  in  local  regions  for  deepfake  video
detection,  LRFGM  is  designed  to  explore  the  inter-
frame  dynamic  inconsistencies  of  local  regions  from
the perspective of frequency domain. Certainly, within
the entire network, the GSTN focusing on global facial
dynamics  plays  a  primary  role,  and  LRFGM  is  an
auxiliary,  guiding  GSTN  to  focus  more  on  dynamic
information in local regions. The structure of LRFGM
is  illustrated  in Fig.  4.  It  takes  local  region  frames,
each of which composes of three spliced local regions,
as input. These local regions are obtained by localizing
and  cropping  the  left  eye,  right  eye,  and  mouth  in  the
facial  frames  using  the  RetinaFace[25] network.
Subsequently,  the  local  region  frames  go  through  two
stages:  frequency  feature  extraction  and  local  region
guidance.  In  the  former  stage,  the  frequency  fusion
features  of  each  local  region  frame are  first  extracted;
then,  the  frequency  dynamic  inconsistencies  of  local
regions  between  frames  are  explored  using  3D
convolutions.  In  the  latter  stage,  the  global
spatiotemporal  features  are  guided  using  the  local

region  frequency  dynamic  features  with  the  help  of
local region bounding boxes.
3.2.1　Frequency feature extraction stage

eu ∈ R3×H×W u ∈ {1, 2, . . . , T } H W

e1 ∈ R3×H×W

As  shown  in Fig.  4,  for  each  local  region  frame
, ,  where  and 

represent  the  height  and  width  of  the  local  region
frame,  respectively  the  stage  starts  with  Frequency
Fusion  Feature  Extraction  (FFFE),  followed  by
learning  frequency  dynamic  information  using  3D
convolutions  to  obtain  the  local  region  frequency
dynamic  features.  The  FFFE  uses  Steganalysis  Rich
Model  (SRM)[26] Attention  Map  (SRMAttnMap)  to
fuse Multi-Band Features (MBandFeat) and Blockwise
Frequency  Features  (BlockFreqFeat).  Taking  the  first
local  region  frame  as  an  example,  the
specific  process  of  relevant  features  extraction  and
attention map acquisition is shown in Fig. 5.

hk ∈ R3×H×W k ∈ {1, 2, 3}

h1

h2

h3

The  purpose  of  MBandFeat  extraction  is  to
comprehensively  and  adaptively  mine  manipulation
traces  from  different  frequency  bands  to  obtain  rich
frequency perception clues. As shown in Fig. 5a, it first
employs  three  binary  filters , ,
to  divide  the  Discrete  Cosine  Transform  (DCT)
spectrum into three frequency bands: low, medium, and
high.  extracts the first 1/16 of the spectrum to obtain
the  low-frequency  band  information;  extracts  the
portion between 1/16 and 1/8 of the spectrum to obtain
the  medium-frequency  band  information;  extracts
the  remaining  of  the  spectrum  to  obtain  the  high-
frequency  band  information.  The  spectra  of  the  three
frequency bands can be obtained by
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sk = DCT (e1)⊙ (hk + lk) , k ∈ {1, 2, 3} (8)
⊙

lk ∈ R1×H×W

fmb1 ∈ R3×H×W

where “ ” is  element-wise  multiplication  and
 is  the  learnable  weight  normalized  to

[−1,  1].  By  adding  learnable  weights  to  each  of  the
three  filters,  these  filters  can  adaptively  extract
information  from  different  frequency  bands  in  the
spectrum. Then, the spectra of three different frequency
bands  are  fused  to  obtain  multi-band  features

 for  the  first  local  region  frame.  The
specific operations are as follows:
 

fmb1 = V(DCT−1(s1), DCT−1(s2), DCT−1(s3)) =
V(z1, z2, z3) =
[convR (z1, z2, z3), convG (z1, z2, z3), convB (z1, z2, z3)]

(9)
DCT−1 ( )

zk ∈ R3×H×W k ∈ {1,2,3}

V ( )

convR ( ) convG ( ) convB ( )

where  represents the inverse DCT operation;
, ,  represent  the  images  of  the

low,  medium,  and  high-frequency  bands,  respectively,
obtained  after  performing  the  inverse  DCT  operation
on  the  spectrum;  is  the  operation  of  multi-band
images  fusion  which  utilizes  three  1  ×  1  convolution
operations , ,  and  to  fuse
the  R,  G,  and  B  channels  of  the  three  different
frequency  band  images,  respectively;  [·]  denotes  the
concatenation along the channel dimension.

The  purpose  of  BlockFreqFeat  extraction  is  to
conduct a more detailed analysis of local regions from
a spectrum perspective. As shown in Fig. 5b, it divides
the local  region frame into 6 × 6 blocks and performs
DCT transform on each block; then, it concatenates the
spectra  of  all  blocks  along  the  spatial  dimension  to

f bw1 ∈ R3×H×W

obtain the block-wise spectrum; finally, the block-wise
spectrum is fed into a convolutional block that includes
convolution, layer normalization, and ReLU activation,
obtaining block-wise frequency features .

The  purpose  of  SRMAttnMap  acquisition  is  to
highlight  manipulation  traces  from  the  perspective  of
high-frequency  noise,  thereby  better  guiding  the
extraction  of  frequency  fusion  features.  Research  in
Ref.  [27]  has  shown  that  image  manipulations  can
disrupt  the  consistency  of  the  original  image’s  noise
pattern.  The  SRM  noise,  which  represents  high-
frequency  signals  in  the  image,  can  not  only  suppress
content information to extract important details but also
effectively  reveal  inconsistencies  in  noise  patterns
unrelated to the manipulation methods, thus enhancing
the model’s generalization to some extent. Considering
that  the  eye  and  mouth  regions  are  relatively  high-
frequency regions in the face and are more prone to be
manipulated,  this  paper  uses  SRM  to  extract  high-
frequency noise for guiding the extraction of frequency
fusion  features  in  these  local  regions.  As  shown  in
Fig.  5c,  the  local  region  frame  is  passed  through  two
convolutional  blocks,  and  three  3  ×  3  SRM  filters  to
extract high-frequency noise (the three SRM filters are
shown  in Fig.  6.  Subsequently,  spatial  attention  from
Convolutional  Block  Attention  Module  (CBAM)[28] is
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Fig. 6    Three 3 × 3 SRM filters.
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mSRM
1 ∈ R1×H×W

applied  to  further  emphasize  the  manipulation  traces
and  obtain  an  attention  map.  Finally,  bilinear
interpolation  upsampling  is  used  to  align  the  attention
map  with  the  local  region  frame  on  the  spatial  scale,
obtaining the final SRM attention map 
of the first local region frame.

f lfreqfusion, 1 ∈ R3×H×W

For the frequency fusion part, as shown in Fig. 4, this
paper  utilizes  the  SRM  attention  map  to  guide  the
acquisition  of  local  region  frequency  fusion  features

 for  the  first  local  region  frame,
which can be expressed as
 

f lfreqfusion, 1 = (1−mSRM
1 )⊙ f bw1 +mSRM

1 ⊙ fmb1 (10)

f lfreqfusion, u ∈ R3×H×W u ∈ {1, 2, . . . , T }

f lfreqfusion ∈ R3×T×H×W

After  extracting  the  frequency  fusion  feature
,  for  each  local

region  frame  sequentially,  the  final  local  region
frequency  fusion  features  is
obtained  by  concatenating  them  along  the  temporal
dimension.

f lfreqdyn ∈ RD×T×H f×W f

D T H f W f

Finally,  3D  convolution  is  used  to  further  extract
features  from  the  local  region  frequency  fusion
features,  allowing  for  a  better  exploration  of  the
temporal  inconsistencies  between  frames.  Research  in
Ref.  [29]  has  shown  that  (1)  Vit-based  models
considered  in  our  GSTN  perform  poorly  in  handling
high-frequency components and local details in images
because  they  focus  on  capturing  global  information
through  self-attention  mechanisms;  (2)  CNN  models
can  effectively  capture  local  details  and  edge
information  corresponding  to  high-frequency  parts  in
images through convolution operations. Therefore, this
paper  adopts  the  X3D  network[30] based  on  3D
convolution for a more in-depth extraction of the local
region  frequency  fusion  feature,  obtaining  the  local
region frequency dynamic features ,
where , , ,  and  represent  the  number  of
channels,  frames,  height,  width  of  the  frequency
dynamic features, respectively. As shown in Fig. 4, the
X3D  network  consists  of  two  parts:  stem  and  stage.
The  X3D  Stem  transforms  the  input  features  into  a
more suitable representation for subsequent processing.
The  X3D  Stage  stacks  five  3D  residual  blocks  to
progressively  extract  higher-level  local  region
spatiotemporal features.
3.2.2　Local region guidance stage
Considering that the features obtained in the frequency
feature  extraction  stage  represent  the  frequency

dynamic  inconsistencies  of  local  regions,  this  paper
designs  Local  Region  Attention  Alignment  (LRAA)
operation  to  obtain  ROI  attention  maps  for  global
spatiotemporal feature guidance. The LRAA adopts the
spatial  attention  mechanism  of  the  CBAM  to  further
highlight  the  frequency  dynamics  of  multiple  local
regions,  and  guides  the  GSTN  to  focus  on  dynamic
inconsistency  in  the  significant  local  regions  through
local region alignment.

f lfreqdyn ∈ RD×T×H f×W f

f lfreqdyn, 1 ∈ RD×H f×W f

As shown in Fig. 7, in this stage, the attention maps
are  first  sequentially  extracted  from  the  local  region
frequency  dynamic  features 
obtained  in  the  previous  stage  along  the  temporal
dimension.  Taking  the  local  region  frequency  feature

 of  the  first  time  sampling  point  on
the  temporal  dimension  as  an  example,  the  specific
operation is given by
 

mfreq
1 = SA ( f lfreqdyn, 1) (11)

mfreq
1 ∈ R1×H f×W f

SA ( )
where  represents the output frequency
attention  map,  and  is  the  spatial  attention
operation.

mroi
1 ∈ R1×P×P P

Next,  each  local  region  in  the  frequency  attention
map is  aligned to  the  global  space,  obtaining the  final
ROI  attention  map ,  where  represents
the  height  or  width  of  the  ROI  attention  map.  The
specific operations are as follows:
 

mroi
1 =RGSA (RA (mfreq

1 , ble1 ),

RA (mfreq
1 , bre1 ), RA (mfreq

1 , bm
1 ), mz) =

RGSA (mle
1 , mre

1 , mm
1 , mz) (12)

ble1 bre1 bm
1

RA ( )

mfreq
1 ble1 bre1 bm

1

mle
1 ∈ R1×Hle×Wle

mre
1 ∈ R1×Hre×Wre

mm
1 ∈ R1×Hm×Wm mz ∈ R1×P×P

RGSA ( )

mle
1 mre

1 mm
1

mz mz

where , , and  represent the bounding boxes of
the left eye, right eye, and mouth in the corresponding
facial  frame,  respectively,  and  are  resized  through
downsampling  to  match  the  spatial  dimension  of  the
global spatiotemporal features;  denotes the ROI
align  operation[31],  which  maps  the  regions  of  the  left
eye,  right  eye,  and  mouth  in  the  frequency  attention
map  to the sizes of , , and , respectively,
obtaining  the  left  eye  attention  map ,
right  eye  attention  map ,  and  mouth
attention  map ;  is  a  zero-
filled  mask  with  the  same  spatial  dimensions  as  the
global spatiotemporal features;  represents the
ROI  and  global  space  alignment  operation,  which
aligns the local region attention maps , , and 
to  the  zero-filled  mask ,  and  adds  them  to  the 
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mroi
1

according  to  the  positions  of  the  bounding  boxes,
obtaining the final ROI attention map .

Finally,  the  global  spatial  features  of  the  first  time
sampling  point  on  the  temporal  dimension  are  guided
to pay more attention to the local regions using the ROI
attention map. The specific operation is given by
 

ffgrgb1 = f grgb1 + f grgb1 ⊙mroi
1 (13)

f grgb1 ∈ RL×P×P

L
ffgrgb1 ∈ RL×P×P

where  represents  the  global  spatial
features  of  the  first  time  sampling  point,  represents
the number of  channels,  and  represents
the global spatial features after guidance.

ffgrgb ∈ RL×T×P×P

By applying Eqs. (11) to (13) sequentially, the global
spatial  features  of  each  time  sampling  point  along  the
temporal  dimension are  guided.  These  guided features
are  then  concatenated  along  the  temporal  dimension,
obtaining  the  guided  final  global  spatiotemporal
features .  These  features  reflect  the
dynamic  inconsistent  information  of  the  global  face
across  frames  and  focus  more  on  the  dynamic
inconsistency of local regions.

3.3　Pseudo-code

To  make  the  proposed  method  clear  and  easily
understandable,  the  pseudo-code  of  the  LFGDIN  is

presented  in  Algorithm  1.  The  algorithm  takes  global
face  frames,  local  region  boxes,  local  region  frames,
and  video  labels  as  input,  and  the  video  classification
result as output.

4　Experiment

4.1　Experimental setup

4.1.1　Dataset
This  paper  is  trained  on  the  widely  used
FaceForensics++  (FF++)[32] dataset  and  evaluated  for
generalization  on  the  Celeb-DF  (v2)[33],  deepfake
Detection  Challenge  (DFDC)[34],  DiffFace,  and
DiffSwap datasets.

FF++  is  a  benchmark  dataset  that  consists  of  1000
real  videos  collected  from  YouTube.  Four
manipulation  techniques,  i.e,  deepfakes  (DF),
Face2Face (F2F), FaceSwap (FS), and Neural Textures
(NT),  are  applied  to  these  1000  real  videos,  obtaining
4000 manipulated videos. The dataset split provided by
the  official  FF++ dataset  is  used,  where  the  HQ (c23)
version of FF++ is divided into 72% for training, 14%
for  validation,  and  the  remaining  14% for  testing.  To
balance  the  positive  and  negative  samples  in  FF++,
1000  real  videos  are  replicated  three  times  to  obtain
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Fig. 7    Local region guidance stage of the first time sampling point on the temporal dimension.
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4000 real videos.
All  the  real  videos  in  Celeb-DF  (v2)  are  collected

from  YouTube,  and  the  celebrities  appearing  in  these
videos  have  different  genders,  ages,  and  races.  The
Celeb-DF  (v2)  includes  890  real  videos  and  5639
manipulated  videos  generated  by  improved  deepfake
techniques. This paper tests on 500 videos from Celeb-
DF  (v2),  including  250  real  videos  and  250  fake
videos.

The  DFDC  is  a  large  dataset  consisting  of 119 197
videos,  where 19 197 real  videos  are  captured  by
approximately  430  actors,  and  the  remaining 100 000
videos  are  generated  deepfake  videos  from the 19 197
real videos. This paper tested 500 videos from DFDC,
including 250 real videos and 250 fake videos.

To  evaluate  the  generalization  on  diffusion  model-
based face-swapping videos, two datasets DiffFace and
DiffSwap  are  constructed  based  on  two  diffusion

models:  DiffFace[35] (the  first  diffusion-based  face-
swapping model) and DiffSwap model[36] in 2023. For
the DiffFace dataset, 250 real videos are selected from
Celeb-DF  (v2),  and  250  fake  videos  are  generated  by
applying the DiffFace model to the real videos through
frame-by-frame manipulation. Furthermore, to enhance
the quality of the fake videos, the pre-trained DiffFace
model  is  fine-tuned  on  Celeb-DF  (v2).  The  DiffSwap
dataset  using the DiffSwap model  is  also processed in
the same way.
4.1.2　Evaluation metrics

M
N M×N

M×N

This  paper  uses  the  Area  Under  the  Curve  (AUC)  as
the  evaluation metric  for  the  experiments.  AUC refers
to the area under the Receiver Operating Characteristic
(ROC) curve.  Assuming there  are  positive  samples
and  negative  samples,  there  are  a  total  of 
pairs of samples. Among these  pairs of samples,
the  number  of  cases  where  the  positive  sample

 

Algorithm 1　Procedure of training LFGDIN
Input:

T cu u ∈ {1, 2, . . . , T };　  global face frames , 
T ou　  local  region  boxes ;  //  Obtained  by  using  RetinaFace  to  locate  local  regions  within  the  global  face  frames,  it  is  not  yet

downsampled
T eu　  local region frames ; // Obtained by cropping and splicing based on local region boxes

a　Label  of video
yOutput: Classification result 

iter = 0 Niter −1 Niter1: for  to  do; //  is the number of iterations

f grgb = GSTN_Stage1(c)2:　 ; // Extracting global spatiotemporal features from intermediate layers through GSTN
u = 1 T eu3:　for  to  do; // Extracting frequency fusion features for each local region frame ;

fmbu eu4:　　Extracting multi-band feature  by applying Eqs. (8) and (9) from ;

f bwu eu5:　　Extracting block-wise frequency feature  from ;

mSRM
u eu6:　　Acquiring SRM attention map  from ;

f lfreqfusion,u7:　　Extracting local region frequency fusion feature  by applying Eq. (10);
8:　end for

f lfreqdyn = X3D ( f lfreqfusion)9:　 ; // Extracting local region frequency dynamic features through X3D

u = 1 T f lfreqdyn,u10:　for  to  do; // Acquiring ROI attention map for 

mfreq
u11:　　Acquiring spatial attention  by applying Eq. (11);

mroi
u ou12:　　Acquiring ROI attention map  by applying Eq. (12) based on ;

13:　end for
ffgrgb14:　Extracting guided final global spatiotemporal features  by applying Eq. (13);

y = GSTN_Stage2 (ffgrgb)15:　 ; // Acquiring classification result through GSTN
loss = Lbce(y,a) loss16:　 ; // Computing  by using the binary cross-entropy loss function

loss17:　back_propagation ( ); // Computing gradients
LFGDIN LFGDIN18:　update ( ); // Updating the parameters of  using AdamW

19: end for
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Pp

Pn AUC
prediction  probability  is  higher  than  the  negative
sample prediction probability  is counted. The 
value can be obtained using the following formula:
 

AUC =
∑

I (Pp,Pn)
M×N

,

I (Pp,Pn) =


1, Pp > Pn;

0.5, Pp = Pn;
0, Pp < Pn

(14)

AUCThe  value  ranges  from 0  to  1,  where  a  higher
value indicates a better classifier performance.
4.1.3　Implementation details
To  consider  different  types  of  manipulation  for  better
capturing inconsistencies between frames, and achieve
a  relatively  stable  and  balanced  effect,  the  frame
selection  method  described  in  Ref.  [37]  is  employed:
16 frames are randomly selected from each video with
intervals  ranging  from  5  to  15  frames.  In  order  to
obtain the global  face frames and local  region frames,
the  RetinaFace[25] is  used  to  extract  faces  and  obtain
bounding  boxes  for  local  regions  from  each  selected
frame,  and  the  extracted  faces  are  expanded  by  30%
after undergoing alignment correction and saved as the
global  face  frame  with  size  224  ×  224;  then,  the  left
and right eye regions are cropped from the global face
frames  using  the  bounding  boxes  obtained  in  the
previous  step  and  saved  at  a  size  of  156  ×  156,  while
the  mouth  region  is  cropped  and  saved  at  a  size  of
156  ×  312,  after  that,  the  three  local  regions  of  each
face are spliced to form a 312 × 312 local region frame.

The  PyTorch  framework  is  used  to  implement  the
network  in  this  paper.  The  UniformerV2_l14[24] and
X3D_l[30] are used as the backbone networks, and their
pretrained models from the Kinetics[38] dataset are used
to  initialize  the  weights.  The  training  framework  uses
the  AdamW  optimizer  with  a  learning  rate  of  1×10−5

and weight decay of 1 ×10−4. The batch size is set to 4,
and the model is trained for 20 epochs. During training,
the  network  is  supervised  by  using  the  binary  cross-
entropy loss function.

4.2　Ablation study

To evaluate the effectiveness of the two main modules
introduced  in  this  paper  (FFFE  and  LRAA),  related
ablation  experiments  are  conducted  by  training  on
FF++  (HQ)  or  its  subset  and  performing  intra-dataset
and  cross-dataset  testing.  The  experimental  results  are
shown  in Table  1.  Here  four  methods  are  as  follows:
(a)  Only  using  the  global  GSTN  without  considering
the local regions, i.e., without considering LRFGM that
includes  FFFE  and  LRAA;  (b)  Considering  both  the
global and local regions but without considering FFFE
for  the  local  regions,  i.e.,  using  the  spatial  features  of
the local regions to guide GSTN; (c) Considering both
the  global  and  local  regions  but  without  using  LRAA
for  the  local  region guidance stage,  i.e.,  using a  linear
layer  and  activation  function  combination  to  extract
frequency  attention  maps,  without  aligning  each  local
region  of  the  attention  map  to  the  global  space,  but
directly  adjusting  the  attention  map  size  for  guidance;
(d)  The  comprehensive  approach  proposed  in  this
paper, which considers both FFFE and LRAA.

As  can  be  seen  from Table  1,  (1)  Comparing
Methods  (a)  and  (b),  it  can  be  found  that  Method  (b)
has  improved  detection  performance  in  both  intra-
dataset  and  cross-dataset  which  verifies  that  focusing
on  dynamic  inconsistencies  in  local  regions  is
effective; (2) Comparing Methods (b) and (d), it can be
seen  that  Method  (d)  has  further  improved
performance,  especially in cross-dataset  testing,  which
verifies  that  FFFE  enables  the  network  to  analyze
dynamic  inconsistencies  between  video  frames  from a
frequency domain perspective, improving the network’s
generalization ability;  (3)  Comparing Methods (c)  and
(d),  Method  (d)  also  has  a  better  performance,
verifying  that  using  LRAA  to  obtain  attention  maps
can more accurately guide GSTN to focus on dynamic
information in local regions; (4) Method (d) has better
detection  performance  than  Method  (a),  especially  in
the  case  of  cross-dataset,  which  proves  the
effectiveness of LRFGM.

 

Table 1    Ablation study on FF++ (HQ).

Method FFFE LRAA
AUC on intra-dataset AUC on cross-dataset

DF F2F FS NT FF++ Celeb-DF DFDC DiffFace DiffSwap
(a) − − 0.995 0.985 0.992 0.978 0.990 0.834 0.771 0.760 0.717
(b) − √ 0.997 0.991 0.997 0.982 0.993 0.854 0.783 0.835 0.803
(c) √ − 0.999 0.997 0.998 0.982 0.994 0.863 0.763 0.806 0.775
(d) √ √ 0.999 0.999 0.999 0.990 0.997 0.904 0.808 0.903 0.857
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To  better  understand  the  decision-making  processes
of Methods (a),  (b),  (c),  and (d),  this  article  visualizes
the  regions  they  focus  on  for  different  datasets.  The
visualization  results  are  shown  in Fig.  8,  which  is
obtained  using  Grad-CAM[39] (warm  color  areas
represent  regions  that  contribute  significantly  to  the
network’s  prediction  results,  while  cool  color  areas
have  lower  contributions).  It  can  be  seen  from Fig. 8
that Method (d) pays more attention to significant local
regions  than  Method  (a),  which  verifies  the
effectiveness  of  the  proposed  LRFGM.  Both  Methods
(b)  and  (d)  focus  on  significant  local  regions,  but
Method (d)  focuses  more on relatively  high-frequency
regions  in  the  local  region  due  to  feature  extraction
from  the  frequency  domain,  which  verifies  the
effectiveness  of  the  proposed  FFFE.  Comparing
Methods  (c)  and  (d),  it  can  be  seen  that  Method  (c)
makes  feature  weights  spread  across  the  entire  face
image  because  it  does  not  use  accurate  local  region
alignment  during  local  region  guidance  stage.  In
contrast,  Method  (d)  focuses  more  accurately  on
significant  local  regions,  which  verifies  the

effectiveness  of  using  the  proposed  LRAA  for
guidance.  Additionally,  for  different  forgery
operations,  our  method  can  still  detect  manipulation
traces  beyond  the  key  local  regions  through  GSTN,
such  as  the  blended  boundary  in  the  facial  contour
region  shown  in Fig.  8 for  the  F2F  manipulation.  For
NT,  where  manipulation  is  only  performed  on  the
mouth  region,  our  method  does  not  force  the  network
to  focus  on  the  eye  region,  but  rather  focuses  more
accurately on abnormal dynamic in the mouth region.

4.3　Comparison with recent works

To  comprehensively  evaluate  the  proposed  method,
nine  state-of-the-art  deepfake  detection  methods  are
compared,  including  seven  intra-frame  methods  and
two  inter-frame  methods.  Seven  intra-frame  methods
are  as  follows:  (1)  Xception[40] explores  manipulation
traces  in  frame  images  using  the  popular  Xception
network; (2) Frequency in Face Forgery Network (F3-
Net)[8] mines  manipulation  traces  in  frame  images
through  two  frequency-aware  branches;  (3)  Learning-
To  Weight  (LTW)[41] uses  meta-learning  strategies  to
learn  domain-invariant  models  in  unknown  domains;
(4)  Dual  Contrastive  Learning  (DCL)[42] improves  the
generalization  by  learning  contrasts  between  different
instances  and  within  the  same  instances;  (5)
Reconstruction-classification  learning  (namely
RECCE)[43] enhances  compact  representations  of  real
faces through reconstruction learning and classification
learning;  (6)  Multi-Scale  Frequency  Contrastive
Learning  (MSFCL)[44] enhances  the  generalization
through  contrastive  learning  and  multi-scale  feature
enhancement;  (7)  Domain-Invariant  Feature  Learning
(DIFL)[45] achieves  universal  face  forgery  detection
through  adversarial  domain  generalization  and  center
loss for learning domain-invariant features.  Two inter-
frame  methods  are  as  follows:  (1)  Spatio  Temporal
Inconsistency  Learning  and  Interactive  Fusion  (ST-
ILIF)[18] explores  inconsistent  information  between
short-term frames and combines  it  with  reconstruction
frames based on frequency domain phase; (2) Discrete
Cosine  Transform-based  Forgery  Clue  Augmentation
Network  (FCAN-DCT)[46] detects  deepfake  videos  by
exploring  spatiotemporal  frequency  clues  among
multiple frames.
4.3.1　Intra-dataset evaluation
Firstly,  the  intra-dataset  evaluation  was  performed.
Here  the  whole  FF++  (HQ)  dataset  is  used  for  both
training  and  testing.  As  shown  in Table  2,  it  can  be

 

FF++ (DF)

Method
(a)

Method
(b)

Method
(c)

Method
(d)

FF++ (FS)

FF++ (F2F)

FF++ (NT)

Celeb-DF

DFDC

DiffFace

DiffSwap

 
Fig. 8    Visualizing  the  regions  of  interest  for  the  four
methods on different datasets using Grad-CAM.
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found  that  all  the  compared  10  methods  achieve
excellent  performance,  no  matter  the  intra-frame
methods[8, 40−45] or  the  inter-frame  methods[18, 46]

including  the  proposed  method.  Furthermore,  the
proposed  method  obtains  the  best  performance  among
10 methods.
4.3.2　Cross-dataset evaluation
Then, the cross-dataset evaluation is carried out. In the
real  world,  many  manipulated  face  images  are
completely unknown for the manipulations. Therefore,
it  is  crucial  for  the  model  to  have  cross-dataset
generalization  ability.  The  FF++  (HQ)  dataset  is
considered  for  training  and  the  other  two  datasets
(Celeb-DF (v2) and DFDC) are used for testing.

As shown in Table 3, compared to 9 recent methods,
the  proposed  method  achieves  better  generalization
performance  in  cross-dataset  scenarios.  The  specific
analysis is as follows:

(1)  Regarding  the  Celeb-DF  dataset,  the  proposed
method demonstrates significantly better generalization

performance  than  the  other  compared  methods,
achieving  an  improvement  of  8.3% over  FCAN-DCT,
which is the best one among the 9 compared methods.
The FCAN-DCT is an inter-frame method that utilizes
spatiotemporal  frequency  inconsistencies  in  the  video
for  forgery  detection  from  a  global  perspective.
However,  it  may  not  be  sensitive  enough  to
manipulation  traces  in  the  significant  local  regions.  In
contrast, the proposed method explores both the global
dynamic inconsistencies of the entire face and dynamic
inconsistency  in  three  important  local  regions,
obtaining strong generalization ability.

(2)  Regarding  the  challenging  DFDC  dataset,  the
generalization  abilities  of  all  compared  methods  are
relatively  lower  than  that  on  the  Celeb-DF  dataset.
However,  the  proposed  method  achieves  a  4.7%
improvement  over  the  best  method  DIFL  among  the
other  9  compared  methods.  Additionally,  although the
F3-Net  employs a  similar  frequency feature  extraction
method,  it  exhibits  lower  generalization  performance
than  the  proposed  method  due  to  its  intra-frame
approach.  In  contrast,  the  proposed  method
incorporates dynamic inconsistencies between frames.

(3)  For  both  datasets,  the  inter-frame  methods  are
overall  superior  to  the  intra-frame  methods  in
generalization  performance  for  detecting  unknown
deepfake videos. This is due to the fact that most intra-
frame methods primarily rely on the detection of intra-
frame  tampering  traces  that  are  highly  correlated  with
manipulation  techniques,  while  the  inter-frame
methods  mainly  focus  on  the  detection  of  inter-frame
inconsistencies  that  are  unrelated  to  tampering
techniques.
4.3.3　Cross-manipulation evaluation
Finally,  to  evaluate  the  generalization  ability  to
unknown  manipulations,  this  study  conducts  cross-
manipulation  experiments  on  the  FF++  (HQ)  dataset,
specifically targeting four different manipulations (DF,
F2F,  FS,  and  NT).  The  leave-one-out  strategy  is
employed.  Specifically,  each  manipulation  is  tested
while  the  remaining  three  forgery  operations  are
trained.  The proposed method is  compared to 6 recent
methods because the works[8, 18, 46] do not conduct this
type  of  experiment  in  their  corresponding  literatures.
As  shown  in Table  4,  the  proposed  method
demonstrates  the  best  performance  on  all
manipulations  and  exhibits  the  best  overall
performance  in  terms  of  the  average  AUC.
Specifically,  the  proposed  method  achieves  an

 

Table 2    Intra-dataset evaluation in the FF++ (HQ) dataset.
          Method AUC

         

Intra-frame

Xception[40] 0.997
F3-Net[8] 0.986
LTW[41] 0.991
DCL[42] 0.993

RECCE[43] 0.991
MSFCL[44] 0.993

DIFL[45] 0.993

Inter-frame
ST-ILIF[18] 0.986

FCAN-DCT[46] 0.990
Ours 0.997

 

Table 3    Cross-dataset evaluation under the training on the
FF++ (HQ) dataset.

Method
AUC

Celeb-DF DFDC

Intra-frame

Xception[40] 0.659 0.690
F3-Net[8] 0.732 0.701
LTW[41] 0.771 0.746
DCL[42] 0.823 0.767

RECCE[43] 0.695 0.701
MSFCL[44] 0.823 0.733

DIFL[45] 0.799 0.772

Inter-frame
ST-ILIF[18] 0.752 −

FCAN-DCT[46] 0.835 −
Ours 0.904 0.808
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improvement  of  nearly  3.1% average  AUC  over  the
best-performing  method  DIFL  among  6  compared
methods.

5　Conclusion

This  paper  proposes  an  LFGDIN  for  deepfake  video
detection. The LFGDIN employs ROI attention map to
guide  global  spatiotemporal  features  to  pay  more
attention  to  dynamic  inconsistency  in  three  significant
local  regions,  thereby  achieving  strong  generalization
ability.  The  ROI  attention  map  is  obtained  by
performing  the  frequency  feature  extraction  stage  on
the local region frame and conducting the local region
attention alignment operation to align the local regions
to global face frame. Experimental results demonstrate
that  the  proposed  method  exhibits  significant
advantages  in  generalization  detection  tasks  over
several  recent  advanced  methods.  In  future  work,  to
further  enhance  the  model’s  generalization
performance,  we  plan  to  add  the  use  of  other
inconsistent information between frames, such as depth
information, noiseprint, illumination information, etc.

Acknowledgment

This work was supported by the National Natural Science
Foundation  of  China  (Nos.  62072251  and  U22B2062),
and  the  Priority  Academic  Program  Development  of
Jiangsu Higher Education Institutions fund.

References 

 M.  Tora,  deepfakes,  https://github.com/deepfakes/
faceswap/tree/v2.0.0, 2018.

[1]

 K. Liu, I. Perov, D. Gao, N. Chervoniy, W. Zhou, and W.
Zhang, Deepfacelab: Integrated,  flexible  and  extensible
face-swapping  framework, Pattern  Recognition,  vol. 141,
p. 109628, 2023.

[2]

 M.  Kowalski,  FaceSwap,  https://github.com/
marekkowalski/faceswap, 2018.

[3]

 H. Lin, W. Huang, W. Luo, and W. Lu, deepfake detection
with  multi-scale  convolution  and  vision  transformer,
Digital Signal Processing, vol. 134, p. 103895, 2023.

[4]

 H.  Zhao,  T.  Wei,  W.  Zhou,  W.  Zhang,  D.  Chen,  and  N.
Yu,  Multi-attentional  deepfake  detection,  in Proc.  2021
IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Nashville,  TN,  USA,  2021,  pp.
2185–2194.

[5]

 L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B.
Guo,  Face X-ray for  more general  face forgery detection,
in Proc.  2020  IEEE/CVF  Conf.  Computer  Vision  and
Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp.
5000–5009.

[6]

 J.  Li,  H.  Xie,  J.  Li,  Z.  Wang,  and  Y.  Zhang,  Frequency-
aware  discriminative  feature  learning  supervised  by
single-center loss for face forgery detection, in Proc. 2021
IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Nashville,  TN,  USA,  2021,  pp.
6454–6463.

[7]

 Y. Qian, G. Yin, L. Sheng, Z. Chen, and J. Shao, Thinking
in frequency: Face forgery detection by mining frequency-
aware  clues,  in Proc.  16th European  Conf.  Computer
Vision, Glasgow, UK, 2020, pp. 86–103.

[8]

 B. Chen, X. Liu, Z. Xia, and G. Zhao, Privacy-preserving
deepfake face image detection, Digital Signal Processing,
vol. 143, p. 104233, 2023.

[9]

 B.  Liu,  B.  Liu,  M.  Ding,  T.  Zhu,  and  X.  Yu,  TI2Net:
Temporal  identity  inconsistency  network  for  deepfake
detection,  in Proc.  2023  IEEE/CVF  Winter  Conf.
Applications  of  Computer  Vision,  Waikoloa,  HI,  USA,
2023, pp. 4680–4689.

[10]

 R.  Caldelli,  L.  Galteri,  I.  Amerini,  and  A.  Del  Bimbo,
Optical  flow  based  CNN  for  detection  of  unlearnt
deepfake  manipulations, Pattern  Recogn.  Lett.,  vol. 146,
pp. 31–37, 2021.

[11]

 M.  S.  Saealal,  M.  Z.  Ibrahim,  D.  J.  Mulvaney,  M.  I.
Shapiai,  and  N.  Fadilah, Using  cascade  CNN-LSTM-
FCNs  to  identify  AI-altered  video  based  on  eye  state
sequence, PLoS ONE, vol. 17, no. 12, p. e0278989, 2022.

[12]

 H. Wang, Z. Liu, and S. Wang, Exploiting complementary
dynamic  incoherence  for  deepfake  video  detection, IEEE
Trans.  Circuits  Syst.  Video  Technol.,  vol. 33,  no. 8,  pp.
4027–4040, 2023.

[13]

 Y. Zhu, C. Zhang, J. Gao, J. Gao, X. Sun, Z. Rui, and X.
Zhou, High-compressed  deepfake  video  detection  with
contrastive  spatiotemporal  distillation, Neurocomputing,
vol. 565, p. 126872, 2024.

[14]

 B.  Chen,  T.  Li,  and  W.  Ding, Detecting  deepfake  videos
based  on  spatiotemporal  attention  and  convolutional
LSTM, Inform. Sci., vol. 601, pp. 58–70, 2022.

[15]

 A.  Koteswaramma,  M.  B.  Rao,  and  G.  J.  Suma, An
intelligent  adaptive  learning  framework  for  fake  video
detection using spatiotemporal features, Signal, Image and
Video Processing, vol. 18, no. 3, pp. 2231–2241, 2024.

[16]

 J. Wu, Y. Zhu, X. Jiang, Y. Liu, and J. Lin, Local attention
and  long-distance  interaction  of  rPPG  for  deepfake
detection, Vis.  Comput.,  vol. 40,  no. 2,  pp. 1083–1094,
2024.

[17]

 X. Ding, W. Zhu, and D. Zhang, deepfake videos detection
via  spatiotemporal  inconsistency  learning  and  interactive
fusion,  in Proc.  19th Annu.  IEEE  Int.  Conf.  Sensing,

[18]

 

Table 4    Cross-manipulation evaluation (AUC) in the FF++
(HQ) dataset.

Method
Manipulation

Average
DF FS F2F NT

Intra-frame

Xception[40] 0.939 0.512 0.868 0.797 0.779
LTW[41] 0.927 0.640 0.802 0.773 0.785
DCL[42] 0.949 − 0.829 − −

RECCE[43] 0.920 0.625 0.813 0.783 0.785
MSFCL[44] 0.941 0.656 0.814 0.792 0.801

DIFL[45] 0.947 0.779 0.856 0.802 0.846
Inter-frame Ours 0.962 0.805 0.905 0.817 0.872

    902 Big Data Mining and Analytics, September 2024, 7(3): 889−904

 



Communication,  and  Networking (SECON),  Stockholm,
Sweden, 2022, pp. 425–433.
 I.  J.  Goodfellow,  J.  Pouget-Abadie,  M.  Mirza,  B.  Xu,  D.
Warde-Farley,  S.  Ozair,  A.  Courville,  and  Y.  Bengio,
Generative adversarial nets, in Proc. 27th Int. Conf. Neural
Information  Processing  Systems,  Montreal  Canada,  2014,
pp. 2672–2680.

[19]

 J.  Thies,  M.  Zollhöfer,  M.  Stamminger,  C.  Theobalt,  and
M.  Nießner,  Face2Face: Real-time  face  capture  and
reenactment  of  RGB  videos,  in Proc.  2016  IEEE  Conf.
Computer  Vision  and  Pattern  Recognition (CVPR),  Las
Vegas, NV, USA, 2016, pp. 2387–2395.

[20]

 J.  Thies,  M.  Zollhöfer,  and  M.  Nießner, Deferred  neural
rendering: Image  synthesis  using  neural  textures, ACM
Trans. Graph., vol. 38, no. 4, p. 66, 2019.

[21]

 R. Tolosana, S. Romero-Tapiador, J. Fierrez, and R. Vera-
Rodriguez, deepfakes evolution: Analysis of facial regions
and  fake  detection  performance,  in Proc.  Int.  Conf.
Pattern Recognition, Virtual Event, 2021, pp. 442–456.

[22]

 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X.  Zhai,  T.  Unterthiner,  M.  Dehghani,  M.  Minderer,  G.
Heigold, S. Gelly, et al., An image is worth 16x16 words:
Transformers  for  image  recognition  at  scale,  arXiv
preprint arXiv:2010.11929, 2021.

[23]

 K. Li, Y. Wang, Y. He, Y. Li, Y. Wang, L. Wang, and Y.
Qiao,  UniFormerV2: Unlocking  the  potential  of  image
ViTs  for  video  understanding,  in Proc.  2023  IEEE/CVF
Int.  Conf.  Computer  Vision,  Paris,  France,  2023,  pp.
1632–1643.

[24]

 J.  Deng,  J.  Guo,  E.  Ververas,  I.  Kotsia,  and  S.  Zafeiriou,
RetinaFace: Single-shot multi-level face localisation in the
wild, in Proc. 2020 IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp.
5202–5211.

[25]

 J. Fridrich and J. Kodovsky, Rich models for steganalysis
of  digital  images, IEEE  Transactions  on  Information
Forensics and Security, vol. 7, no. 3, pp. 868–882, 2012.

[26]

 Y. Luo, Y. Zhang, J.  Yan, and W. Liu, Generalizing face
forgery  detection  with  high-frequency  features,  in Proc.
2021  IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Nashville,  TN,  USA,  2021,  pp.
16312–16321.

[27]

 S.  Woo,  J.  Park,  J.  Y.  Lee,  and  I.  S.  Kweon,  CBAM:
Convolutional  block  attention  module,  in Proc.  15th

European  Conf.  Computer  Vision (ECCV),  Munich,
Germany, 2018, pp. 3–19.

[28]

 J.  Bai,  L.  Yuan,  S.  T.  Xia,  S.  Yan,  Z.  Li,  and  W.  Liu,
Improving  vision  transformers  by  revisiting  high-
frequency  components,  in Proc.  17th European  Conf.
Computer  Vision (ECCV),  Tel  Aviv,  Israel,  2022,  pp.
1–18.

[29]

 C.  Feichtenhofer,  X3D: Expanding  architectures  for
efficient video recognition, in Proc. 2020 IEEE/CVF Conf.
Computer  Vision  and  Pattern  Recognition (CVPR),
Seattle, WA, USA, 2020, pp. 200–210.

[30]

 K.  He,  G.  Gkioxari,  P.  Dollár,  and  R.  Girshick,  Mask  R-
CNN,  in Proc.  2017  IEEE  Int.  Conf.  Computer  Vision
(ICCV), Venice, Italy, 2017, pp. 2980–2988.

[31]

 A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies,
and  M.  Nießner,  FaceForensics: A  large-scale  video
dataset  for  forgery  detection  in  human  faces,  arXiv

[32]

preprint arXiv:1803.09179, 2018.
 Y. Li,  X.  Yang,  P.  Sun,  H.  Qi,  and S.  Lyu,  Celeb-DF: A
large-scale  challenging  dataset  for  deepfake  forensics,  in
Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR),  Seattle,  WA,  USA,  2020,  pp.
3204–3213.

[33]

 B.  Dolhansky,  J.  Bitton,  B.  Pflaum,  J.  Lu,  R.  Howes,  M.
Wang, and C. C. Ferrer, The deepfake detection challenge
(DFDC) dataset, arXiv preprint arXiv:2006.07397, 2020.

[34]

 K. Kim, Y. Kim, S. Cho, J. Seo, J. Nam, K. Lee, S. Kim,
and K. Lee, DiffFace: Diffusion-based face swapping with
facial guidance, arXiv preprint arXiv:2212.13344, 2022.

[35]

 S.  Zhao,  Y.  Rao,  W.  Shi,  Z.  Liu,  J.  Zhou,  and  J.  Lu,
DiffSwap: High-fidelity  and  controllable  face  swapping
via 3D-aware masked diffusion, in Proc. 2023 IEEE/CVF
Conf.  Computer  Vision  and Pattern  Recognition (CVPR),
Vancouver, Canada, 2023, pp. 8568–8577.

[36]

 Z.  Hu,  H.  Xie,  L.  Yu,  X.  Gao,  Z.  Shang,  and  Y.  Zhang,
Dynamic-aware  federated  learning  for  face  forgery  video
detection, ACM Trans. Intell. Syst. Technol., vol. 13, no. 4,
p. 57, 2022.

[37]

 J.  Carreira  and  A.  Zisserman,  Quo  vadis,  Action
recognition?  A  new  model  and  the  kinetics  dataset,  in
Proc.  2017  IEEE  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Honolulu,  HI,  USA,  2017,  pp.
4724–4733.

[38]

 R.  R.  Selvaraju,  M.  Cogswell,  A.  Das,  R.  Vedantam,  D.
Parikh,  and  D.  Batra,  Grad-CAM: Visual  explanations
from  deep  networks  via  gradient-based  localization,  in
Proc.  2017  IEEE  Int.  Conf.  Computer  Vision (ICCV),
Venice, Italy, 2017, pp. 618–626.

[39]

 F.  Chollet,  Xception: Deep  learning  with  depthwise
separable  convolutions,  in Proc.  2017  IEEE  Conf.
Computer  Vision  and  Pattern  Recognition (CVPR),
Honolulu, HI, USA, 2017, pp. 1800–1807.

[40]

 K. Sun, H. Liu, Q. Ye, Y. Gao, J. Liu, L. Shao, and R. Ji,
Domain  general  face  forgery  detection  by  learning  to
weight,  in Proc.  35th AAAI  Conf.  Artificial  Intelligence,
Virtual Event, 2021, pp. 2638–2646.

[41]

 K.  Sun,  T.  Yao,  S.  Chen,  S.  Ding,  J.  Li,  and  R.  Ji,  Dual
contrastive  learning  for  general  face  forgery  detection,  in
Proc.  36th AAAI  Conf.  Artificial  Intelligence,  Virtual
Event, 2022, pp. 2316–2324.

[42]

 J.  Cao,  C.  Ma,  T.  Yao,  S.  Chen,  S.  Ding,  and  X.  Yang,
End-to-end  reconstruction-classification  learning  for  face
forgery  detection,  in Proc.  2022  IEEE/CVF  Conf.
Computer  Vision  and  Pattern  Recognition (CVPR),  New
Orleans, LA, USA, 2022, pp. 4103–4112.

[43]

 F.  Dong,  X.  Zou,  J.  Wang,  and  X.  Liu, Contrastive
learning-based general deepfake detection with multi-scale
RGB  frequency  clues, J.  King  Saud  Univ.  Comput.  Inf.
Sci., vol. 35, no. 4, pp. 90–99, 2023.

[44]

 J.  Zhang and J.  Ni,  Domain-invariant  feature  learning for
general  face  forgery  detection,  in Proc.  2023  IEEE  Int.
Conf.  Multimedia  and  Expo (ICME),  Brisbane,  Australia,
2023, pp. 2321–2326.

[45]

 Y. Wang, C. Peng, D. Liu, N. Wang, and X. Gao, Spatial-
temporal  frequency  forgery  clue  for  video  forgery
detection  in  VIS and  NIR scenario, IEEE Trans.  Circuits
Syst.  Video  Technol.,  vol. 33,  no. 12,  pp. 7943–7956,
2023.

[46]

  Pengfei Yue et al.:  Local Region Frequency Guided Dynamic Inconsistency Network for Deepfake Video Detection 903

 



Pengfei  Yue received  the  BEng degree  in
computer  science  and  technology  from
Nanjing University of Information Science
and Technology,  China in  2022,  where  he
is  currently  a  master  student  in  electronic
information.  His  research interests  include
image processing and image forensics.

Beijing  Chen received  the  PhD degree  in
computer  science  from  Southeast
University,  China in 2011. He is  currently
a professor at School of Computer Science,
Nanjing University of Information Science
and  Technology,  China.  His  research
interests  include  digital  forensics,  image
watermarking, color image processing, and

pattern recognition.

Zhangjie  Fu received  the  PhD  degree
from Hunan University, China in 2012. He
is  currently  a  professor  and  the  dean  at
School  of  Computer  Science,  Nanjing
University  of  Information  Science  and
Technology,  China.  He  is  also  filling  the
post  of  the  director  of  Engineering
Research  Center  of  Digital  Forensic

affiliated  with  Ministry  of  Education,  Nanjing  University  of
Information  Science  and  Technology,  China.  His  research
interests  include  digital  forensics,  blockchain  security,  artificial
intelligence security.

    904 Big Data Mining and Analytics, September 2024, 7(3): 889−904

 


