
 

Prompting Large Language Models with Knowledge-Injection for
Knowledge-Based Visual Question Answering
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Abstract: Previous  works  employ  the  Large  Language  Model  (LLM)  like  GPT-3  for  knowledge-based  Visual

Question Answering (VQA). We argue that the inferential capacity of LLM can be enhanced through knowledge

injection.  Although  methods  that  utilize  knowledge  graphs  to  enhance  LLM  have  been  explored  in  various

tasks,  they  may  have  some  limitations,  such  as  the  possibility  of  not  being  able  to  retrieve  the  required

knowledge.  In  this  paper,  we introduce a novel  framework for  knowledge-based VQA titled “Prompting Large

Language  Models  with  Knowledge-Injection” (PLLMKI).  We  use  vanilla  VQA  model  to  inspire  the  LLM  and

further enhance the LLM with knowledge injection. Unlike earlier approaches, we adopt the LLM for knowledge

enhancement  instead  of  relying  on  knowledge  graphs.  Furthermore,  we  leverage  open  LLMs,  incurring  no

additional costs. In comparison to existing baselines, our approach exhibits the accuracy improvement of over

1.3 and 1.7 on two knowledge-based VQA datasets, namely OK-VQA and A-OKVQA, respectively.

Key words:  visual  question  answering; knowledge-based  visual  question  answering; large  language  model;

knowledge injection

1　Introduction

Knowledge-based  Visual  Question  Answering
(VQA)[1] extends  the  VQA  task[2],  introducing  the
requirement  for  external  knowledge  to  answer
questions.  Early  knowledge-based  VQA  benchmarks
also  provide  knowledge  bases[3].  More  recently,  VQA
benchmarks  have  been  established  that  emphasizes
open-domain  knowledge[4, 5].  In  open-domain

knowledge-based VQA, any external knowledge can be
applied  to  answer  questions.  This  paper  focuses  on
VQA with open-domain knowledge.

Early  researchers  try  to  retrieve  knowledge  from
external  knowledge  resources.  More  recently,  some
works  attempt  to  explore  the  utilization  of  implicit
knowledge  in  pre-trained  language  models,  such  as
KRISP[6].  With  the  emergence  of  Large  Language
Models  (LLMs),  researchers  have  shifted  towards
employing  them  as  knowledge  acquisition  engines.
PICa[7] adopts  GPT-3[8] for  in-context  learning  in
knowledge-based  VQA.  Given  that  GPT-3,  as  a
language model, lacks direct comprehension of images,
the approach involves conversion of the image into its
corresponding  textual  caption  through  a  captioning
model.

The  VQA  triplet  image-question-answer  will  be
converted  to  context-question-answer,  thus  unifying
the input into text. The context denotes the caption for
the image. Despite the encouraging results of PICa, we
argue  that  the  capacity  of  LLM  can  be  further
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improved through knowledge enhancement.
Some  studies  have  proposed  to  use  knowledge

graphs  to  enhance  LLMs,  such  as  RAG[9].  RAG
retrieves  documents  from  the  knowledge  graphs  and
incorporates  them  as  supplementary  contextual
information.  While  knowledge  graphs  have  the
potential  to enhance LLMs, they still  have limitations,
such as the possibility of not being able to retrieve the
required knowledge.

Inspired  by  previous  works,  we  propose  a  novel
framework  for  knowledge-based  VQA  that  enhances
LLMs  through  knowledge  injection. Figure  1 shows
the  comparison  of  PICa,  RAG,  and  our  method.  In
addition,  we  adopt  the  open  LLMs,  which  are  free
compared  to  GPT-3.  Existing  approaches,  when
applying  the  LLM  to  knowledge-based  VQA,  only
utilise  the  knowledge  of  the  LLM  itself,  ignoring  the
role  of  external  knowledge  to  inspire  the  LLM.  We
propose a novel framework that injects knowledge into
the  prompt  to  further  inspire  the  LLM.  In  addition,  to
address  the  issue  that  knowledge  resources  such  as
knowledge  graphs  may  not  be  able  to  retrieve  the
required knowledge, we adopt a new idea of employing
another  LLM  to  generate  the  knowledge  instead  of
retrieving  the  knowledge  from  the  knowledge  graphs.
Main contributions are as follows:

●  We  propose  a  novel  framework  for  knowledge-
based  VQA  that  incorporates  appropriate  in-context
examples  and  background  knowledge  to  predict  the
answer.  The  framework  is  entirely  built  upon  open
LLMs and is free of cost.

●  To  our  knowledge,  this  is  the  first  attempt  to
utilize LLM to enhance knowledge for another LLM in
knowledge-based VQA task.

● We conduct experiments on two knowledge-based
VQA  datasets,  namely  OK-VQA  and  A-OKVQA.
Experiments  show  that  our  approach  outperforms  the
existing baselines.

2　Related Work

The  research  of  Artificial  Intelligence  (AI)  is  of  great
significance,  which  not  only  promotes  the  progress  of
science  and  technology,  but  also  has  a  far-reaching
impact  on  the  social  and  economic  development,  the
improvement of human life and the construction of the
future world. More and more AI research is emerging,
which  has  an  important  impact  on  promoting  the
development of AI. SpectralGPT[10] is a remote sensing
foundation  model  designed  for  spectral  data.  It  has
significant  potential  for  advancing  spectral  remote
sensing big data applications in geoscience across four
downstream  tasks:  single/multi-label  scene
classification,  semantic  segmentation,  and  change
detection. Hong et al.[11] created the C2Seg dataset for
multimodal  remote  sensing.  The  C2Seg  dataset  is
intended  for  use  in  the  cross-city  semantic
segmentation  task.  To  improve  the  generalization
ability  of  AI  models  in  multi-city  environments,  they
also  proposed  a  high-resolution  domain  adaptation
network,  referred  to  as  HighDAN.  Hong  et  al.[12]

proposed  the  augmented  LMM,  a  novel  spectral
mixture model, to address spectral variability in inverse
problems  of  hyperspectral  unmixing.  During  the
imaging  process,  data  are  often  affected  by  various
variabilities.  Our  proposed  method  may  also
experience  some  limitations  when  faced  with  various
variabilities.  For  instance,  if  the  image  is  damaged,
information  loss  may  occur  during  the  conversion  of
captioning.  This  loss  of  captioning  information  can
affect knowledge generation, as it is partly based on the
captioning information.

VQA. VQA[13, 14] is  a  popular  multi-modal  AI
task[15, 16].  Recent  VQA  studies  can  be  generally
divided into these categories: better visual features[17, 18],
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Fig. 1    Comparison  of  PICa,  RAG,  and  our  method.  PICa
applies the in-context learning of GPT-3 to knowledge-based
VQA.  RAG  uses  knowledge  retrieved  from  the  knowledge
graphs  to  enhance  the  LLM.  Our  approach  first  adopts  a
vanilla  VQA  model  to  generate  in-context  examples,  then
takes the  to generate background knowledge instead
of  retrieving  knowledge  from  the  knowledge  graphs,  and
finally  integrates  the  knowledge  into  prompt  to  inspire

.
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better  model  architectures[19–21],  and  better  learning
paradigms[22–24].  According  to  the  research  methods
can  be  divided  into:  joint  embedding  methods,
attention  methods,  modular  methods,  external
knowledge-based methods, and so on. Most of the joint
embedding  methods  use  Convolutional  Neural
Network  (CNN)  network  to  extract  visual  features,
Recurrent  Neural  Network  (RNN)  network  to  extract
text features, and simply combine the two features. The
Neural-Image-QA  model  proposed  by  Malinowski  et
al.[25] is  the  first  to  leverage  the  joint  embedding
method. The model is based on CNN and Long Short-
Term  Memory  (LSTM),  treating  the  VQA  task  as  a
sequence-to-sequence  task  assisted  by  image
information.  Nevertheless,  the  majority  of  joint
embedding  methods  commonly  utilize  all  the  features
extracted from both images and questions as  the input
for  the  VQA  model.  This  approach  may  introduce  a
considerable amount of noise,  potentially affecting the
performance.  The  objective  of  the  attention  method  is
to concentrate the limited attention on crucial elements,
significantly  enhancing  the  comprehension  capability
of  neural  network.  Yu  et  al.[26] introduced  a  multi-
modal factorized bilinear pooling approach, where text
attention  is  inferred  based  on  the  question,  and  visual
attention  is  inferred  by  the  involvement  of  text
attention.  However,  the  VQA  task  is  compositional.
For example, in a question like “What’s on the table?”,
it  is  necessary  to  first  determine  the  position  of  the
table,  then  identify  the  location  above  the  table,  and
finally  ascertain  the  target  object  above  the  table.
Hence,  some  studies  have  proposed  the  modular
networks  for  VQA  task.  The  modular  approach
involves  designing  distinct  modules  for  various
functions  and  connecting  these  modules  based  on
different  questions.  Andreas  et  al.[27] first  applied
neural  modular  networks  to  VQA.  Additionally,  there
exists  a  category  of  VQA  that  necessitates  external
knowledge,  often  referred  to  as  knowledge-based
VQA.

Knowledge-based  VQA. Some  benchmarks  for
knowledge-based  VQA  have  been  proposed,
necessitating  external  knowledge  to  answer  questions.
Early  works  retrieve  knowledge  from  external
knowledge  resources.  More  recently,  Marino  et  al.[6]

proposed KRISP to retrieve implicit  knowledge stored
in pre-trained language models. MAVEx[28] proposes a
validation method aimed at improving the utilization of
noisy  knowledge.  Yang et  al.[7] proposed PICa,  which

applies  in-context  learning  of  GPT-3  to  knowledge-
based  VQA,  achieving  encouraging  results.  PICa
utilizes  a  captioning  model  to  convert  the  image  into
corresponding  caption,  which  can  be  processed  by
LLM.  In-context  learning,  a  powerful  few-shot
learning  technique,  enables  reasoning  with  a  few  task
examples  assembled  as  the  prompt,  eliminating  the
need for parameter updates. Prophet[29] adopts a vanilla
VQA  model  to  inspire  LLM,  further  activating  the
capability of LLM.

Knowledge-enhanced  LLMs. LLMs  have
demonstrated  promising  results  across  various  tasks.
Researchers  explore  the  use  of  knowledge  graphs  to
enhance LLMs[30]. Knowledge graphs[31] offer a means
to  enhance  LLMs  by  incorporating  knowledge  during
pre-training,  a  process  that  extends  to  the  inference
stage as well.

When  integrating  knowledge  graphs  into  training
objectives,  ERNIE[32] adopts  a  method  where  both
sentences  and  corresponding  entities  are  input  into
LLMs.  The  training  process  involves  instructing  the
LLMs  to  predict  alignment  links.  On  the  other  hand,
ERNIE  3.0[33] represents  a  knowledge  graph  triple  as
tokens,  concatenating  them  with  sentences.  RAG[9]

employs  a  distinctive  approach  by  initially  searching
and  retrieving  relevant  documents  from  knowledge
graphs.  These  documents  are  then  provided  to  the
language  model  as  additional  context  information.
Despite the benefits of knowledge graphs in enhancing
LLMs,  they  may  face  challenges  in  retrieving  the
required  knowledge.  In  this  paper,  a  novel  idea  is
proposed,  suggesting  the  utilization  of  one  LLM  to
enhance knowledge for another LLM, as an alternative
to traditional knowledge graphs.

3　Methodology

LLM1

LLM2

The  Prompting  Large  Language  Models  with
Knowledge-Injection  (PLLMKI)  framework  is
illustrated  in Fig.  2.  The  framework  comprises  three
main  components:  (1)  Utilizing  a  vanilla  VQA  model
to  obtain  in-context  examples,  which  are  then
processed  by  a  captioning  model  to  transform  the
image-question-answer  into  context-question-answer.
(2)  Employing  the  to  generate  background
knowledge  and  integrating  the  knowledge  into  the
prompt,  resulting  in  context-question-knowledge-
answer.  (3)  Inputting  the  modified  prompt  into  the

 to predict the answer.
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3.1　Preliminary

Before introducing the PLLMKI framework, let us first
demonstrate  PICa.  PICa  leverages  the  in-context
learning of GPT-3 for knowledge-based VQA.

y σ ϵ x
σ ϵ

x
l

The  in-context  learning  paradigm  of  GPT-3
demonstrates the capable learning ability. Specifically,
target  is  predicted  conditioned  on  prompt  ( , , ),
where  is  the  prompt  head,  denotes  the  in-context
examples,  and  refers to test  input.  At each decoding
step :
 

yl = argmax
yl

pLLM
(
yl | σ,ϵ, x,y<l

)
(1)

σ

ϵ = {(x1,y1), (x2,y2), ..., (xn,yn)} n
(xi,yi)

where  the  prompt  head  is  the  task  description,
 denotes  the  in-context

examples.  The  denotes  the  input-target  pair  for
the task.

PICa  applies  the  in-context  learning  paradigm  of
GPT-3  to  VQA.  Since  GPT-3  lacks  the  ability  to
comprehend  image  input,  the  image  is  first  converted
to  a  caption  using  the  image  captioning  model.  The
original  triplet  from  the  VQA  dataset,  consisting  of
image-question-answer,  is  transformed  into  context-
question-answer  format.  PICa  defines  the  in-context
example in the format:

Context: the caption.
Question: the question.
Answer: the answer.
The  context-question-answer  triplet  corresponds  to

the  image-question-answer  from  the  training  set.  The
test input is structured in the format:

Context: the caption.
Question: the question.
Answer:.
The  format  of  the  test  input  mirrors  that  of  the  in-

context example, with the exception that the answer is
left blank, allowing the LLM to make predictions. PICa
defines the prompt head as follows: Please answer the
question according to the above context.

The prompt head, in-context examples, and test input
are assembled together to form the whole prompt. The
prompt  is  then  fed  into  the  LLM,  such  as  GPT-3,  to
predict the answer.

LLM1

LLM2

The  PLLMKI  framework  draws  inspiration  from
previous  works.  We  enhance  the  LLM  through
knowledge  injection.  Specifically,  we  generate
background  knowledge  by  prompting  the ,  and
then  integrate  the  knowledge  into  the  prompt  to  assist
the  in  making  predictions.  The  in-context
example is formatted as follows:

 

Example Test input

Image to text

Q: What part of Africa 
do these animals live?

Knowledge: xxxxxx Knowledge: xxxxxx …

…

…

…

…

Knowledge: xxxxxx Background knowledge

LLM1 (Knowledge enhancement)

Context: A zebra standing in a open field with bushes.
Question: Where in Africa is this photo taken?
Knowledge: xxxxxx 
Answer: Savannah

Context: Giraffes eating from feeders on trees, at a zoo.
Question: What continent are these animals native to?
Knowledge: xxxxxx
Answer: Africa

Context: Two giraffes are eating from a tree branch.
Question: What part of Africa do these animals live?
Knowledge: xxxxxx 
Answer:

Please answer the question according to the context 
and knowledge. The knowledge is the background 
knowledge for the context and question.

LLM2 (Inference)

Prediction

Input prompt

Q: What continent are 
these animals native to?
A: Africa

Q: These long necked creatures 
live in what environment?
A: Africa

Q: Where in Africa is this 
photo taken?
A: Savannah

C: Giraffes eating from 
feeders on trees, at a zoo.
Q: What continent are 
these animals native to?
A: Africa

C: Giraffes are herded by a 
group of people on horses.
Q: These long necked creatures 
live in what environment?
A: Africa

C: A zebra standing in a open 
field with bushes.
Q: Where in Africa is this photo 
taken?
A: Savannah

C: Two giraffes are eating from a 
tree branch.
Q: What part of africa do these 
animals live?

Knowledge: xxxxxx 

Please generate background knowledge 
in English based on the context and 
question.

Context: A tennis player swinging a 
racket at a ball.
Question: What move is this tennis 
player currently using?
Knowledge: A tennis player is an 
individual who plays tennis, a popular 
global sport. xxxxxx

Context: Giraffes eating from feeders on 
trees, at a zoo.
Question: What continent are these 
animals native to?
Knowledge:

Prompt for knowledge generation

…

 
Fig. 2    Overview of the proposed framework.
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Context: the caption.
Question: the question.
Knowledge: the background knowledge.
Answer: the answer.
We format the test input as follows:
Context: the caption.
Question: the question.
Knowledge: the background knowledge.
Answer:.
The  test  input  follows  a  format  similar  to  the  in-

context example, with the exception that the answer is
left  blank  for  the  LLM  to  predict.  Additionally,  we
modify the prompt head to enable the model to answer
questions  based  on  the  context  and  knowledge.
Notably,  our  approach  differs  from previous  works  as
the  knowledge  is  generated  by  prompting  another
LLM,  rather  than  being  derived  from  knowledge
graphs.

3.2　In-context example selection

(v,q,a) v
q a

D
D M

Existing  works[7, 34] have  shown the  importance  of  in-
context  example  selection.  We  denote  the  image-
question-answer triplet as , where  denotes the
image,  denotes  the  question,  and  denotes  the
answer.  The  VQA  dataset  is  denoted  as ,  and  the
model learned from  is denoted as .

F
M

We can obtain the fused feature  of the image and
the question through the encoder of the model :
 

F = M(v,q) (2)

ϵ

For each test input, the cosine similarity of the fused
feature between the test input and each training sample
is  calculated.  We  then  select  the  samples  from  the
training set  whose fused features  are  closest  to  that  of
the test input to form the in-context examples :
 

ϵ = {(vi,qi,ai)|ni=1} (3)

c q a c q a

The  image  is  converted  to  the  context  by  the
captioning  model,  and  the  image-question-answer
corresponds  to  context-question-answer.  Denote
context-question-answer as ( , , ), where , , and 
refer to context, question, and answer, respectively.
 

ϵ = {(ci,qi,ai)|ni=1} (4)

3.3　Knowledge enhancement

Previous  works[30] have  demonstrated  the  benefits  of
enhancing  LLMs  with  knowledge  graphs.  Unlike
previous  works,  we  use  another  LLM  to  inject
knowledge  instead  of  knowledge  graphs.  This  idea  is

motivated  by  the  belief  that  implicit  knowledge
embedded  in  LLMs  may  be  more  suitable  for  open-
domain  knowledge-based  VQA  compared  to
knowledge  graphs,  which  may  fail  to  retrieve  the
required knowledge.

LLM1

LLM2

We  generate  background  knowledge  by  prompting
 and  subsequently  integrate  the  knowledge  into

the prompt to aid the  in making predictions. The
format  of  the  prompt  to  generate  background
knowledge  is  as  follows:  {[#  Prompt  head]  Please
generate  the  background  knowledge  xxxxxx.  [#  In-
context  examples]  Context:  the  caption.  Question:  the
question.  Knowledge:  the  background  knowledge.
[# Input]  Context:  the caption.  Question:  the question.
Knowledge: }.

H

E T

c q k

The  prompt  includes  the  prompt  head ,  the  in-
context examples , and the test input . The prompt
head  is  a  task  description  that  allows  the  LLM  to
generate background knowledge for  the corresponding
context  and  question.  The  in-context  example  is
composed  of  context-question-knowledge  and  can  be
denoted as ( , , ).
 

E= {(ci,qi,ki)|ni=1} (5)

The format of the test input resembles that of the in-
context example, with the knowledge left blank for the
LLM to generate.
 

P= LLM1(H,E,T) (6)
Pwhere  denotes  the  knowledge  generated  by  the

LLM.
LLM1

LLM1

To  explain  how  can  be  used  to  generate
background knowledge, we show a prompt example in
Fig.  3.  We  pick  out  some  in-context  examples  for

 learning. For better visualization, we only show
one in-context example.

3.4　Prompting large language model

ci qi ki ai

c q k

At  this  stage,  we  input  the  prompt  into  the  LLM  to
predict  the  answer.  The  background  knowledge
generated  in  the  previous  step  is  integrated  into  the
prompt,  which  comprises  the  prompt  head,  in-context
examples,  and  test  input:  {[#  Prompt  head]  Please
answer  the  question  xxxxxx.  [#  In-context  examples]
Context: .  Question: .  Knowledge: .  Answer: .
[#  Test  input]  Context: .  Question: .  Knowledge: .
Answer: }

HPrompt head  is the task description. Unlike PICa,
we  set  the  prompt  head  to  allow  the  model  to  make
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E
predictions  based  on  context  and  background
knowledge, not just context. The in-context example 
is also different from PICa. PICa is a triplet of context-
question-answer, while ours is a quadruple of context-
question-knowledge-answer.
 

E = {(ci,qi,ki,ai)|ni=1} (7)

T

H ,E,T

The format of test input  is similar to that of the in-
context  example,  but  the  answer  is  left  blank  for  the
LLM  to  predict.  The  prompt  ( )  will  be  input
into the LLM.
 

P = LLM2(H ,E,T ) (8)

Pwhere  is the prediction made by the LLM.

4　Experiment

4.1　Dataset

We  adopt  two  knowledge-based  VQA  datasets  for
evaluation, namely OK-VQA[4] and A-OKVQA[5]. OK-
VQA  contains  approximately  14  000  images  and
14  000  questions,  while  A-OKVQA  contains 24 000
images  and 25 000 questions.  OK-VQA  encourages
answering  questions  based  on  external  knowledge,
covering various  knowledge categories  such as  sports,
history,  science,  and  more.  A-OKVQA  is  also  a
knowledge-based  VQA  dataset  that  requires  more
knowledge categories than OK-VQA. For A-OKVQA,
we  adopt  the  direct  answer  on  validation  set  for
evaluation.

min
(
Number of humans that provided that answer

3
,1

)

For  evaluation  metrics,  we  employ  common  VQA
metrics. Each question is associated with ten annotated
answers,  and  a  generated  answer  is  considered  100%
accurate  if  at  least  three  human  annotators  provided
that  correct  answer.  The accuracy metric  is  defined as

.

4.2　Baseline and implementation

4.2.1　Baseline
We compare our approach to the following baselines:

• MUTAN[35]  is  a  multimodal  fusion  realized  by
bilinear  interaction.  It  is  for  modeling  interactions
between image and text.

• Mucko[36]   focuses   on   multi-layer   cross-modal
knowledge  inference.  It  represents  the  image  as  a
multimodal heterogeneous graph.

• ConceptBert[37]   learns   and   captures   image-
question-knowledge interactions from visual, language,
and knowledge graph embeddings.

• KRISP[6]   employs   a   multimodal   Bidirectional
Encoder Representations from Transformers (BERT) to
process  both  the  image  and  question,  leveraging  the
implicit knowledge in BERT.

•   MAVEx[28]    uses    external    knowledge    for
multimodal  answer  validation.  It  validates  the
promising  answers  according  to  answer-specific
knowledge retrieval.

•   Visual-retriever-reader[38]     is     designed     for
knowledge-based  VQA.  The  visual  retriever  initially
fetches  relevant  knowledge,  and  subsequently,  the
visual reader predicts the answer based on the provided
knowledge.

•    TRiG[39]      is      a      transform-retrieve-generate

 

Please generate background knowledge in English based
on the key words in the context and question.
===
Context: A tennis player swinging a racket at a ball.
Question: What move is this tennis player currently
using?
Knowledge: A tennis player is an individual who plays
tennis, a popular global sport. They use a racket to hit
a ball across a net in an attempt to outmaneuver their
opponent. In tennis, swinging refers to the action of
moving the racket to hit the ball. The way a player swings
the racket can greatly affect the trajectory, speed, and spin
of the ball. In tennis, the racket is the tool that players use
to hit the ball. It consists of a handle and a circular frame
with tightly interwoven strings. Rackets come in various
sizes and materials to fit the individual player’s style and
level of play. In tennis, the ball is a hollow, spherical object
that players hit back and forth across a net. It is designed
to have specific bounce characteristics and is covered in
a fibrous felt to alter its aerodynamic properties. In the
context of tennis, a move typically refers to the type of shot
or stroke a player uses. There are several different moves
or strokes a player can use, such as a forehand, backhand,
serve, volley, overhead smash, drop shot, or lob. Each
of these moves has different tactical uses in a match and
requires different body positions, racket angles, and swing
paths.
===
Context: A woman in a coat and boots stops to check her
smartphone.
Question: What brand of purse might she be carrying?
Knowledge: 

Fig. 3    Prompt example.  We show the  prompt with one in-
context example to explain how to prompt LLM1 to generate
background  knowledge.  We  collate  several  in-context
examples  for  model  learning  to  inspire  LLM1 to  generate
background knowledge.
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framework that can be used with image-to-text models
and knowledge bases.

• UnifER[40] is  a  knowledge-based  VQA  framework
based on the unified end-to-end retriever-reader.

• PICa[7] applies the in-context learning paradigm of
GPT-3  to  knowledge-based  VQA.  It  utilizes  a
captioning model to convert the image into text.

• Pythia[41] is a bottom-up top-down framework. It is
improved through modifications to the model structure
and the data augmentation.

• ViLBERT[42] is  a  model  for  learning  the  joint
representation of image and text.  It  extends the BERT
architecture to support multi-modality.

• ClipCap[43] is  a  captioning  method  that  employs
pre-trained models for processing visual and text.

• LXMERT[44] constructs a large transformer model
comprising three encoders: object relationship encoder,
language encoder, and cross-modality encoder.

• GPV-2[45] is  based  on  General  Purpose  Vision
(GPV)  and  is  designed  to  address  a  wide  range  of
visual  tasks  without  necessitating  changes  to  the
architecture.

• VLC-BERT[46] is  a  model  designed  to  integrate
common  sense  knowledge  into  the  visual  language
BERT.

• Prophet[29] is  proposed  to  inspire  GPT-3  using  a
vanilla  VQA  model.  We  replace  GPT-3  with  LLaMA
and keep the settings consistent for a fair comparison.
4.2.2　Implementation
For  the  captioning  model,  we  follow  PICa[7],  which
uses  OSCAR+[18].  For  the  in-context  example
selection, we follow the previous works[29] and use the
MCAN-large[21] model  pre-trained  on  VQAv2[47] and
visual genome[48]. We use LLaMA1[49] as the LLM for
knowledge  enhancement,  because  LLaMA1  is  an
excellent and open LLM with powerful capability. We
use  LLaMA2[50] as  the  LLM for  inference.  Compared
to  LLaMA1,  LLaMA2  can  support  a  longer  context,
which  is  conducive  to  injecting  knowledge  into  the
context.  We  use  the  LLaMA  7B  version.  Considering
the length limit of the context, we set the number of in-
context  examples  to  8  and  set  the  length  of  the
knowledge  to  no  more  than  256.  We  use  the  default
settings unless otherwise specified.

4.3　Experimental result

We  report  the  results  on  OK-VQA  and  A-OKVQA.
Tables 1 and 2 show the results.

On  OK-VQA,  our  method  outperforms  other
baselines by more than 1.3. It  is evident that baselines
utilizing  LLMs  consistently  achieve  better  results
compared to those without LLMs. LLMs are trained on
extensive  corpora,  acquiring  rich  knowledge.
Therefore,  baselines  using  LLMs  tend  to  outperform
methods  that  do  not  leverage  LLMs.  Our  approach,
also  grounded  in  LLMs,  leverages  the  more  powerful
inference  ability  of  such  models,  thereby
outperforming  the  baselines  that  lack  LLMs.
Furthermore, our approach achieves better performance
compared  to  existing  LLM-based  baselines.  By
selecting  more  appropriate  in-context  examples  and
further  enhancing  the  LLM  through  knowledge
injection, our framework demonstrates its capability to
achieve superior results.  On A-OKVQA, our approach
consistently  outperforms  existing  baselines,  exhibiting
an  accuracy  improvement  of  more  than  1.7  compared
to  the  existing  baselines.  These  results  once  again
underscore the effectiveness of our method.

 

Table 1    Results on OK-VQA.
Method Accuracy (%)

MUTAN+AN (Ben-Younes et al.[35]) 27.8
Mucko (Zhu et al.[36]) 29.2

ConceptBert (Gardères et al.[37]) 33.7
KRISP (Marino et al.[6]) 38.9
MAVEx (Wu et al.[28]) 39.4

Visual-retriever-reader (Luo et al.[38]) 39.2
VLC-BERT (Ravi et al.[46]) 43.1

TRiG (Gao et al.[39]) 49.4
UnifER (Guo et al.[40]) 42.1

PICa-Base (Yang et al.[7]) (Caption) 42.0
PICa-Base (Yang et al.[7]) (Caption+Tags) 43.3

PICa-Full (Yang et al.[7]) (Caption) 46.9
PICa-Full (Yang et al.[7]) (Caption+Tags) 48.0

Prophet-LLaMA (Shao et al.[29]) 52.8
Ours 54.1

 

Table 2    Results on A-OKVQA.

Method Accuracy (%)
Pythia (Jiang et al.[41]) 25.2

ClipCap (Mokady et al.[43]) 30.9
ViLBERT (Lu et al.[42]) 30.6

LXMERT (Tan and Bansal[44]) 30.7
KRISP (Marino et al.[6]) 33.7

GPV-2 (Kamath et al.[45]) 48.6
Prophet-LLaMA (Shao et al.[29]) 51.2

Ours 52.9
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Notably,  our  framework  relies  entirely  on  open
LLMs,  making  it  a  cost-effective  solution  that  is
accessible  to  most  researchers.  In  contrast,  utilizing
GPT-3  can  be  expensive  and  may result  in  significant
costs.  Our inference model employs the 7B version of
LLaMA,  featuring  just  7  billion  parameters.  Notably,
we  achieve  superior  performance  using  only  a  single
V100  32  G  GPU  for  inference,  a  setup  that  is
affordable for most researchers.

4.4　Ablation study

We  report  the  results  of  ablation  experiments
conducted  on  both  OK-VQA  and  A-OKVQA.  The
ablation  experiments  focus  on  two  key  aspects:  (1)
Knowledge  enhancement  under  different  shots:  We
investigate  the  impact  of  knowledge  enhancement
under  different  shots,  exploring  how  our  approach
performs  with  different  numbers  of  in-context
examples.  (2)  Using  different  LLMs  for  knowledge
injection:  We  examine  the  influence  of  employing
different LLMs for knowledge injection, evaluating the
performance variations.
4.4.1　Knowledge  enhancement  under  different

shots

LLM2 LLM1

LLM1

Table  3 shows  the  results  of  ablation  experiments.  ✘
Knowledge denotes that  no knowledge is  incorporated
to  enhance  the .  Ours  (+ )  means  using

 for  knowledge  enhancement.  Ours  (+  KGs)
means  using  Knowledge  Graphs  (kGs)[51] for
knowledge  enhancement.  We  perform  ablation
experiments  with  and  without  in-context  examples.  0-
shot indicates no in-context examples.

LLM1

Based on the results obtained from both datasets, it is
evident that performance will decline in the absence of
knowledge  enhancement.  We  find  that  knowledge
enhancement  using  outperforms KGs both with
and without in-context examples,  confirming our view
that  the  implicit  knowledge  of  LLM  is  more  suitable
for open-domain questions. In addition, in the absence

of  in-context  examples,  model  performance  will  be
significantly  degraded,  which  also  shows  that  in-
context examples are crucial to the in-context learning
paradigm of LLM.
4.4.2　Different LLMs for knowledge enhancement

LLM1

LLM2

LLM1

LLM2

LLM1

LLM1

Figure  4 shows  the  results  obtained  by  employing
various  LLMs  for  knowledge  enhancement.  Here,  we
define  as  the  LLM  responsible  for  generating
background  knowledge,  and  as  the  LLM  used
for  inference.  The  approach  involves  using  to
generate background knowledge, which is then injected
into  the  prompt  to  guide  during  inference.  Our
aim  is  to  investigate  the  impact  of  utilizing  different
LLMs as . Specifically, we employ LLaMA1-7B,
LLaMA1-13B,  ChatGLM1,  and  ChatGLM2 as ,
respectively,  and  present  the  corresponding
experimental results.

Upon analyzing the results, it becomes apparent that
more  capable  models  tend  to  yield  superior  results.
Specifically,  LLaMA1-13B  stands  out  as  the  top
performer,  attributed to its  status as  the largest  model.
The  extensive  parameterization  of  LLaMA1-13B

 

Table 3    Ablation study.

Shot Method
Accuracy (%)

OK-VQA A-OKVQA Average

8-shot
LLM1Ours (+ ) 54.1 52.9 53.5

Ours (+ KGs) 53.6 52.1 52.9
✘ Knowledge 52.9 51.5 52.2

0-shot
LLM1Ours (+ ) 28.4 24.8 26.6

Ours (+ KGs) 27.9 24.5 26.2
✘ Knowledge 27.2 24.2 25.7
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Fig. 4    Different LLMs for knowledge enhancement.
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results in a richer hidden knowledge compared to other
models,  contributing  to  its  superior  outcomes.
ChatGLM1, being trained in both Chinese and English,
exhibits relatively lower performance due to its English
knowledge not matching up to that of LLaMA. On the
other  hand,  ChatGLM2,  as  the  second-generation
version  of  ChatGLM1,  outperforms  ChatGLM1,
showcasing  the  positive  impact  of  model
advancements.

4.5　Parameter sensitivity study

We  also  investigate  the  impact  of  the  number  of  in-
context  examples  on  the  model  performance.  We
analyze how performance varies with the number of in-
context  examples  on  both  OK-VQA  and  A-OKVQA
datasets.  Kg-enhanced  denotes  the  utilization  of
knowledge  enhancement,  while  No  Kg-enhanced
signifies the absence of knowledge enhancement.

Figure  5 illustrates  the  variation  in  model
performance  with  the  number  of  in-context  examples.
Generally,  the  model  performance  exhibits  an  upward
trend  as  the  number  of  in-context  examples  increases.
Specifically, in a 0-shot scenario (when the number of
in-context  examples  is  0),  the  model  performance  is
poor  without  in-context  examples.  However,  a
noticeable  improvement  is  observed  when the  number
of in-context examples is increased to 1, indicating the
significance of in-context examples in model learning.
As  the  number  of  in-context  examples  continues  to
increase,  the  model  performance  gradually  reaches  a
saturation  point,  suggesting  that  constantly  adding  in-
context  examples  does  not  always  lead  to  a
proportional improvement in model performance.

4.6　Case study

We  select  specific  cases  to  examine  the  influence  of
background  knowledge  and  in-context  examples  on
model  inference.  The  findings  indicate  that  both
background  knowledge  and  in-context  examples
contribute positively to model inference.

Figure  6 illustrates  the  impact  of  background
knowledge on inference. The correct answer contained
in  the  background  knowledge  is  denoted  in  blue  font,
while  the  correct  answer  itself  is  highlighted  in  green
font.  It  is  evident  that  the  correct  answer  is  present  in
the background knowledge, indicating that the model is
more  likely  to  make  accurate  predictions  when
leveraging  background  knowledge.  We  also  present  a
failure case. In the last case, we can see that even if the

correct answer is hit in the background knowledge, the
model  can  still  predict  failure.  This  also  shows  that
background  knowledge  does  not  always  help  models
make 100% correct predictions.

Figure  7 depicts  the  impact  of  in-context  examples
on  inference.  The  correct  answer  hit  in  the  in-context
example  is  highlighted  in  red  font,  while  the  correct
answer itself is denoted in green font. It is evident that
the  correct  answer  is  present  in  the  in-context
examples,  underscoring  the  increased  likelihood  of
predicting  the  correct  answer  when  leveraging  in-
context examples.

To explain the construction details of our prompt, we
show  a  concrete  example  in Fig.  8.  For  better
visualization, we show the prompt with four in-context
examples.

4.7　Inference time

We  record  the  inference  time  for  different  context
lengths  on  OK-VQA.  We  adopt  the  LLaMA2-7B
version as inference model and use a Tesla V100 GPU.

The  statistics  for  inference  time  are  presented  in
Fig. 9. The X-axis represents time in minutes, while the
Y-axis  corresponds  to  different  shots,  indicating  the
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Fig. 5    Performance when varying the number of in-context
examples.
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Context: Two men are standing on top 
of a zebra.
Question: Where would you find this 
animal in the wild?
Knowledge: In the context given, a 
zebra is a type of animal. It is a large, 
striped mammal that lives in Africa. 
Zebras are xxx

(a) (b) (c)

Answer: Africa

Context: A large display of apples 
in a grocery store.
Question: What its this a fruit or 
vegetable?
Knowledge: In the context given, 
fruit refers to a type of plant that 
produces seeds and fleshy pulp. xxx
Answer: fruits

Context: A black and white cat 
laying on top of a pile of clothes.
Question: Is that a panda or a 
cat?
Knowledge: In this context, 
black and white refers to the 
color of the cat xxx
Answer: cat

 
Fig. 6    Impact of background knowledge on inference. Figures 6a and 6b are successful cases and Fig. 6c is a failed case. In
Figs. 6a and 6b, the correct answer is hit in the background knowledge, which helps the model predict the correct answer. In
Fig. 6c, the correct answer is hit in background knowledge, but the model makes the failed prediction.
 

Context: A group of men in suits standing in 
front of a robot.
Question: What type of clothing are the men 
wearing?
Knowledge: xxx
Answer: suit

Example 1
Context: A man in a suit sits 
inside of a car.
Question: What type of outfit 
is this man wearing?
Knowledge: xxx
Answer: suit

Example 2
Context: A smiling business 
woman is standing next to a 
business man.
Question: What type of attire 
is this?
Knowledge: xxx
Answer: business

(a)

(b)

Example 3
Context: A group of business 
men in suits and ties talking to 
kids.
Question: What world 
describes the men’s attire?
Knowledge: xxx
Answer: dress

Example 4
Context: Two men in suits 
standing next to a women.
Question: What type of outfit 
is the woman wearing?
Knowledge: xxx
Answer: suit

Context: A fire place sitting in a living 
room next to a window.
Question: What is this fireplace made 
of?
Knowledge: xxx
Answer: brick

Example 1
Context: Freight train going 
over a bridge on a river.
Question: What is this 
structure made of?
Knowledge: xxx
Answer: steel

Example 2
Context: Three images of the 
process of a bathroom remodel.
Question: What material is the 
bathtub made out of?
Knowledge: xxx
Answer: ceramic

Example 3
Context: Vehicles drive past 
an obelisk topped by a clock.
Question: What is the clock 
tower made out of?
Knowledge: xxx
Answer: brick

Example 4
Context: An intersection 
containing a large brick 
building, traffic lights, and a 
street sign.
Question: What are the 
buildings made of?
Knowledge: xxx
Answer: brick

 
Fig. 7    Impact  of  in-content  examples  on  inference.  Because  in-context  examples  play  a  key  role  in  the  in-context  learning
paradigm of LLMs, we show cases where in-context examples help the model predict. The red font indicates that the correct
answer is hit in the in-context examples.
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number of in-context examples. It is evident that as the
number of in-context examples increases, the inference
time  also  extends.  This  correlation  is  attributed  to  the
augmented  length  of  the  context,  leading  to  longer
processing time for the model.

4.8　Evaluation on additional datasets

To  further  validate  the  robustness  of  our  method,  we
conduct  additional  evaluations  on  the  DAQUAR

dataset. To facilitate evaluation, we select one-tenth of
the  test  set  as  the  evaluation  set  to  report  the  results.
We compare with the best baseline model, Prophet, and
show  comparisons  under  different  in-context  example
settings. Figure  10 illustrates  the  results.  We  find  that
our method outperforms the best baseline model under
different  parameter  settings.  The  results  again
demonstrate the robustness of our method.

 

Please answer the question according to the context and knowledge.
======
Context: A yellow diamond shaped road sign on the right side of a road.
Question: What does the sign indicate?
Knowledge: A road sign is a sign that is placed on a road to provide information to drivers.
They are often used to indicate speed limits, road conditions, and other information. xxxxxx
Answer: roundabout
===
Context: A black and white shot of two people on their motorcycle.
Question: Is which type of road are the people riding?
Knowledge: In this context, people are the two people riding the motorcycle. A motorcycle
is a two-wheeled vehicle that is powered by anengine. It is a popular form of transportation
in many countries. In this context, the term “road” refers to a paved surface that is used for
driving. xxxxxx
Answer: highway
===
Context: A car is parked a the end of a wooded street.
Question: What traffic sign is backwards?
Knowledge: A car is a type of vehicle. It is a four-wheeled motor vehicle that is powered by an
internal combustion engine. Cars are typically used for transportation, but can also be used for
recreation or racing. A traffic sign is a sign that is used to communicate information to drivers.
xxxxxx
Answer: yield
===
Context: Many different cars driving down a city road.
Question: What kind of road is this?
Knowledge: Cars are vehicles that are driven on roads. They are a common form of
transportation in urban areas. A road is a path or route that is used for traveling. It can be paved
or unpaved, and can be used for a variety of purposes, including transportation, recreation, or
agriculture. xxxxxx
Answer: highway
======
Context: A street sign is shown with a tree in the background.
Question: Where does the word shown here come from?
Knowledge: A street sign is a sign that provides information about a street or road. It can be
used to provide directions, identify the name of the street, and more. A tree is a woody plant
that grows in the ground. Trees can be found in many different environments, including forests,
parks, and backyards. xxxxxx
Answer: 

Fig. 8    Prompt consisting of three parts: (1) The prompt head is used to describe the task; (2) Some in-context examples are
used for LLM learning; (3) Test input is in the same format as the in-context example, but the answer is left blank for LLM
prediction. We show the prompt with four in-context examples for better visualization.
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5　Conclusion

LLM1

LLM2

We  introduce  PLLMKI,  a  knowledge-based  VQA
framework  utilizing  the  knowledge-enhanced  LLM.
Unlike previous works, PLLMKI leverages the LLM to
generate  background  knowledge,  integrating  it  into
another  LLM  for  inference,  as  opposed  to  using
knowledge  graphs  to  enhance  the  LLM.  Our
framework consists of three components: (1) A vanilla
VQA model  is  used to  get  in-context  examples,  and a
captioning  model  is  adopted  to  convert  image-
question-answer to context-question-answer; (2) 
is  used  to  generate  background  knowledge,  and  then
the  knowledge  is  integrated  into  the  prompt,  i.e.,
context-question-knowledge-answer; (3) The prompt is
input into  to predict the answer. It is noteworthy
that  our  framework  relies  solely  on  open  LLMs,
incurring no additional costs. Experiments demonstrate
the  superior  performance  of  our  approach  on  two
knowledge-based  VQA  datasets,  OK-VQA  and  A-
OKVQA.  As  a  next  step,  we  consider  applying  the
agent concept to knowledge-based VQA by designing a

variety of tools for knowledge enhancement, including
retrieval from knowledge graphs and knowledge bases,
generation  using  LLMs,  and  so  on.  The  agent
technology is then utilised to automate the planning in
order to inject knowledge in a flexible manner.
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Fig. 9    Inference time required for different numbers of in-
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Fig. 10    Comparison  on  DAQUAR  dataset.  On  the
DAQUAR  dataset,  we  compare  against  the  best  baseline
model  under  different  numbers  of  in-context  example
settings.

    854 Big Data Mining and Analytics, September 2024, 7(3): 843−857

 



intensive  NLP  tasks,  in Advances  in  Neural  Information
Processing  Systems,  H.  Larochelle,  M.  Ranzato,  R.
Hadsell,  M.  F.  Balcan,  and  H.  Lin,  eds.  New  York,  NY,
USA: Curran Associates, Inc., 2020, pp. 9459–9474.
 D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya,
H.  Li,  P.  Ghamisi,  X.  Jia,  et  al.,  SpectralGPT: Spectral
remote  sensing  foundation  model, IEEE  Trans.  Pattern
Anal. Mach. Intell., doi: 10.1109/TPAMI.2024.3362475.

[10]

 D. Hong, B. Zhang, H. Li, Y. Li, J. Yao, C. Li, M. Werner,
J.  Chanussot,  A. Zipf,  and X. X. Zhu, Cross-city matters:
A multimodal remote sensing benchmark dataset for cross-
city  semantic  segmentation  using  high-resolution  domain
adaptation  networks, Remote.  Sens.  Environ.,  vol. 299,  p.
113856, 2023.

[11]

 D.  Hong,  N.  Yokoya,  J.  Chanussot,  and  X.  X.  Zhu, An
augmented  linear  mixing  model  to  address  spectral
variability for hyperspectral unmixing, IEEE Trans. Image
Process., vol. 28, no. 4, pp. 1923–1938, 2019.

[12]

 S. Antol,  A. Agrawal,  J.  Lu, M. Mitchell,  D. Batra,  C. L.
Zitnick,  and D.  Parikh,  VQA: Visual  question answering,
in Proc.  IEEE  Int.  Conf.  Computer  Vision (ICCV),
Santiago, Chile, 2015, pp. 2425–2433.

[13]

 Y. Srivastava, V. Murali, S. R. Dubey, and S. Mukherjee,
Visual  question  answering  using  deep  learning: A survey
and performance analysis,  in Computer Vision and Image
Processing,  S.  K.  Singh,  P.  Roy,  B.  Raman,  and  P.
Nagabhushan, eds. Singapore: Springer, 2021, pp. 75–86.

[14]

 P.  Sun,  W.  Zhang,  S.  Li,  Y.  Guo,  C.  Song,  and  X.  Li,
Learnable  depth-sensitive  attention  for  deep  RGB-D
saliency  detection  with  multi-modal  fusion  architecture
search, Int.  J.  Comput.  Vis.,  vol. 130,  no. 11,  pp.
2822–2841, 2022.

[15]

 Y. Wang, Q. Mao, H. Zhu, J. Deng, Y. Zhang, J. Ji, H. Li,
and  Y.  Zhang, Multi-modal  3D  object  detection  in
autonomous  driving: A  survey, Int.  J.  Comput.  Vis.,  vol.
131, no. 8, pp. 2122–2152, 2023.

[16]

 H.  Jiang,  I.  Misra,  M.  Rohrbach,  E.  Learned-Miller,  and
X.  Chen,  In  defense  of  grid  features  for  visual  question
answering,  in Proc.  IEEE/CVF  Conf.  Computer  Vision
and  Pattern  Recognition (CVPR),  Seattle,  WA,  USA,
2020, pp. 10264–10273.

[17]

 P.  Zhang,  X.  Li,  X.  Hu,  J.  Yang,  L.  Zhang,  L.  Wang,  Y.
Choi, and J. Gao, VinVL: Revisiting visual representations
in  vision-language  models,  in Proc.  IEEE/CVF  Conf.
Computer  Vision  and  Pattern  Recognition (CVPR),
Nashville, TN, USA, 2021, pp. 5575–5584.

[18]

 L. Li, Z. Gan, Y. Cheng, and J. Liu, Relation-aware graph
attention  network  for  visual  question  answering,  in Proc.
IEEE/CVF  Int.  Conf.  Computer  Vision (ICCV),  Seoul,
Republic of Korea, 2019, pp. 10312–10321.

[19]

 Z. Yu, Y. Cui, J. Yu, M. Wang, D. Tao, and Q. Tian, Deep
multimodal neural architecture search, in Proc. 28th ACM
Int.  Conf.  Multimedia,  Seattle,  WA,  USA,  2020,  pp.
3743–3752.

[20]

 Z. Yu, J. Yu, Y. Cui, D. Tao, and Q. Tian, Deep modular
co-attention  networks  for  visual  question  answering,  in

[21]

Proc.  IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Long  Beach,  CA,  USA,  2019,  pp.
6274–6283.
 Y. Cui, Z. Yu, C. Wang, Z. Zhao, J. Zhang, M. Wang, and
J. Yu, ROSITA: Enhancing vision-and-language semantic
alignments  via  cross- and  intra-modal  knowledge
integration,  in Proc.  29th  ACM  Int.  Conf.  Multimedia,
Virtual Event, 2021, pp. 797–806.

[22]

 J.  Li,  D.  Li,  C.  Xiong,  and  S.  Hoi,  BLIP: Bootstrapping
language-image  pre-training  for  unified  vision-language
understanding  and  generation,  arXiv  preprint  arXiv:
2201.12086, 2022.

[23]

 M.  Zhou,  L.  Yu,  A.  Singh,  M.  Wang,  Z.  Yu,  and  N.
Zhang, Unsupervised vision-and-language pre-training via
retrieval-based  multi-granular  alignment,  in Proc.
IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  New  Orleans,  LA,  USA,  2022,  pp.
16464–16473.

[24]

 M.  Malinowski,  M.  Rohrbach,  and  M.  Fritz,  Ask  your
neurons: A neural-based approach to answering questions
about  images,  in Proc.  IEEE  Int.  Conf.  Computer  Vision
(ICCV), Santiago, Chile, 2015, pp. 1–9.

[25]

 Z.  Yu,  J.  Yu,  J.  Fan,  and D.  Tao,  Multi-modal  factorized
bilinear  pooling  with  co-attention  learning  for  visual
question  answering,  in Proc.  IEEE  Int.  Conf.  Computer
Vision (ICCV), Venice, Italy, 2017, pp. 1839–1848.

[26]

 J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, Neural
module  networks,  in Proc.  IEEE  Conf.  Computer  Vision
and  Pattern  Recognition (CVPR),  Las  Vegas,  NV,  USA,
2016, pp. 39–48.

[27]

 J. Wu, J. Lu, A. Sabharwal, and R. Mottaghi, Multi-modal
answer validation for knowledge-based VQA, Proc. AAAI
Conf. Artif. Intell., vol. 36, no. 3, pp. 2712–2721, 2022.

[28]

 Z.  Shao,  Z.  Yu,  M.  Wang,  and  J.  Yu,  Prompting  large
language  models  with  answer  heuristics  for  knowledge-
based  visual  question  answering,  in Proc.  IEEE/CVF
Conf.  Computer  Vision  and Pattern  Recognition (CVPR),
Vancouver, Canada, 2023, pp. 14974–14983.

[29]

 S. Pan,  L.  Luo, Y. Wang, C. Chen, J.  Wang, and X. Wu,
Unifying large language models and knowledge graphs: A
roadmap, IEEE  Trans.  Knowl.  Data  Eng.,  doi:
10.1109/TKDE.2024.3352100.

[30]

 X.  Zou, A  survey  on  application  of  knowledge  graph, J.
Phys.: Conf. Ser., vol. 1487, no. 1, p. 012016, 2020.

[31]

 Z.  Zhang,  X.  Han,  Z.  Liu,  X.  Jiang,  M.  Sun,  and Q.  Liu,
ERNIE: Enhanced  language  representation  with
informative  entities,  in Proc.  57th  Annual  Meeting  of  the
Association for Computational Linguistics, Florence, Italy,
2019, pp. 1441–1451.

[32]

 Y. Sun,  S.  Wang, S.  Feng,  S.  Ding,  C.  Pang,  J.  Shang,  J.
Liu,  X.  Chen,  Y.  Zhao,  Y.  Lu,  et  al.,  ERNIE 3.0: Large-
scale  knowledge  enhanced  pre-training  for  language
understanding  and  generation,  arXiv  preprint  arXiv:
2107.02137, 2021.

[33]

 J.  Liu,  D.  Shen,  Y.  Zhang,  B.  Dolan,  L.  Carin,  and  W.
Chen,  What makes good in-context  examples for  GPT-3?

[34]

  Zhongjian Hu et al.:  Prompting Large Language Models with Knowledge-Injection for Knowledge-Based Visual... 855

 



in Proc.  Deep  Learning  Inside  Out (DeeLIO  2022): The
3rd  Workshop  on  Knowledge  Extraction  and  Integration
for  Deep  Learning  Architectures,  Dublin,  Ireland,  2022,
pp. 100–114.
 H.  Ben-Younes,  R.  Cadene,  M.  Cord,  and  N.  Thome,
MUTAN: Multimodal  tucker  fusion  for  visual  question
answering,  in Proc.  IEEE  Int.  Conf.  Computer  Vision
(ICCV), Venice, Italy, 2017, pp. 2631–2639.

[35]

 Z.  Zhu,  J.  Yu,  Y.  Wang,  Y.  Sun,  Y.  Hu,  and  Q.  Wu,
Mucko: Multi-layer cross-modal knowledge reasoning for
fact-based  visual  question  answering,  in Proc.  29th  Int.
Joint  Conf.  Artificial  Intelligence,  Yokohama,  Japan,
2020, pp. 1097–1103.

[36]

 F.  Gardères,  M.  Ziaeefard,  B.  Abeloos,  and  F.  Lecue,
ConceptBert: Concept-aware  representation  for  visual
question  answering,  in Proc.  Findings  of  the  Association
for  Computational  Linguistics: EMNLP  2020,  Virtual
Event, 2020, pp. 489–498.

[37]

 M.  Luo,  Y.  Zeng,  P.  Banerjee,  and  C.  Baral,  Weakly-
supervised  visual-retriever-reader  for  knowledge-based
question  answering,  in Proc.  2021  Conf.  Empirical
Methods  in  Natural  Language  Processing,  Punta  Cana,
Dominican Republic, 2021, pp. 6417–6431.

[38]

 F. Gao, Q. Ping, G. Thattai, A. Reganti, Y. N. Wu, and P.
Natarajan, Transform-retrieve-generate: Natural language-
centric  outside-knowledge  visual  question  answering,  in
Proc.  IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  New  Orleans,  LA,  USA,  2022,  pp.
5057–5067.

[39]

 Y.  Guo,  L.  Nie,  Y.  Wong,  Y.  Liu,  Z.  Cheng,  and  M.
Kankanhalli,  A  unified  end-to-end  retriever-reader
framework for knowledge-based VQA, in Proc. 30th ACM
Int.  Conf.  Multimedia,  Lisboa,  Portugal,  2022,  pp.
2061–2069.

[40]

 Y. Jiang,  V.  Natarajan,  X.  Chen,  M.  Rohrbach,  D.  Batra,
and D. Parikh, Pythia v0.1: The winning entry to the VQA
challenge 2018, arXiv preprint arXiv: 1807.09956, 2018.

[41]

 J. Lu, D. Batra, D. Parikh, and S. Lee, Vilbert: Pretraining
task-agnostic  visiolinguistic  representations  for  vision-
and-language  tasks,  in Advances  in  Neural  Information
Processing  Systems,  H.  Wallach,  H.  Larochelle,  A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds.
New York,  NY,  USA: Curran  Associates,  Inc.,  2019,  pp.
13–23.

[42]

 R.  Mokady,  A.  Hertz,  and  A.  H.  Bermano,  Clipcap: Clip
prefix  for  image  captioning,  arXiv  preprint  arXiv:
2111.09734, 2021.

[43]

 H.  Tan  and  M.  Bansal,  LXMERT: Learning  cross-
modality  encoder  representations  from  transformers,  in
Proc. 2019 Conf. Empirical Methods in Natural Language
Processing and the 9th Int. Joint Conf. Natural Language
Processing (EMNLP-IJCNLP),  Hong  Kong,  China,  2019,
pp. 5100–5111.

[44]

 A. Kamath, C. Clark, T. Gupta,  E. Kolve, D. Hoiem, and
A.  Kembhavi,  Webly  supervised  concept  expansion  for
general  purpose  vision  models,  in Computer
Vision—ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G.
M.  Farinella,  and  T.  Hassner,  eds.  Cham,  Switzerland:
Springer, 2022, pp. 662–681.

[45]

 S. Ravi, A. Chinchure, L. Sigal, R. Liao, and V. Shwartz,
VLC-BERT: Visual  question  answering  with
contextualized  commonsense  knowledge,  in Proc.
IEEE/CVF Winter Conf.  Applications of Computer Vision
(WACV), Waikoloa, HI, USA, 2023, pp. 1155–1165.

[46]

 Y.  Goyal,  T.  Khot,  D.  Summers-Stay,  D.  Batra,  and  D.
Parikh, Making the V in VQA matter: Elevating the role of
image  understanding  in  visual  question  answering,  in
Proc.  IEEE  Conf.  Computer  Vision  and  Pattern
Recognition (CVPR),  Honolulu,  HI,  USA,  2017,  pp.
6325–6334.

[47]

 R.  Krishna,  Y.  Zhu,  O.  Groth,  J.  Johnson,  K.  Hata,  J.
Kravitz, S. Chen, Y. Kalantidis, L. J. Li, D. A. Shamma, et
al., Visual genome: Connecting language and vision using
crowdsourced  dense  image  annotations, International
Journal of Computer Vision, vol. 123, pp. 32–73, 2017.

[48]

 H.  Touvron,  T.  Lavril,  G.  Izacard,  X.  Martinet,  M.  A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F.
Azhar,  et  al.,  Llama: Open  and  efficient  foundation
language models, arXiv preprint arXiv: 2302.13971, 2023.

[49]

 H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y.  Babaei,  N.  Bashlykov,  S.  Batra,  P.  Bhargava,  S.
Bhosale,  et  al.,  Llama 2: Open foundation  and fine-tuned
chat models, arXiv preprint arXiv: 2307.09288, 2023.

[50]

 F.  Ilievski,  P.  Szekely,  and  B.  Zhang,  CSKG: The
commonsense knowledge graph, in The Semantic Web, R.
Verborgh,  K.  Hose,  H.  Paulheim,  P.  Champin,  M.
Maleshkova,  O.  Corcho,  P.  Ristoski,  and  M.  Alam,  eds.
Cham, Switzerland, Springer, 2021, pp. 680–696.

[51]

Zhongjian  Hu is  currently  pursuing  the
PhD  degree  at  the  School  of  Computer
Science  and  Engineering,  Southeast
University,  Nanjing,  China.  His  research
interests  include  artificial  intelligence,
natural language processing, etc.

Peng Yang is a professor at the School of
Computer  Science  and  Engineering,
Southeast  University,  Nanjing,  China.  His
research  interests  include  artificial
intelligence,  natural  language  processing,
big data, etc.

    856 Big Data Mining and Analytics, September 2024, 7(3): 843−857

 



Fengyuan  Liu is  currently  pursuing  the
master degree at the Southeast University -
Monash  University  Joint  Graduate  School
(Suzhou), Southeast University, China. His
research  interests  include  artificial
intelligence, large language models, etc.

Yuan Meng is currently pursuing the PhD
degree at  the School of Computer Science
and  Engineering,  Southeast  University,
Nanjing,  China.  Her  research  interests
include  knowledge  graphs,  natural
language processing, etc.

Xingyu  Liu is  currently  pursuing  the
master degree at the Southeast University -
Monash  University  Joint  Graduate  School
(Suzhou),  Southeast  University,  China.
Her  research  interests  include  AI  agents,
large language models, etc.

  Zhongjian Hu et al.:  Prompting Large Language Models with Knowledge-Injection for Knowledge-Based Visual... 857

 


