
 

Collaborative Knowledge Infusion for Low-Resource Stance Detection

Ming Yan*, Tianyi Zhou Joey, and W. Tsang Ivor

Abstract: Stance  detection  is  the  view  towards  a  specific  target  by  a  given  context  (e.g.  tweets,  commercial

reviews).  Target-related  knowledge  is  often  needed  to  assist  stance  detection  models  in  understanding  the

target well  and making detection correctly. However, prevailing works for knowledge-infused stance detection

predominantly incorporate target knowledge from a singular source that lacks knowledge verification in limited

domain  knowledge.  The  low-resource  training  data  further  increase  the  challenge  for  the  data-driven  large

models in this task. To address those challenges, we propose a collaborative knowledge infusion approach for

low-resource stance detection tasks, employing a combination of aligned knowledge enhancement and efficient

parameter  learning  techniques.  Specifically,  our  stance  detection  approach  leverages  target  background

knowledge collaboratively from different knowledge sources with the help of knowledge alignment. Additionally,

we  also  introduce  the  parameter-efficient  collaborative  adaptor  with  a  staged  optimization  algorithm,  which

collaboratively  addresses  the  challenges  associated  with  low-resource  stance  detection  tasks  from  both

network structure and learning perspectives. To assess the effectiveness of our method, we conduct extensive

experiments  on three public  stance detection  datasets,  including low-resource and cross-target  settings.  The

results  demonstrate  significant  performance  improvements  compared  to  the  existing  stance  detection

approaches.
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1　Introduction

Stance  detection  is  the  view  towards  a  specific  target
with  a  given  context,  such  as  tweets  or  commercial
reviews.  Typically,  those  given  contexts  in  stance
detection tasks are mostly short-length contexts, which
makes  it  challenging  to  predict  the  target’s  stance  for
the  data-driven  detection  models  with  such  limited
information.  Large  Pretrained  Language  Models

(PLMs) are becoming the default backbone to enhance
the stance detection model with learned commonsense
knowledge, leading to great success in this field[1, 2]. To
further  enrich  the  knowledge  of  specific  targets,  the
straightforward  approach  is  to  incorporate  the  target-
related  background knowledge as  extra  supplementary
knowledge  for  the  pretrained  stance  detection  model,
which has been shown to substantially improve model
performance[3, 4].  In  detail,  those  works  infuse
explicitly  knowledge  individually  through  knowledge
graph[5, 6],  Wikipedia[7, 8],  generative  knowledge[9, 10],
leveraging  PLMs’ knowledge  feature  learning  and
representation  capability  by  finetuning  entire  models’
parameters.  However,  those  knowledge-infuse
solutions are  quite  inefficient  in  finetuning large PLM
backbones  on  the  limited  training  data.  For  instance,
the  few-shot  or  zero-shot  stance  detection  dataset
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VAST[11] has very limited training data, and even some
stance detection target has no training data. Besides the
low-resource challenge, unbalanced dataset distribution
is  another  challenge  for  the  stance  detection  task,
leading  the  training  trajectory  to  fall  into  the  local
minima.  Last  but  not  least,  we  find  some  background
knowledge  is  not  always  infused  correctly  in  the
knowledge  infusion  process.  This  is  because  a  single
knowledge source in previous works cannot fully cover
and  support  enough  knowledge  for  diverse  targets[4].
For  example,  the  target ‘breaking  the  law’ on
Wikipedia is erroneously linked to a heavy metal music
song rather than its ground truth definition of engaging
in activities contrary to the law.

To  address  the  aforementioned  challenges,  we
propose  a  novel  collaborative  knowledge-infused
stance detection method for training the large detection
model  in  the  low-resource  setting  efficiently.
Specifically, we introduce a retrieval-based knowledge
verifier that mitigates incorrect knowledge infusion by
selecting  the  rich-semantic  background  knowledge
from  different  knowledge  sources,  rather  than  relying
on a single knowledge source. Furthermore, we present
a  trainable  collaborative  adaptor  integrated  into  PLMs
to  enable  efficient  parameter  learning  in  low-resource
stance  detection  tasks.  Concretely,  the  collaborative
adaptor  freezes  the  parameter  weights  of  large  PLM
and  finetunes  the  parameter-efficient  adaptor  only,
which alleviates the overfitting effects on large PLM in
low-resource  scenarios.  However,  we  empirically  find
that  intuitively  adding adaptors  into  PLM may lead to
unstable training in the new stance detection tasks. This
because that the initialized weights of the collaborative
adaptor cannot work well with the pretrained PLMs in
the early finetuning stage of  new tasks.  Moreover,  the
unbalanced data  distribution further  impacts  the  stable
training.  Thereby,  we  design  a  staged  optimization
algorithm  for  the  adaptive  model  training  in
unbalanced distributions.  The primary objective of  the
first  optimization  stage  is  to  prevent  the  training
trajectory from converging to a local minimum leading
to  unexpected  performance.  In  the  second  stage,  our
model  introduces  a  weighted  cross-entropy  loss  to
balance  the  biased  stance  categories  and  further
improve the model performance in low-resource stance
detection  tasks.  In  other  words,  we  progressively  use
label  smooth  (Stage  1)  and  weighted  loss  (Stage  2)
separately to reduce the overfitting effects  in  our  low-

resource stance detection tasks, which is different from
traditional  optimization  paradigms  using  those  two
without dynamic adjustments.

We  conduct  extensive  experiments  on  three  public
stance  detection  datasets,  encompassing  the  low-
resource  stance  detection,  and  cross-target  stance
detection  tasks.  Experimental  results  demonstrate  the
superior  performance  of  our  method  compared  to  the
state-of-the-art  approaches  across  all  stance  detection
tasks. The contributions of our work are summarized as
follows.

•     We     introduce     a     collaborative     knowledge
verification  module  to  assist  the  detection  model  in
selecting  high  related  semantic  knowledge  from
different  knowledge  sources.  To  the  best  of  our
knowledge,  this  is  the  first  work  to  infuse  verified
knowledge  into  the  knowledge  enhancement  stance
detection task.

• We introduce a collaborative adaptor in an efficient
way for the low-resource setting. It contains three sub-
components,  which  are  architecturally  located  in
different  positions  of  the  backbone  model,  learning
different features collaboratively.

• To alleviate the unbalanced effects of low-resource
stance  detection  tasks,  we  also  provide  a  staged
optimization  algorithm  to  improve  the  training
efficiency  in  large  PLMs.  Experiments  show  the
superiority  of  our  method  in  different  low-resource
settings and outperforms state-of-the-art approaches on
three public stance detection datasets.

2　Related Work

2.1　Knowledge enhancement

Knowledge  enhancement  increases  the  capabilities  in
thinking,  understanding,  and  reasoning  for  the  data-
driven  models  beyond  the  original  training  data.  In
recent years, there has been a growing trend in infusing
external-specific  knowledge  as  complementary
knowledge  to  the  large  pretrained  models[12].
Depending  on  the  infused  knowledge,  knowledge
infusion  methods  can  be  broadly  categorized  into
structured-knowledge infusion (e.g., knowledge graph)
and unstructured-knowledge infusion (e.g., Wikipedia).

Domain-specific  experts  typically  collect  structured
knowledge,  encompassing  well-organized  and  rich
knowledge.  For  instance,  CKE-Net[5] utilizes  the
structured knowledge base (ConceptNet) to enhance its
model’s common-sense knowledge in zero-shot or few-
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shot  stance  detection  tasks.  Similarly,  K-BERT[13]

incorporates  domain  knowledge  through  entity  triplets
obtained  from  the  knowledge  graph.  Other  methods,
like  JAKET[14],  ERNIE[15] and,  Entity-as  Experts[16],
also  infuse  knowledge  from  knowledge  bases  through
grounding knowledge with entity linking technologies.
Structured  knowledge  provides  well-organized  and
domain-specific  knowledge  for  specific  targets  in
stance detection tasks. However, its utility is limited by
the  pre-defined  scope  of  available  knowledge,  which
may  not  cover  all  targets  encountered  in  practical
scenarios.

In  contrast,  unstructured  knowledge  offers  more
flexibility  and  can  be  easily  collected  from  a  wide
range  of  diverse  domains.  For  instance,  the  VAST[11]

dataset  introduces  thousands  of  diverse  targets  that
mostly  cannot  be  found  in  the  well-constructed
structured  knowledge.  To  incorporate  unstructured
knowledge  into  the  stance  detection  models,  WS-
BERT[4] directly  infuses  external  knowledge  from
Wikipedia as its inputs to pretrained models for stance
detection  in  the  VAST  dataset.  Another  knowledge
infusion paradigm is  to finetune PLMs on the specific
domain  corpus  to  embed  the  domain-specific
knowledge,  as  demonstrated  by  SciBERT[17],  Bio-
BERT[18],  and  BERTweet[19].  In  addition  to  domain-
specific  finetuning,  Self-talk[20] offers  another
interesting  solution  by  exploring  knowledge  from  its
own  training  corpus  with  hand-crafted  prompts,
enhancing  language  model  learning  with  task-related
knowledge.  Furthermore,  DDP[21] and  K-Former[22]

present  the  retrieval-based  knowledge  infusion
methods  by  retrieving  knowledge  from  feature  pools
and  online  websites,  respectively.  Nevertheless,  more
efforts  are  still  needed  to  collaborate  structured  and
unstructured  knowledge  together  in  a  correct  and
efficient  manner  for  large  PLM-based  models,
particularly in low-resource tasks.

2.2　Stance detection

Stance detection refers to the identification of attitudes
toward a specific context or topic, typically framed as a
stance  classification  problem  (positive,  negative,  and
neutral)  for  the  neural  network-based  models.  Stance
detection encompasses  various  tasks  depending on the
specific  topics  involved,  including  rummer  stance
detection[23],  fake  news  stance  detection[24],
disinformation  or  misinformation  stance  detection[25],
multi-language  and  cross-language  stance

detection[26, 27],  and  zero-shot  stance  detection[11],  etc.
In  this  study,  we focus  on in  stance detection tasks  of
background  knowledge  infusion  and  low-resource
training.  To  infuse  background  knowledge,  existing
approaches try to incorporate knowledge from different
sources.  For  instance,  CKE-Net[5] introduces  target-
related  knowledge  from  ConceptNet,  which  is  trained
on the common sense knowledge graph. Similarly, BS-
GGCN[28] simplifies  the  whole  concept-net  graph  to  a
compact  sentence  related  graph,  enabling  more
efficient  knowledge  embedding  for  stance  detection.
Moreover,  WS-BERT[4] leverages  the  background
knowledge  from  Wikipedia  pages  as  its  additional
input  to  improve  the  model  performance  in  stance
detection.  Regarding  the  low-resource  challenge,
STCC[29] employs  contrastive  learning  to  enhance
target  representation  in  low-resource  stance  detection
tasks.  Different  from  STCC  building  contrastive
examples  in  the  existence  of  the  target,  JointCL[30]

builds  contrastive  examples  from  the  prototype  graph
representation  of  the  target’s  link,  which  further
improves the model performance on the unseen targets.
While  most  of  those  works  solve  the  knowledge
infusion and low-resource task separately, it is essential
to  consider  two  challenges  together  to  improve  the
performance of stance detection models.

3　Methodology

Before  delving  into  our  methodology,  we  define  the
notations of the stance detection task as follows.

C ci

i = 1, 2, . . . , nc T t j

j = 1, 2, . . . , nt

y
P (y| {C,T })

Y = {Positive, Negative, Neutral}.

P (y|{C,T ,K})
K

Given  a  context  set  with  element ,  where
,  and  a  target  set  with  element ,

where .  The  stance  detection  task  is
formulated  to  predict  the  stance  that  maximizes  the
prediction  possibility  of ,  where  the  stance
set  is  Regarding  the
knowledge  enhancement  stance  detection  task,  its
objective  is  defined  as  maximizing ,
where  denotes the infused knowledge that assists in
the stance detection task.

The  overview  of  our  proposed  methodology,  as
illustrated in Fig. 1, contains three modules:

(1)  Knowledge  alignment,  which  aims  to
collaboratively  select  semantic  target  knowledge  from
structured and unstructured knowledge sources.

(2)  Parameter-efficient  learning,  which  involves
collaborative  adaptor  and  knowledge  augmentation  to
enhance model performance in low-resource settings.
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(3)  Staged  optimization  algorithm,  which  further
refines  the  adaptive  model  through  strategies,  such  as
label smoothing and weighted loss.

3.1　Knowledge alignment

K T

We introduce a knowledge alignment module to assist
the  stance  detection  model  infuse  target-related
background  knowledge  correctly,  particularly  for  the
targets that lack matching items in singular knowledge
source (e.g., Wikipedia). To help the unmatched targets
infuse  knowledge  out  of  Wikipedia,  we  incorporate
retrieval  knowledge  from  the  Internet,  specifically
through  Google  search,  as  an  additional  knowledge
source.  Thus,  our  approach  adopts  a  multi-source
knowledge  infusion  paradigm  across  structured
Wikipedia and unstructured Internet,  which selects the
semantic  similar  knowledge  as  the  collaborative
knowledge  to  align  to  the  target  from  multiple
knowledge sources. Figure 2 illustrates our knowledge

alignment module.

T
C

Y

K

In  the  paradigms  of  knowledge  enhancement  stance
detection,  detection  models  mostly  infuse  extra
knowledge through the target ( ) rather than the given
context  ( ).  There  are  two reasons.  Firstly,  the  stance
detection  task  aims  to  identify  the  stance  ( )  of  the
target,  which  may  not  be  explicitly  mentioned  in  the
given  context.  Consequently,  the  target  contains  more
information  compared  to  the  given  context.  Secondly,
the  context  is  typically  long  and  complex,  making  it
challenging  to  locate  target-related  information  for
infusing  background  knowledge  ( ).  In  our  proposed
collaborative  knowledge  infusion  approach  (see
Fig. 2), we collaboratively incorporate the background
knowledge  into  the  detection  model  by  retrieving  the
target-related  knowledge  from  Wikipedia  and  the
Internet.

For  structured  Wikipedia  knowledge,  we  utilize  the
target  as  the  keywords  to  retrieve  background
knowledge  through  Wikipedia’s  API  (https://github.
com/goldsmith/Wikipedia).  This  API  returns  a
summary  of  the  matched  Wikipedia  page.  In  cases
where  there  is  no  match  for  a  target,  we  follow  the
setting  of  Ref.  [4]  and  consider  the  target  itself  as  the
knowledge  without  introducing  any  additional
information.

(T )

For unstructured Internet knowledge, we retrieve the
target-related web pages by using the searching prompt
“What  is  the  definition  of  TARGET ?” as  the
search  term  for  the  Google  search  engine.
Subsequently,  we  select  the  top  three  pages  from  the
Google  search  results  and  employ  BeautifulSoup
(https://git.launchpad.net/beautifulsoup)  to  parse  the
HTML contents  of  these  pages  into  candidate  passage

 

Knowledge alignment

Target: “Breaking the law”

Context: …, thereby rewarding lawbreaking
and penalizing those who have not gotten caught
breaking the law. This is …
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Fig. 1    Overview  of  our  stance  detection  architecture:  Knowledge  alignment,  parameter-efficient  learning,  and  staged
optimization. Knowledge alignment collaboratively selects semantic similar knowledge of the target from different knowledge
sources.  Parameter-efficient  learning  introduces  the  collaborative  adaptor  and  knowledge  augmentation  into  the  stance
detection model to perform low-resource learning. Staged optimization algorithm optimizes the classifier with label smoothing,
then pushes the classifier edge aligning to data distribution with the help of weighted loss.

 

Target: “Breaking the law”

RetrieveExtract

TF-IDF
ranker

Wikipedia
API

Verifier
Features Similarity

0.45
0.65

Verified
knowledge

 
Fig. 2    Knowledge  alignment.  The  target’s  collaborative
knowledge  is  the  knowledge  with  a  higher  semantic
similarity  score  from  Wikipedia  or  the  Internet.  The
Wikipedia  knowledge  is  obtained  by  Wikipedia’s  API.  The
Internet knowledge is obtained by Google retrieval.
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Dlists ( ). The next step involves filtering out unrelated
contexts from the candidate passage lists, as web pages
often  contain  noise  and  extraneous  information.  To
accomplish  this,  we  utilize  Term  Frequency  Inverse
Document  Frequency  (TF-IDF)  ranker  to  identify  and
exclude  noisy  passages  from  a  long  list  of  candidate
passages,
 

TF− IDF = TF× IDF (1)

TF IDF

T
Kw

Kg

T em,Kem
w ,Kem

g

where  is  term  frequency,  and  is  inverse
document  frequency.  Once  the  knowledge  related  to
the  target  has  been  collected  from  Wikipedia  and  the
Internet,  we introduce the knowledge verifier  to select
more accurate knowledge from multiple sources as the
infused  knowledge.  Knowledge  verification  involves
feature  encoding  and  feature  similarity  comparison,
that  selects  semantic  similar  knowledge  among
different  knowledge  sources.  Concretely,  we  employ
Sentence-BERT[31] to  encode  the  target  and  its
corresponding  knowledge  (Wikipedia  knowledge 
and  Internet  knowledge )  into  embedding  features
( ),
  {

T em,Kem
g ,Kem

w

}
= F
({
T ,Kw,Kg

})
(2)

F (·)
T em

Kem
g andKem

w

where  is  the  embed  function.  Then,  we  compute
the semantic similarity between the stance target ( )
and  different  knowledge  sources  using
the classical cosine similarity as follow:
 

S
(T em,Kem

w
)
=
T emKem

w

|T em| ×
∣∣∣Kem

w
∣∣∣ (3)

 

S
(
T em,Kem

g

)
=
T emKem

g

|T em| ×
∣∣∣Kem

g
∣∣∣ (4)

| · |

K

where  is  the  L1  norm.  Finally,  we  select  the
knowledge  with  the  highest  semantic  similarity  as  the
collaborative  knowledge  to  be  infused  into  our
model, which is expressed as follows,
 

K = argmax
{
S
(T em,Kem

w
)
, S
(
T em,Kem

g

)}
(5)

By  collaborative  integration  of  this  verified
knowledge,  our  stance  detection  model  allows  for  the
inclusion  of  reliable  knowledge  in  stance  detection
tasks.  This  knowledge  infusion  manner  expands  the
scope  of  target  knowledge  by  incorporating
information  from  both  structured  and  unstructured
knowledge  sources.  As  a  result,  it  addresses  the
limitations  associated  with  relying  on  a  single
knowledge source, including the issues of out-of-scope

knowledge and false infusions.

3.2　Efficient parameter learning

By collaborative integration of this verified knowledge,
our  stance detection model  allows for  the  inclusion of
reliable  knowledge  into  stance  detection  tasks.  This
knowledge infusion manner expands the scope of target
knowledge  by  incorporating  information  from  both
structured  and  unstructured  knowledge  sources.  As  a
result,  it  addresses  the  limitations  associated  with
relying  on  a  single  knowledge  source,  including  the
issues  of  out-of-scope  knowledge  and  false  infusions.
But  those  training  data  are  still  the  low-resource  data
for  the  large  PLM  finetuning.  In  this  section,  we
proposed a new efficient parameter learning method.

W
∆W

Suppose  our  stance  detection  model’s  backbone  is
the  pretrained  PLM  with  collaborative  adaptors.
Specifically,  the  PLM  with  fixed  parameter  ( )  and
adaptors with trainable parameter ( ). The backbone
model  can  be  a  generic  language  model  BERT  with
Transformer  architecture.  In  our  low-resource  stance
detection  task,  the  objective  of  the  knowledge-infused
stance detection task is formulated as follows:
 

J =min
T,C∑ Y∑− log (P (Y |W, ∆W, {C, T , K})) (6)

T C

C

|∆W | ≪ |W |

0.01% W

where  is the target set,  is the content set, and Y is
the  stance  set.  During  the  training  process,  our
approach keeps the parameters of the pretrained model
fixed  and  trains  the  collaborative  adaptor  parameters
only on the low-resource stance detection dataset.  The
fixed-weight  setting  prevents  the  catastrophic
forgetting  problem  and  mitigates  the  challenges
associated  with  training  large  models  on  limited
training  data  ( ).  Moreover,  the  collaborative  adaptor
has  significantly  fewer  parameters  than  the  pretrained
PLM’s  parameters,  (e.g.,  the  prefix-tuning
adaptor  of  our  collaborative  adaptor  only  has
approximately  of  the  parameters  in  BERT).
This reduction in parameters greatly alleviates the data
dependency for large model training.

The  motivation  of  our  collaborative  adaptor  is  to
introduce  multiple  adaptive  modules  that
collaboratively  work  together  to  provide  a  stronger
feature  representation  capability  than  the  individual
adaptors. Figure  3 presents  the  overview  of  our
collaborative adaptor, which consists of gated low-rank
adaptation, prefix-tuning, and attentive fusion modules.
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Those adaptive modules are hierarchically incorporated
into different levels of the Transformer architecture.

Wl

Wp

K
V

with parameter Wf

V

In detail, the gated low-rank adaptor (with parameter
)  is  inserted  after  the  bottom  hidden  state  layer  of

Transformer  architecture.  It  maps  the  selective
embedding  features  from  previous  layers.  In  the
intermediate  level  of  the  Transformer  architecture,  the
prefix-tuning  (with  parameter )  introduces
additional trainable prefix tokens before the key  and
value  to  incorporate  new  task-specific  information
into the PLMs. At the top of Transformer architecture,
we  introduce  the  attentive  fusion  module
( )  to  further  select  task-related
features from value . Therefore, all adaptive modules
collaborate  to  learn  task-specific  information  and
feature representations in a hierarchical manner.

Φ Sigmoid

H
Wdown Wup

More specifically, the gated low-rank adaptation not
only  maintains  the  parameter  efficiency  of  the  Low-
Rank  Adaptor  (LoRA)[32],  but  also  introduces  a  gate
function to selectively incorporate the learned features
from  LoRA.  This  gate  function  empowers  the  vanilla
LoRA  with  a  similar  attentive  capability  to  the
Transformers  module,  by  passing  through  the  learned
features  selectively.  Here,  we  default  set  the  gated
function  to  function. Mathematically, if we
denote  the  output  of  fully  connection  layer  with
normalization  as  the  hidden  state ,  the  low-rank
downscale  metric  and  upscale  metric  map

features  in  an  efficient  computing  manner.  Our  gated
LoRA is defined as follows:
 

Il =Φ
(
WT

up ·Wdown ·H
)
+WI ·H (7)

T = ∃ {V, Q}
Il

K V
Q

⟨K, V, Q⟩
TQ

TV

⟨TQ; IQ⟩ ⟨TV ; Iv⟩

where  denotes  the  transpose  of  matrix,  l ,
and  denotes  the  selected  features  by  our  gated
LoRA. The LoRA features are then collaborative with
the Transformer’s features to form the key , value ,
and  query  through  an  additive  operation
correspondingly.  To  enhance  the  feature  learning
capacity  of  our  detection  model,  we  introduce  an
alternative  approach  where  the  mapped  embeddings

 are  not  directly  fed  into  the  multi-head
computation.  Instead,  we  integrate  prefix  tokens 
and  along with selected key and value features into
new  configurations:  and .  This
modification  aims  to  enrich  the  model’s  feature
processing  capabilities.  The  details  of  the  multi-head
attention computation are provided as follows:
 

Zi = Attentioni (K, ⟨Tk; ⟨TQ; IQ⟩, ⟨TV ; Iv⟩) (8)

Zi i
Attentioni)

K
′

V
′

Zi

Q
′

Q

⊗

where  is  the -th  output  of  the  multi-head attention
computation  ( .  The  prefix-tuning  adaptors
are  introduced  at  the  intermediate  level  of  every
Transformer,  with  significantly  fewer  trainable
parameters  compared  to  full  parameter  finetuning.  To
leverage  the  attentive  mechanism,  we  introduce
attentive  fusion  at  the  top  of  the  Transformer,
selectively  activating  the  prefix-tuning features.  As  an
attentive  network,  the  key  ( )  and  value  ( )  are
derived  from  the  outputs  ( )  of  the  multi-head
attention layer, and the query ( ) is obtained from the
previous  layer’s  query  ( )  through  a  residual
connection. The attentive fusion is performed using dot
production .  All  computations of attentive fusion are
listed as follows:
 

Z = Softmax
(
Q
′ ⊗K

′)⊗V ′ (9)

In  this  way,  our  collaborative  adaptor  performs
efficient  parameter  learning  across  bottom  embedding
layers,  middle  of  Transformer,  and  top  feature  fusion.
All the efficient modules collaborate with each other to
learn  a  generic  representation  for  the  low-resource
stance detection tasks. The rest computing is performed
in  traditional  manner  with  dense  layer  and  classifier.
More detailed computation please find in Algorithm 1.

Besides  the  collaborative  adaptor  in  efficient
parameter  learning,  we  also  introduce  knowledge

 

Add & Norm

Attentive
fusion

Prefix
tuning

Wf

Wl Wl

Q K V

Wf

Wp Wp

Wf

Softmax

Multi-head
attention

Hidden states

Gated LoRA

 
Fig. 3    Overview  of  collaborative  adaptor  in  efficient
parameter learning. Q, K ,V are the query, key, and value of
the Transformer module, respectively.
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augmentation to  facilitate  efficient  parameter  learning.
In  the  knowledge  infusion  module,  the  crawled
knowledge obtained from the Internet often exceeds the
maximum  input  length  of  backbone  PLMs.  Our
knowledge augmentation approach involves slicing the
lengthy  knowledge  content  into  properly  segmented
parts to help the detection model capture the complete
semantics of the infused knowledge.

K
Unlike  previous  approaches  in  knowledge-infused

stance detection that infuses knowledge ( ) following
the paradigm:
 

[T , C, ⟨SEP⟩, K , ⟨CLS⟩]
or

 

[T , ⟨SEP⟩, C, ⟨SEP⟩,K , ⟨CLS⟩],
⟨SEP⟩ ⟨CLS⟩where  and  are separate token and ending

token  for  the  PLMs,  respectively.  We reformulate  our
knowledge infusion paradigm into
 

[Pt, C, ⟨SEP⟩, Ksub, ⟨CLS⟩] .
Pt

T
T

⟨SEP⟩

Our input paradigm employs the prompt : [What’s
the  stance  of  in  following  context?]  instead  of  the
target  to  fully  leverage  the  reasoning  capability  of
PLMs, which matches the pretrain input format of two
sentences  split  by ,  as  well  as  keeping  the
semantic integrity.

Ksub K

In detail, we conduct the knowledge augmentation by
slicing  the  long  collaborative  knowledge  content  into
sub-knowledge  segments,  each  of  which  fits  the
maximum  length  requirement.  This  manner  helps  the
stance  detection  model  capture  the  entire  background
knowledge  instead  of  the  cropped  knowledge  with
missing  information,  as  in  the  previous  knowledge
enhancement  paradigms.  The  sub-knowledge  segment

 is  sampled  from  the  collaborative  knowledge 
as follows:
 

Ksub =
[Ki·l/2, K(i+1)·l/2

]
,

 

s.t., i ∈ (0, 1, . . . , ⌊Len(K)/l⌋).
The  collaborative  adaptor  and  knowledge

augmentation  work  together  to  optimize  efficient
parameter  learning  by  reducing  trainable  parameters
and  addressing  data  limitations  in  low-resource  stance
detection  tasks.  The  collaborative  adaptor  reduces  the
data  reliance  in  training  large-scale  PLMs,  while
knowledge  augmentation  expands  the  training  data  to
further improve training efficiency.

3.3　Staged optimization algorithm

To  address  the  challenges  of  data  discrepancy  and
domain  gap  between  training  data  and  pretrained
models  in  the  low-resource  stance  detection  task,  we
propose a staged optimization algorithm that combines
collaborative  knowledge  infusion  and  efficient
parameter learning. However, the collaborative adaptor
weights  are  initialized  randomly,  which  may  lead

 

Algorithm 1    Staged optimization algorithm
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unstable  training  with  the  pretrained  backbone  PLMs.
Another  issue  is  the  unbalanced  data  distribution,
which  is  often  been  overlooked  in  stance  detection
tasks.  Our algorithm aims to mitigate these challenges
in the low-resource stance detection task.

K

Pt

Ksub

T ⟨C, Pt, Ksub⟩
Y

model (C, Pt, Ksub|W, W∗)
Yc Softmax

(
Y
)

Algorithm  1  presents  the  details  of  staged
optimization for the low-resource stance detection task.
Once  the  collaborative  knowledge  and  adaptor
initialization  are  prepared,  we  set  the  first  stage  for
label smooth training and set the second stage with the
weighted loss for unbalanced stance categories. Before
training  begins,  we  prepare  the  prompt  and
augmented  knowledge  with  the  given  stance
target  as  the  training  input  triplet .
Then,  we  can  get  the  output  by  feed  forward
computing  and  stance
prediction  by .  The objective  is  defined
by Cross-Entropy (CE),
 

CE (Y, Ỹ) = −
Nc∑

c=1
θ ·Yclog

(
Ỹc
)

(10)

θa θb
ϵ)

where Nc denotes  the  total  number  of  targets.  Our
algorithm  aims  to  enhance  the  model’s  capability  to
handle  ambiguous  and  diverse  inputs  by  adjusting  the
loss  function  weights  ( , )  and  introducing  label
smoothing  (  during  the  training  process.  In  the  first
stage, label smoothing is applied to soften the training
targets,  allowing  the  model  to  better  handle  uncertain
data  instances.  Meanwhile,  label  smoothing  helps  the
collaborative adapter convergence with newly initialed
parameters.  In  the  second  stage,  a  weighted  loss
function  is  employed  to  assign  different  weights  to
different classes, thereby improving the model’s ability
to handle unbalanced datasets.  Our algorithm provides
a promising solution for tackling the challenges of data
discrepancy  and  unbalanced  data  distribution  in  low-
resource stance tasks.

4　Experiment

To evaluate the effectiveness of our proposed method,
we  conduct  extensive  experiments  on  three  publicly
available  stance  detection  datasets  and  different  low-
resource  settings.  In  this  section,  we  provide  a  brief
description  of  the  datasets  and  the  compared  methods
in our stance detection task. Finally, we summarize the
results using F1-score as the default evaluation metric.

4.1　Datasets

(1) VAST[11] is a typical zero-shot and few-shot stance

6000

2.4

detection dataset that covers a wide range of over 
targets across various themes, including politics, sports,
education,  immigration,  and  public  health,  etc.  The
VAST  dataset  consists  of 13 447,  2062,  and  3006
examples  in  its  training,  validation,  and  test  sets,
respectively. Notably, the majority of targets in VAST
are designed for zero-shot setting. It has an average of
approximately  examples  per  target.  This
characteristic  makes  VAST  particularly  suitable  for
zero-shot and few-shot stance detection tasks.

21 574

(2) P-Stance[33] is stance detection dataset specific to
the  political  domain.  It  contains  in-target  and  cross-
target  settings  with  labeled  tweets  on  three
specific  targets: ‘Biden’, ‘Sanders’,  and ‘Trump’.  In
the  in-target  setting,  the  target  and  classifier  are  the
same  in  both  the  training  and  evaluation  sets.
Conversely,  in  the  cross-target  setting,  the  targets  are
entirely  different,  allowing  for  the  evaluation  of  the
generalization performance.

6133

(3) COVID-19-Stance[34] is  stance detection dataset
constructed from COVID-19-related tweets. It contains

 tweets  with  respect  to  four  specific  targets:
‘Anthony  S.  Fauci,  M.  D.  (Fauci)’, ‘Keep  School
Closed  (School)’, ‘Stay  at  Home  Order  (Home)’,  and
‘Wearing  a  Face  Mask  (Mask)’.  COVID-19-Stance  is
an unbalanced dataset in terms of class distribution.

4.2　Compared methods

(1)  TAN[35] is  a  classical  attention-based  method  for
the  stance  detection  task.  It  contains  a  target-specific
attention  extractor  and  a  long  short-term  memory
network.

(2)  BERT[36] is  a  well-known  Transformer-based
pretrained  language  model  widely  been  used  for
various  downstream  tasks.  We  employ  BERT  as  our
baseline for reference in the stance detection task.

(3)  WS-BERT-Dual[4] infuses  target-related
knowledge  from  extra  Wikipedia  to  enhance
background  knowledge  of  PLMs  in  stance  detection
tasks.  It  utilizes  two  pretrained  encoders  to  encode
tweets and knowledge separately.

In addition to the shared baselines mentioned above,
we  also  introduce  other  strong  specific  baselines  for
different stance datasets. For VAST task, we introduce
graph  convolution  networks-based  methods  BERT-
GCN,  CKE-NET[9],  and  BSRGCN[28].  Those  methods
join  large  pretrained  models  with  graphic  convolution
networks  to  leverage  the  learning  capability  of  the
models  on  heterogeneous  data  with  structured  graphic
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representation. For the zero-shot setting in VAST task,
we  select  BSRGCN  and  contrastive  learning-based
Joint-CL[30] as the compared methods.

For  PStance  task,  we  choose  the  bi-recurrent  neural
networks  BiCE[37],  and  gated  convolutional  neural
networks  GCAE[38] and  PGCNN[39] as  the  baselines.
Specifically,  the  GCAE  uses  a  Tanh  (·)  as  the  gate
function  to  selectively  output  the  sentiment  futures
according to the given aspect.  Similarly,  PGCNN also
uses  the  parameterized  filters  as  the  gate  function  to
effectively  capture  the  aspect-specific  features.
Moreover,  we  also  include  BERT-Tweet[33] as  the
compared  method,  which  is  pretrained  on  the  target
Tweet domain data.

For COVID-19-Stance task, we choose CT-BERT[34]

as the baseline, which is pretrained on the COVID-19-
related  tweet  corpus  to  enhance  task-specific  domain
knowledge.  We  also  include  CT-BERT-NS  and  CT-
BERT-DAN[40],  which  incorporate  self-training  and
domain  adaption  into  CT-BERT  to  further  improve
model representation capability and reduce domain gap
in the stance detection task.

4.3　Implementation details

1×10−5 5×10−5

r = 8

1×10−5

We utilize  RoBERTa  as  the  backbone  model  for  both
VASE and  PStance  tasks.  The  batch  size  is  set  to  16,
and the learning rates range from  to  in
our  experiments.  Since  COVID-19-Stance  is  a  task
related  to  the  COVID-19  pandemic,  we  employ  CT-
BERT and BERT as  the  backbone models  to  leverage
COVID-19-related knowledge from pretrained models.
Due to our GPU memory limitations,  the batch size is
set  to  8.  Regarding  the  hyperparameters  of  the
collaborative adaptor, we set the rank  for the low-
rank  adaptor.  The  prefix-taken  is  set  to  100  with  a
dropout  rate  0.2.  The  reducing  factor  for  the  feature
fusion  module  is  16,  and  all  gates  are  the  ReLU
function.  The  models  are  implemented  using  Pytorch,
and  the  maximum  input  length  is  default  set  to  512
tokens.  We  train  the  models  for  a  maximum  of  30
epochs,  and  apply  stopping  with  a  patience  of  10
epochs. The optimizer is AdamW with a weight decay
of . All the experiments are conducted with the
same random seed on four NVIDIA RTX A5000 GPU
cards.

4.4　Results

To verify the effectiveness of our proposed method, we
evaluate  its  performance  on  three  public  stance

detection  datasets:  VAST,  PStance,  and  COVID-19-
Stance.  Firstly,  we  evaluate  the  proposed  method  on
the  VAST,  a  low-resource  dataset  with  a  significantly
larger  number  of  targets  than  the  other  two  datasets.
Additionally, we evaluate the method’s performance on
the PStance and COVID-19-Stance datasets. Following
previous work in Ref. [4], all the datasets are evaluated
using  the  macro-average  F1-score  as  the  standard
metric.  The  overall  performance  is  calculated  as  the
average across all stances.

14.8

VAST  dataset  officially  splits  into  two  sub-tasks:
zero-shot  stance  detection  (600  targets)  and  few-shot
stance  detection  (159  targets).  Zero-shot  setting  does
not include any targets in its training set, while the few-
shot  setting  has  very  limited  training  samples
(approximately  examples per target) in its training
set.  In  contrast,  the  PStance  and  COVID-19-Stance
datasets  have  over  hundreds  of  training  examples  per
target. Table 1 summarizes the evaluation results on the
VAST dataset.

From  the  numbers  presented  in Table  1,  we  can
observe that the baseline method BERT achieves clear
improvements  around  2% in  the  overall  performance
compared to the none pretrained baseline TAN, which
indicates  pretrained  models  have  a  stronger  feature
representation  capability  than  none  pretrained  TAN.
Building  upon  BERT,  BERT-GCN  incorporates
Graphic  Convolution  Networks  (GCNs)  with  BERT
further  improving  the  overall  F1-score  to  0.692.
Similarly,  the  GCN-based  methods  CKE-Net  and
BSRGCN  demonstrate  progressive  improvements  by
leveraging  graph  convolution  networks,  achieving  an
F1-score  of  0.713.  Specifically,  BSRGCN  performs
better  in  the  zero-shot  setting,  benefiting  from  the
unsupervised  training  on  the  domain-specific  corpus.
Joint-CL further enhances model performance through
contrastive  learning,  achieving  an  overall  F1-score  of
 

Table 1    Values  of  F1-score  of  zero-shot  and  few-shot  on
VAST.

Method Zero-shot Few-shot Average
TAN 0.666 0.663 0.665

BERT 0.685 0.684 0.684
BERT-GCN 0.686 0.697 0.692

CKE-Net 0.702 0.701 0.701
BSRGCN 0.726 0.702 0.713
Joint-CL 0.723 0.716 0.723

WS-BERT-Dual 0.753 0.736 0.745
Ours 0.819 0.796 0.807
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0.723.
However,  all  those  solutions  overlook  the  fact  that

VAST  is  a  low-resource  task,  particularly  for  large
pretrained models. Our method addresses this issue by
incorporating  efficient  parameter  learning  and  staged
optimization for the low-resource task. Another neglect
point  in  those  solutions  is  that  the  infused  target’s
knowledge  should  be  the  corrected  knowledge.  Our
method  addresses  this  issue  by  incorporating  the
collaborative  knowledge  infusion  that  introduces
knowledge from multiple knowledge sources in a more
accurate  way.  As  a  result,  our  method  achieves  the
state-of-the-art  performance  on  VAST,  achieving  an
overall  F1-score  of  0.807.  Interestingly,  we  find  that
the  zero-shot  settings  achieve  higher  scores  than  the
few-shot  settings,  especially  in  the  pretrain-based
methods.  This  difference  can  be  attributed  to  the  fact
that  the  zero-shot  and  few-shot  sets  are  two  distinct
subsets with completely different targets in the test set.
Consequently,  we  can  treat  these  two  settings  as  two
separate datasets.

Different from VAST with a large number of targets
in  a  low-resource  setting,  PStance  contains  only  3
targets,  and  COVID-19-Stance  contains  4  targets.
Table  2 presents  the  evaluation  results  of  compared
methods  on  PStance.  The  classical  recurrent  neural
network  based  TAN  and  BiCE  obtain  comparable
performance  to  the  GCN-based  PGCNN  and  GCAE,
yielding  an  F1-score  around  0.75−0.76.  Those  results
approach  the  performance  of  pretrained  BERT.  This
similarity  in  performances  suggests  that  rich  training
sources can benefit different types of models. Different
from BERT which is pretrained on the generic corpus,
BERT-Tweet  enhances  domain-specific  knowledge  by
being  pretrained  on  the  Twitter  corpus,  resulting  in  a
significant improvement of 4% in the overall F1-score.
Building  upon  BERT-Tweet,  WS-BERT-Dual  further
infuses  the  target  background  knowledge  from

Wikipedia,  attaining  an  overall  F1-score  of  0.828.  In
light of WS-BERT-Dual, our method further optimizes
knowledge  augmentation  through  parameter-efficient
learning, achieving the best performance across all the
targets.

We also conduct evaluations of the proposed method
on  the  domain  specific  COVID  stance  detection  and
present the results in Table 3. From the comparison of
the results, we can clearly observe the performance gap
between  traditional  gated-based  methods  (TAN,
ATGRU, and GCAE) and pretrain-based models  (CT-
BERT  and  its  variants).  The  gated-based  methods,
which  only  conduct  finetuning on its  rich  training  set,
obtain low average F1-scores below 0.602, lacking any
background knowledge specific to the target domain.

In  contrast,  pretrained  models  been  trained  on  the
COVID-related Twitters data exhibit good background
knowledge  and  feature  representation  for  COVID-19-
Stance,  resulting  in  a  high  average  F1-score  above
0.79.  Meanwhile,  with  the  help  of  self-training  and
domain  adaptation  techniques,  CT-BERT  has
performance  improvements  in  stance  detection  for
‘Fauci’ and ‘Mask’, but no substantial improvement in
the  overall  F1-score.  With  the  help  of  dual  pretrained
model  encoders,  WS-BERT-Dual  further  elevates  the
overall  performance  to  0.844.  Similarly,  our  method
achieves  the  best  performance  among  the  compared
methods  in  COVID-19-Stance  by  leveraging
collaborative  adaptor  and  staged  optimization.  Based
on  the  extensive  experimental  comparisons,  we  can
conclude  that  our  proposed  method  performs  well  not
only  in  low-resource  VAST  stance  detection  task  but
also  in  rich-resource  PStance  and  COVID-19-Stance
tasks.

5　Discussion

5.1　Ablation study

We perform an ablation study on the main modules of
 

Table 2    F1-score on PStance.
Method Trump Biden Sander Average

TAN 0.771 0.776 0.716 0.751
BiCE 0.772 0.777 0.712 0.754

PGCNN 0.769 0.766 0.721 0.752
GCAE 0.790 0.780 0.718 0.763
BERT 0.783 0.787 0.725 0.765

BERT-Tweet 0.825 0.810 0.781 0.805
WS-BERT-Dual 0.858 0.835 0.790 0.828

Ours 0.862 0.841 0.805 0.836

 

Table 3    F1-score on COVID-19-Stance.
Method Fauci Home Mask School Average

TAN 0.547 0.536 0.546 0.534 0.541
ATRGU 0.612 0.521 0.599 0.527 0.565
GCAE 0.640 0.645 0.633 0.490 0.602

CT-BERT 0.818 0.800 0.803 0.753 0.798
CT-BERT-NS 0.821 0.784 0.833 0.753 0.798

CT-BERT-DAN 0.832 0.787 0.825 0.717 0.790
WS-BERT-Dual 0.836 0.850 0.866 0.822 0.844

Ours 0.8605 0.8676 0.8691 0.8333 0.8576
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the proposed method, namely collaborative knowledge
infusion,  efficient  parameter  learning,  and  staged
optimization, using the VAST and PStance datasets. In
addition to reporting the overall F1-score for zero-shot
and  few-shot  settings  in  VAST,  we  also  provide  the
detailed  results  for  three  specific  stances:  positive,
negative,  and  neutral.  For  PStance,  we  report  the
average performance across the different targets.

Table  4 presents  the  results  of  the  ablation  study
conducted  on  VAST,  where  RoBERTa  serves  as  the
backbone model. We study the impact of each module
on  the  backbone  performance.  All  individual  modules
that work with the backbone outperform the finetuning
of the vanilla  backbone.  The collaborative Knowledge
Infusion  (KI)  module,  which  includes  knowledge
verification  and  augmentation,  facilitates  the  learning
of target-specific background knowledge, and achieves
remarkable  improvements  to  0.751.  Likewise,  the
Efficient  Parameter  learning  module  (EP)  proves
beneficial  for  the  stance  detection  model  on  the  low-
resource  VAST  data  with  the  help  of  collaborative
adaptors.  When  comparing  the  performance  across
different  stances,  we  observe  that  the  neutral  stance
exhibits  significantly  higher  scores  compared  to  the
positive and negative stances.

Our  Staged  Optimization  (SO)  module  tries  to
address  this  bias  by  incorporating  label  smooth  and
weighted  loss,  resulting  in  overall  performance
improvements. Furthermore, extensive ablation studies
are  conducted  to  assess  different  combinations  of  the
modules.  We  can  observe  that  two  module
combinations  further  improve  model  performance  by
1%−2%.  Similarly,  our  method incorporating  all  three
modules achieves the best overall F1-score of 0.807 on
VAST,  highlighting  the  effectiveness  of  each  module
in addressing the challenges of the low-resource VAST
task.

We also conduct an ablation study on PStance, which

benefits  from a relatively rich training source than the
low-resource  VAST  dataset. Table  5 presents  a
summary of the ablation study on PStance, focusing on
the  efficiency  of  three  modules  with  the  same
backbone  RoBERTa.  Notably,  the  ablation  study
results  differ  from  the  results  obtained  for  VAST.
Interestingly,  we  observe  a  slight  decrease  in  model
performance with the collaborative knowledge infusion
module  than  the  vanilla  backbone.  This  performance
drop  may  be  attributed  to  the  specific  dataset,  as
PStance only contains four targets compared to diverse
targets  in  VAST.  In  other  words,  the  extensive
sequential  knowledge of  these targets  may impede the
model’s  ability  to  learn  features  from shorter  and  raw
sequences.

In  the  single-modular  settings,  we  find  backbone
incorporating  knowledge  infusion  or  staged
optimization  exhibits  superior  performance  when  they
are  compared  with  the  efficient  parameter  learning
module  in  the  rich-source  PStance  task.  This  suggests
that full parameter finetuning is more effective than the
adaptor-based  solution  in  data-rich  tasks.  Similarly,  in
the  two-modular  settings,  we  observe  that  the  setting
with EP module (Setting 4 and 6) performs worse than
the  setting  without  EP  modular  (Setting  5).  We  also
observe  that  the  backbone  with  two-modular  settings
yields more improvements in the overall F1-score than
the  single-modular  settings.  In  the  three-modular
settings, we find the performances of the ‘Trump’ and
‘Sanders’ targets  could  be  further  improved  compared
to  the  two-modular  settings.  However,  the ‘Biden’
category experiences a significant drop compared to its
results  in  Setting  6.  We  attribute  this  to  the  negative
impact  of  the EP module in  the three-modular  setting,
which  slightly  decreases  the  overall  performance
compares  to  the  two-modular  Setting  6.  Thus,  we  can
conclude  that  the  adaptor-based  solution  does  not
always perform well in rich-resource tasks.

 

Table 4    Ablation study on VAST with F1-score.
Module Zero-Shot setting (ZS) Few-Shot setting (FS)

Average
KI EP SO Negative Positive Neutral Average Negative Positive Neutral Average
− − − 0.657 0.590 0.950 0.733 0.656 0.605 0.974 0.745 0.739
✔ − − 0.664 0.649 0.935 0.749 0.664 0.632 0.963 0.753 0.751
− ✔ − 0.714 0.723 0.907 0.781 0.677 0.686 0.885 0.749 0.765
− − ✔ 0.745 0.720 0.920 0.795 0.692 0.678 0.870 0.747 0.770
✔ ✔ − 0.707 0.704 0.955 0.789 0.689 0.701 0.959 0.783 0.786
− ✔ ✔ 0.691 0.735 0.949 0.792 0.685 0.728 0.967 0.793 0.793
✔ − ✔ 0.752 0.753 0.951 0.819 0.715 0.726 0.947 0.796 0.807
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5.2　Cross-target stance detection

We  evaluate  the  model’s  generalization  performance
by cross-target  stance detection,  training model  on the
rich-source  PStance,  that  trains  the  stance  model  on
one  target,  and  evaluate  it  on  another  target  (e.g.,
training  on  Trump  and  testing  on  Biden).  We  employ
BERT-Tweet[33] and  WS-BERT-Dual[4] as  the  strong
baselines.  BERT-Tweet  is  pretrained  on  the  Twitter
corpus,  benefiting  from  domain-specific  knowledge.
WS-BERT-Dual  is  a  dual-path  architecture  using
BERT  and  BERT-Tweet  as  feature  encoders  to
incorporate  target-specific  Wikipedia  knowledge.  We
follow  the  experimental  settings  of  WS-BERT-Dual,
testing on three targets: Trump, Biden, and Sanders.

From the results of Table 6, we can observe that the
WS-BERT-Dual  achieves  significant  improvements
(average  5% F1-score)  in  all  six  cross-target  pairs
compared  to  the  baseline  BERT-Tweet,  benefiting
from  the  additional  BERT  branch  for  encoding  extra
Wikipedia  knowledge.  In  contrast,  our  method  only
uses  the  RoBERTa  as  the  backbone  for  cross-target
stance detection. We further improve four of six cross-
target  pairs  by  introducing  the  staged  optimization.
Additionally, we notice that the two pairs’ target results
are not symmetric to each other. Overall, our proposed
solution  achieves  the  state-of-the-art  performance  in
cross-target stance detection on the PStance dataset.

5.3　Efficient parameter learning

In  this  section,  we  compare  the  performance  of  our
efficient  parameter  learning  paradigm  with  the  full
model finetuning paradigm in the low-resource setting.
We  select  the  classic  BERT  and  RoBERTa  for  full
model  finetuning,  using  both  basic  (B)  and  large  (L)
model sizes. Our efficient parameter learning approach
utilizes  the  large-size  RoBERTa  as  the  backbone.  All
the models are evaluated in the zero-shot and few-shot
settings  as  defined  by  VAST  dataset.  Note,  the  few-
shot  and  zero-shot  in  traditionally  computer  vision
tasks  are  evaluated  with  same  test  data.  However,  in
our  VAST  NLP  dataset,  the  few-shot  and  zero-shot
settings are evaluated with different test data.

Table 7 presents the performance of different models
on  the  zero-shot  stance  detection  task  with  respect  to
three stances: positive, negative, and neutral. In the full
model  finetuning  setting,  we  observe  that  the  basic-
sized  models  outperform  the  large-sized  models  in
terms  of  average  F1-score.  Specifically,  the  BERT
models experience a 1% drop in average F1-score from
basic-size  to  large-size,  while  the  RoBERTa  models
even  encounter  a  decrease  in  F1-score  of  more  than
4%.  The  large  model’s  zero-shot  performance  decay
may  attribute  to  combined  training  few-shot  on  the
low-resource  VAST  dataset.  The  large-size  models
exhibit  reduced  generalization  capability  with  limited
training  data  samples,  resulting  in  performance  decay
in zero-shot stance detection tasks. Consistent with the
findings  of  the  ablation  study,  the  neutral  stance
achieves significantly higher F1-score (above 0.9) than
the  positive  and  negative  stances  in  the  zero-shot
setting.  In  contrast,  our  efficient  parameter  learning
method,  which  maintains  the  pretrained  model’s
generalization  capability  by  freezing  its  parameters,
achieves  the  best  performance  in  the  zero-shot  stance
detection task.

Table 8 presents the results of different models in the
few-shot  VAST  stance  detection  task.  Similar  to  the
zero-shot  setting,  we  observe  a  decline  in  overall
performance as the model size increases. Additionally,
the  neutral  stance  detection  performance  exhibits
significant  superiority  over  the  positive  and  negative
stances.  For  the  full  model  finetuning  paradigm,  there
have  been  no  notable  variations  between  basic  and
large-size  models  in  the  positive  and  neutral  stances.
However, in the negative stance, the large-size models
experience a sharp performance drop.

 

Table 5    Ablation study on PStance with F1-score.

Setting
Module Target

Average
KI EP SO Trump Biden Sander

0 − − − 0.855 0.827 0.769 0.817
1 ✔ − − 0.846 0.827 0.769 0.814
2 − ✔ − 0.763 0.805 0.785 0.784
3 − − ✔ 0.844 0.836 0.784 0.821
4 ✔ ✔ − 0.848 0.827 0.737 0.804
5 − ✔ ✔ 0.861 0.833 0.805 0.833
6 ✔ − ✔ 0.850 0.855 0.805 0.837
7 ✔ ✔ ✔ 0.862 0.841 0.805 0.836

 

Table 6    Cross-target stance detection with F1-score.
Cross-target BERT-Tweet WS-BERT-Dual Ours

Trump→Biden 0.589 0.683 0.682
Trump→Sander 0.565 0.644 0.678
Biden→Trump 0.636 0.677 0.721
Biden→Sander 0.670 0.690 0.748
Sander→Trump 0.587 0.636 0.634
Sander→Biden 0.730 0.768 0.789

Average 0.630 0.683 0.709
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The  performance  drop  can  be  attributed  to  the
unbalanced  data  distribution,  which  leads  to  model
performance decay as  training on the  limited samples.
Therefore,  the full  model finetuning is  not  an optional
solution  for  zero-shot  and  few-shot  stance  detection
tasks.  The  reason  for  zero-shot  setting  achieveing
better  performance  than  the  few-shot  setting  mainly
depends  on  the  special  test  data  setting  in  the  VAST
dataset  that  the  few-shot  and  zero-shot  settings  have
totally different test data samples. This setting is quite
different  from  traditional  few-shot  and  zero-shot
settings  with  the  same  test  data.  In  other  words,  the
settings in Tables 7 and 8 can be seen as two datasets.
This divergence from traditional evaluation methods is
a  key  in  understanding  the  experimental  results.
Moreover,  this  pattern  of  zero-shot  settings
outperforming  few-shot  settings  is  not  unique  to  our
study  but  is  also  observed  in  comparable  works,  such
as  TAN[35],  BERT[36],  CKE-NET[9],  BSRGCN[8],  and
WS-BERT-Dual[4],  which report  the similar anomalies
in Table  1.  Our  proposed  method  addresses  the
challenge  of  low-resource  stance  detection  with  an
efficient  solution,  requiring  only  3000  trainable
parameters.  This  represents  a  significant  reduction
compared  to  the  millions  of  parameters  required  for
full model finetuning. Despite the parameter reduction,
our method still can achieve superior performance with
a considerable margin.

5.4　Collaborative adaptor analysis

Collaborative  adaptor  is  an  essential  part  of  efficient
parameter  learning  in  the  low-resource  detection  task,
which  consists  of  three  modules:  gated  LoRA,  prefix-

tuning,  and  attentive  fusion.  To  assess  the  importance
of  each  module,  we  conduct  evaluations  by  removing
individual modules from our collaborative adaptor.

Table 9 presents the performance of different settings
of  the  collaborative  adaptor.  For  instance,  the  setting
“without  gated  LoRA” indicates  the  removal  of  the
“gated  LoRA” module.  All  settings  are  evaluated  on
the  low-resource  VAST  using  the  same  hyper-
parameters. We observe the “gated LoRA” and “prefix-
tuning” modules exhibit similar drops of approximately
1% with  slight  variations  across  different  stances.
Surprisingly,  in  the “without  attentive  fusion” setting,
all  stance  scores  experience  a  sharp  decline  of
approximately  7% on  average.  Through  the
performance  comparisons,  we  discover  that  the
attentive fusion module has more significant impact on
down-steam  stance  detection  tasks  than  the  gated
LoRA  and  Prefix-tuning  modules  in  the  efficient
parameter learning paradigm. One possible explanation
for  this  observation  is  that  attentive  fusion  is  more
closely  connected  to  the  stance  prediction  classifier
than  the  other  two  models,  which  serve  as  feature
extractors  with  less  impact  on  the  final  stance
prediction.

5.5　Low-resource stance detection

We  further  evaluate  our  method’s  performance  in  the

 

Table 7    Zero-shot F1-score on VAST.
Method Number of parameters Positive Negative Neutral Average
BERT-B 1.1×108 0.640 0.632 0.942 0.738
BERT-L 3.4×108 0.600 0.668 0.941 0.724

RoBERTa-B 1.1×108 0.674 0.723 0.937 0.778
RoBERTa-L 3.4×108 0.657 0.590 0.950 0.733

Ours 3×103 0.752 0.753 0.951 0.819

 

Table 8    Few-shot F1-score on VAST.
Method Number of parameters Positive Negative Neutral Average
BERT-B 1.1×108 0.642 0.651 0.951 0.748
BERT-L 3.4×108 0.642 0.613 0.918 0.738

RoBERTa-B 1.1×108 0.646 0.708 0.951 0.768
RoBERTa-L 3.4×108 0.656 0.605 0.974 0.745

Ours 3×103 0.715 0.726 0.947 0.796

 

Table 9    Collaborative adaptor analysis with F1-score.
Setting Positive Negative Neutral Average

without gated LoRA 0.719 0.703 0.958 0.793
without prefix-tuning 0.706 0.733 0.943 0.794

without attentive fusion 0.661 0.621 0.925 0.736
Ours 0.734 0.739 0.949 0.807
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low-resource settings of stance detection on the subsets
of  PStance  and  COVID-19-Stance  datasets.
Specifically, we randomly sample 5%,  10%,  15%,  and
20% data  from  their  training  sets  as  our  low-resource
data and keep its test sets for evaluation.

Following the setting of the ablation study, we set the
BERT as  the  baseline  and backbone of  our  method in
all  the  low-resource  stance  detection  evaluations.
Tables 10 and 11 summarize the comparison results on
different low-resource settings of PStance and COVID-
19-Stance.

From  results  of Table  10 on  different  low-resource
settings, we can observe that our method surpasses the
baselines  in  all  low-resource  data  settings,  which
shows our method presents effectiveness. Overview the
whole  performance  across  different  settings,  we  can
obviously  find  the  progressive  increasing  trends  with
the  training  data  adding  in  both  the  baseline  and  our
method.  Last  but  not  least,  our  method  benefits  more
with  less  training  data,  and  the  average  improvements
are  reduced  with  more  data  introduced  from  5% to
20%.

Table  11 summarizes  the  low-resource  setting
evaluation  results  on  the  COVID-19-Stance  dataset.
Similar  to  the  low-resource  setting  results  of  PStance,
our  method  surpasses  the  baseline  with  large  margins
in  all  low-resource  settings.  The  average  performance
can  achieve  more  than  6%.  Different  from  the
performance  trends  in  PStance,  the  performance
improvement trends do not keep consistently changing
with  increasing  of  training  data.  We  think  the  main

reason is the domain gap and diverse data distributions
in different stance topics of COVID-19-Stance.

5.6　Comparison with ChatGPT 3.5

⟨ ⟩ (T )
⟨ ⟩ (C)

ChatGPT  attracts  lots  of  attention  in  the  natural
language  processing  community  due  to  its  impressive
performance  on  conversational  tasks,  leading  to  its
utilization  in  various  downstream  NLP  tasks.  In  this
section,  we  aim  to  evaluate  the  performance  of
ChatGPT 3.5 on VAST, which is a varied stance topics
dataset  with  over  a  thousand  targets.  To  adapt
ChatGPT for the stance detection task, we construct the
prompt  as  follows: “Please  choose  one  stance  from
‘negative,  positive,  neutral’ for TARGET  on
following  content: TWEET ?”.  We  sequentially
select  and  evaluate  100  samples,  comprising  33
negative,  33  positive,  and  34  neutral  instances.
Regarding  ChatGPT  is  an  evolving  system  (the
ChatGPT  results  are  evaluated  on  04  June  2023),  all
the evaluation results are reported as follows.

Table  12 summarizes  the  evaluation  results,  with
rows  representing  the  target  labels  and  columns
indicating the model predictions. The results reveal that
ChatGPT’s  performance  on  VAST  stance  detection
dataset  is  not  as  impressive  as  anticipated,  which  is
similar  to  the  findings  of  the  work  directly  using  the
chain-of-thought[41] in ChatGPT for stance detection on
VAST  dataset  with  only  0.623  of  F1-score.  From  the
result analysis, we observe that ChatGPT often predicts
the  positive  or  negative  stances  to  the  neutral  stance,
resulting  in  the  neutral  stance  in  a  low  recall  score.

 

Table 10    Low-resource stance detection on PStance with F1-score.

Setting
Baseline Ours

Average
Trump Biden Sanders Trump Biden Sanders

5% 0.693 0.705 0.635 0.712 0.739 0.682 3.4% ↑
10% 0.705 0.724 0.710 0.738 0.750 0.725 2.5% ↑
15% 0.729 0.761 0.723 0.742 0.781 0.739 1.7% ↑
20% 0.740 0.784 0.745 0.769 0.794 0.751 1.7% ↑

Note: “↑” denotes the improvements of our method over the baseline.
 

Table 11    Low-resource stance detection on COVID-19-Stance with F1-score.

Setting
Baseline Ours

Average
Fauci Home Mask School Fauci Home Mask School

5% 0.346 0.440 0.370 0.227 0.408 0.440 0.370 0.227 6.6% ↑
10% 0.578 0.599 0.423 0.263 0.729 0.599 0.423 0.263 12.7% ↑
15% 0.696 0.621 0.490 0.403 0.772 0.621 0.490 0.403 ↑6.4% 
20% 0.708 0.742 0.540 0.454 0.806 0.742 0.540 0.454 12.8% ↑

Note: “↑” denotes the improvements of our method over the baseline.
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This tendency might stem from ChatGPT’s inclination
to produce mild and friendly responses[42], leading to a
bias toward predicting neutral stances. Furthermore, we
observe that ChatGPT trends to output a neutral stance
for  sensitive  topics,  such  as  voting,  humanity,  and
elections.

6　Conclusion

In  this  paper,  we  propose  a  method  for  low-resource
stance  detection  that  collaborative  infuses  verified
target  knowledge  with  efficient  parameter  learning.
Firstly,  we  enhance  the  infusion  of  target-related
knowledge  by  extending  it  beyond  structured
Wikipedia  to  encompass  a  broader  range  of
unstructured  information  from  the  entire  Internet.  To
ensure  the  selection  of  relevant  semantic  background
knowledge,  a  knowledge  verifier  is  employed.
Secondly,  we  introduce  efficient  parameter  learning
through  collaborative  adaptors,  which  involve  a
minimal  number  of  trainable  parameters  by  freezing
the  weights  of  large  PLM-based  models.  This  manner
not  only  facilitates  efficient  model  training  in  low-
resource stance detection tasks, but also retains the rich
prior  knowledge  encoded  in  pretrained  models.
Thirdly, a staged optimization algorithm is proposed to
mitigate  the  impact  of  unbalanced  data.  Additionally,
knowledge augmentation and prompting techniques are
integrated  into  our  efficient  parameter  learning
framework  for  low-resource  stance  detection.
Experimental  results  demonstrate  the  effectiveness  of
our  method  on  three  public  datasets  with  state-of-the-
art  performance.  In  future  work,  we  plan  to  further
explore  efficient  parameter  learning  in  the  context  of
multi-modal stance detection tasks.
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