
 

Influence of Attribute Granulation on Three-Way Concept Lattices

Jun Long, Yinan Li, and Zhan Yang*

Abstract: In  formal  concept  analysis  based  applications,  controlling  the  structure  of  concept  lattice  is  of  vital

importance,  especially  for  big  data,  and  is  achieved  via  clarifying  the  granularity  of  attributes.  Existing

approaches for solving this issue are within the framework of classical formal concept analysis, which focuses

on positive attributes. However, experiments have demonstrated that both positive and negative attributes exert

comparable  influence  on  knowledge  discovery.  Thus,  it  is  essential  to  explore  the  granularity  of  attributes  in

positive and negative perspectives altogether. As a solution, we investigate this problem within the framework

of  three-way  concept  analysis.  Specifically,  we  present  zoom-in  and  zoom-out  algorithms  to  obtain  more

particular and abstract three-way concepts, separately. Furthermore, we provide illustrative examples to show

the practical significance of this study.
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1　Introduction

Recent  years  have  witnessed  the  increasing  interest
towards  Granular  Computing  (GrC)[1, 2].  At  present,
GrC  has  proved  to  be  an  effective  tool  for  solving
complex  problems  by  modeling  and  manipulating  the
discussed  universe  at  different  levels  of  granulations.
As  an  example,  when  characterizing  the  color  of  a
vehicle, “red” and “blue” are  attributes  at  the  coarser
granularity  level,  while “light  red”, “deep  red”, “light
blue”,  and “deep  blue” are  attributes  at  the  finer
granularity  level.  On  one  hand,  coarser  attributes  may
lead invisibility of some interesting patterns, such as a
deep red seat, a light blue cover, and a deep blue plate.
On the other hand, too specific attributes will bring too
many  patterns,  which  may  be  a  waste  of  time  in
choosing  our  favorite  colors.  In  a  word,  properly
manipulating  granularity  levels  plays  a  vital  role  in

applications[3, 4].
It  is  worth  noting  that  on  most  occasions,  only

pointing out the common features shared by the target
set  is  far  from enough.  For  instance,  in  our  daily  life,
when going to a restaurant, we not only tell the waiter
or  waitress  what  kinds  of  food we prefer,  but  also  the
ingredients we do not want.  Sometimes, the latter will
determine  whether  you  can  have  a  good  dinner,
especially  you  have  some  taboos.  Actually,  the  equal
importance of positive and negative attributes has been
stressed  in  many  researches,  such  as  bipolar  fuzzy
graph  representation[5],  association  rule  mining[6],
conflict  analysis[7],  etc.  Therefore,  manipulating  the
granularity  of  attributes  both  in  positive  and  negative
perspectives  is  necessary.  However,  the  existing
studies  focus  on  positive  attributes  but  leave  negative
ones aside. Thus, the focus of this paper is to carry out
a systematic study of the granularity of attributes both
in positive and negative perspectives.

Formal  Concept  Analysis  (FCA),  the  key  tool  for
GrC  proposed  by  Wille[8],  has  attracted  increasing
popularity  across  various  domains[9−20].  The  initial
information  of  FCA  is  formal  context,  which  is
composed  of  objects  and  attributes  among  binary
relations.  The  basic  structure  obtained  from  formal
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context  is  concept  lattice,  ordering  a  collection  of
particular  couples,  which  are  known  as  so-called
formal concepts. When the objects are fixed, the choice
of  attributes  decides  the  structure  of  the  concept
lattice[21−28].  As  reducing  the  complexity  of  lattice
construction  plays  a  crucial  role  in  FCA,  by  using  a
granularity  tree,  Shao  et  al.[29] investigated  the
connection between extent and intent of the concept in
the  granularity  pre/post-transformation  stages  of
attributes.

Rough Set Theory(RST) was proposed by Pawlak[30],
which is related to and complementary with FCA[31−36].
The  granularity  of  attributes  has  also  attracted  the
increasing  interest  of  researchers  from the  community
of  RST[34−36].  Formal  concepts,  as  well  as  rough  sets,
describe  the  target  set  by  solely  considering  the
attributes  they have.  Sometimes,  it  is  far  from enough
to show all  details  of  the target.  Three-Way Decisions
(3WD),  the  efficient  architecture  for  taking  decisions,
proposed  by  Yao[37−39],  exhibits  great  merits  in  many
research  fields,  such  as  large-scale  and  multi-view
clustering[40, 41].  By  incorporating  this  theory  with
FCA,  Qi  et  al.[42, 43] proposed  three-Way  Concept
Analysis (3WCA), which enables us to simultaneously
exploit both positive and negative attributes. Moreover,
inspired  by  possibility  theory,  three-way  object
(property)-oriented  concept[44, 45] and  dual  concept[46]

are  proposed  to  fit  more  specific  applications.  At
present,  3WCA  has  attracted  growing  interests  across
various domains. For instance, Shivhare and Aswani[47]

described  a  cognitive  memory  process  based  on
3WCA.  In  order  to  manage  incomplete  information,
Zhi and Li[48] constructed a kind of approximate three-
way concept lattices by employing the spirit of granule
description  to  support  approximate  decision  rule
extraction. Wei et al.[10] extracted positive and negative
rules  based  on  three-way  concept  lattices.  Campagner
et  al.[49] presented  a  three-way-in/out  architecture  to
deal with the ambiguity of data.

Up  to  now,  the  granularity  of  attributes  in  FCA has
been  studied  on  the  basis  of  classical  concepts  and
object  (property)-oriented  concepts[26, 27, 29, 50, 51],  but
none  of  them  discusses  the  granularity  of  attributes
both  in  positive  and  negative  views.  To  tackle  this
issue, we resort to 3WCA and present our solutions.

The  rest  is  organized  as  follows.  Section  2  reviews
some  basic  notions  in  3WCA.  Section  3  describes  a
framework  for  the  granularity  of  attributes  in  3WCA.

Section 4 presents zoom-in and zoom-out algorithms to
change the granularity level of attributes and update the
related  three-way  concept  lattices.  Section  5
demonstrates  the  influence  of  attribute  granulation  on
three-way and formal concept lattices via experiments.
Finally, a conclusion is provided in Section 6.

2　Preliminary

K = (G, M, I) G
M

I G
M I (x, y) = 1 I (x, y) = 0

x
y

Let  be a formal context. Concretely,  is
a  nonempty  set  of  objects,  is  a  nonempty  set  of
attributes,  and  denotes  the  relationship  between 
and .  Besides,  we  use  (or )  to
express that the object  contains (or does not contain)
the attribute .

X ∈ 2G A ∈ 2M

∗: 2G → 2M ∗: 2M → 2G
For  and ,  a  pair  of  associated positive

operators  and  are defined as
 

X∗ = {y ∈ M | ∀x ∈ X, I (x, y) = 1},
A∗ = {x ∈G | ∀y ∈ A, I (x, y) = 1} (1)

∗: 2G → 2M ∗: 2M → 2G
In  addition,  a  pair  of  associated  negative  operators

 and  are defined as
 

X∗ = {y ∈ M | ∀x ∈ X, I (x, y) = 0},
A∗ = {x ∈G | ∀y ∈ A, I (x, y) = 0} (2)

K = (G, M, I)
X ∈ 2G (A, B) ∈ 2M ×2M

⋗: 2G → 2M ×2M

⋖: 2M ×2M → 2G

Definition  1[42, 43] Let  be  a  formal
context,  and .  A  pair  of
associated  three-way  operators  and

 are defined as
 

X⋗ = (X∗, X∗) and (A, B)⋖ = A∗∩B∗ (3)

X⋗ = (A, B) (A, B)⋖ = X
(X, (A, B))

Moreover,  if  and ,  then
 is an object-induced three-way concept.

K

K OEL (K)

Then,  all  concepts  contained  in  form  a  complete
lattice,  which  is  the  object-induced  three-way  concept
lattice  of  and  denoted  by .  By  using  the
duality  principle,  attribute-induced  three-way  concept
lattice can be obtained according to Ref. [42].

3　Granularity of Attributes in 3WCA

The  changing  of  granularity  of  attributes  reflects
human  cognitive  nature  to  some  extent.  On  one  hand,
attributes of coarse granularity can be refined to reveal
some more interesting details. On the other hand, a set
of attributes can also be abstracted to achieve a higher
level  of  thinking.  The  manipulation  of  granularity  is
just  the  essence  of  granular  computing  to  solve
complex problems.

Granule  transformation  frequently  appears  in  our
daily life. For instance, there is a software development
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a b c d

team,  which  is  composed  of  four  engineers.  The
members  of  this  team  are  described  by  their  abilities,
i.e.,  programming,  software  testing,  and  algorithm
analysis.  Besides,  their  shortcomings  are  also
considered. For simplicity, we denote these abilities by

, , and , respectively, and denote shortcoming by .
The  details  of  these  four  engineers  are  shown  in
Table 1.

a1 a2

d1 d2

However, on some occasions, Table 1 cannot provide
enough  detailed  information,  and  brings  obstacles  in
finding  some  useful  embedded  patterns.  For  instance,
at  a  specific  software  development  stage,  it  needs
engineers who are specialized in Java language with a
strong sense of responsibility. Then, it  is apparent that
the  granularity  of  the  related  attributes  needs  to  be
adjusted.  That  is,  the  ability  of  programming needs  to
be refined to Java and Python;  and the shortcoming is
substituted  by  indecisiveness  and  carelessness.  For
simplicity,  and  are used to represent the abililies
of  mastering  Java  and  Python  language,  respectively;

 and  are  used  to  denote  carelessness  and
indecisiveness, respectively. Then we obtain Table 2.

From Table 2, we can derive that Engineers 1 and 2
are  the  qualified  ones  for  the  requirements  of  this
software  development  stage.  Actually,  it  can  be

({1, 2}, ({a1}, {a2, d2}))verified  that  is  a  three-way
concept  embedded  in Table  2,  which  contains  the
needed  information.  For  the  sake  of  convenience,  we
collectively list the three-way concepts of Tables 1 and
2 in Table  3.  It  is  clear  that Table  2 contains  more
concepts with finer granularity.

a1 a2 a
d1 d2

d

({1}, ({a, c}, {b, d}))

However,  attributes  with  finer  granularity  may  not
always be necessary, and may bring obstacles in some
situations. For instance, engineers who master one kind
of  programming  language  with  no  obvious
shortcomings  can  be  engaged  in  after-sale  service.
Then,  adjusting  a  set  of  finer  attributes  about
programming  skills  to  a  coarser  attribute  will  make
sense  on  this  occasion.  With  respect  to  this  example,
attributes  and  need to be coarsened to attribute ,
and  attributes  and  need  to  be  coarsened  to
attribute .  Then,  we  can  see  that  Engineer  1  is  a
suitable  candidate  for  this  job,  indicated  by  the  three-
way concept .

To  sum  up,  there  are  two  related  facets  in  the
adjusting  of  the  granularity  of  attributes.  One  is
changing  a  coarse  attribute  to  a  set  of  finer  attributes
and the other is the reverse.

In  the  above  discussion,  it  is  apparent  that  we
manipulate  the  granularity  of  attributes  in  the  settings

 

Table 1    Four software engineers and their abilities.

Engineer
Ability

a b c d
1 1 0 1 0
2 1 1 0 1
3 1 0 1 1
4 0 1 0 1

 

Table 2    Four software engineers and their specific abilities.

Engineer
Ability

a1 a2 b c d1 d2

1 1 0 0 1 0 0
2 1 0 1 0 1 0
3 0 1 0 1 0 1
4 0 0 1 0 0 1

 

Table 3    Object-induced three-way concepts of Tables 1 and 2.
Number Object-induced three-way concepts of Table 1 Object-induced three-way concepts of Table 2

1 ({1,2,3,4}, (∅,∅)) ({1,2,3,4}, (∅,∅))
2 ({1,2,3}, ({a},∅)) ({1,2,4}, (∅, {a2}))
3 ({2,3,4}, ({d},∅)) ({1,3,4}, (∅, {d1}))
4 ({1,3}, ({a,c}, {b})) ({1,2}, ({a1}, {a2,d2}))
5 ({2,3}, ({a,d},∅)) ({1,4}, (∅, {a2,d1}))
6 ({2,4}, ({b,d}, {c})) ({1,3}, ({c}, {b,d1}))
7 ({1}, ({a,c}, {b,d})) ({2,4}, ({b}, {a2,c}))
8 ({2}, ({a,b,d}, {c})) ({3,4}, ({d2}, {a1,d1}))
9 ({3}, ({a,c,d}, {b})) ({1}, ({a1,c}, {a2,b,d1,d2}))
10 ({4}, ({b,d}, {a,c})) ({2}, ({a1b,d1}, {a2,c,d2}))
11 (∅, ({a,b,c,d}, {a,b,c,d})) ({3}, ({a2,c,d2}, {a1,b,d1}))
12 − ({4}, ({b,d2}, {a1,a2,c,d1}))
13 − (∅, ({a1,a2,b,c,d1,d2}, {a1,a2,b,c,d1,d2}))

  Jun Long et al.:  Influence of Attribute Granulation on Three-Way Concept Lattices 657

 



of  3WCA,  other  than  classical  FCA.  If  we  choose
classical  FCA,  some  interesting  patterns  cannot  be
obtained.  In Table  4,  we  collectively  list  the  formal
concepts  of Tables  1 and 2.  It  is  clear  that  carrying
analysis on the basis of 3WCA can present more details
than on the basis  of  classical  FCA. Actually,  as  three-
way  concepts  are  not  simply  the  union  of  concepts
derived  from  the  original  formal  contexts  and  their
complements, they can provide more embedded useful
patterns than separately considering them one after the
other. Hence, it is also known that 3WCA and classical
FCA  are  not  mutually  reducible.  Although  the
granularity  of  attributes  has  been  investigated  in
classical  FCA[26, 50, 51],  the  obtained  results  can  not  be
simply  extended  to  3WCA,  and  the  studies  in  the
settings  of  3WCA  are  still  open,  interesting,  and
important issues.

In  what  follows,  Theorem  1  indicates  the
relationships  among  three-way  concepts  while
adjusting the granularity of attributes.

∆ = {X| (X, (A, B)) ∈ OEL (K)} X ⊆G
X < ∆

Let .  For  and
, we set forth an object set,

 

t (X) = {Y |Y ∈ ∆, Y ⊂ X,

∀ Y′ ∈ ∆,Y′ ⊃ Y ⇒ Y ′ 1 X} (4)

X ⊆GMoreover, for , we define a cut object set,
 

p (X) =
{

X, X ∈ ∆;
t (X), otherwise (5)

C1,C2 ⊆ M C1 ⩽C2 (X, (A, B)) ∈
OEL (G, MC2 , IC2 ) Σ = {(Xk,

(Ak, Bk))|Xk ∈ p (X)}, ∪
(Xk , (Ak , Bk)) ∈ Σ Xk = X

Theorem 1　Let K= (G, M, I)  be a  formal  context,
and .  If ,  then  for 

, there exists unique concept 
 such  that .

(X, (A, B)) ∈ OEL (G, MC2 , IC2 )
X = ∅ X , ∅

A = {e1, e2, . . . , ep} B = {h1, h2, . . . , hq}

Proof Let .  The
claim  is  evident  if .  Suppose .  Put

 and ,  according

A B
e⃗r = {er1 , er2 , . . . , erm }

er ∈ A

h⃗s = {hs1 , hs2 , . . . , hsn }
hs ∈ B er j ∈ e⃗r

e∗r j
⊆ e∗r e∗r = e∗r1

∪ e∗r2
∪ · · ·∪ e∗rm

hs j ∈ h⃗s h∗s j
⊆ h∗s h∗s = h∗s1

∪h∗s2
∪ · · ·∪h∗sn

⟨e1r1
, . . . , eprp , h1s1

, . . . , hqsq ⟩
C1 A∪B

{e1r1
, e1r2

, . . . , eprp } = E
{h1s1
, h1s2

, . . . , hqsq } = F (Xk, (Ak, Bk)) =
(E∗∩F∗, ( (E∗∩F∗)∗, (E∗∩F∗)∗))

OEL (G, MC1 , IC1 )
E A F

B Xk ⊆ X

to  the  property  of  a  three-way  concept,  it  is  clear  that
the  attributes  contained  in  and  are  pairwise
disjoint. Denote by  the collection
of  all  attributes  which  refine  and  denote  by

 the  collection  of  all  attributes
which  refine .  Then,  for  any ,  we  have

 and .  Similarly,  for  any
,  we  have  and .

Let  be  a  possible  choice
of attributes in , which refine the attributes in .
For  convenience,  let  and

.  Then, 
 is  a  three-way

concept  of  generated  by  refined
attributes.  As  is  a  refinement  of  and  is  a
refinement of , it follows that .

x ∈ X x ∈ e∗r
r ∈ {1, 2, . . . , p} x ∈ h∗s s ∈ {1, 2, . . . , q}

e∗iri
h∗js j

ei h j

Xk x ∈ Xk

Xk

On one hand, if , then we have  for every
 and  for  every .

As  and  form two partitions of  and , there
must be at least one , such that . On the other
hand,  based  on  Eq.  (5)  and  the  structure  of  three-way
concept  lattices,  all  elements  of  are  unique.  In  all,
Theorem 1 is proved. ■

C1 ⩽C2

OEL (G,MC2 , IC2 )
OEL (G,MC1 , IC1 )

If ,  then  shifting  from  three-way  concept
lattice  to  three-way  concept  lattice

,  and  vice  versa,  are  called  zooming
in  and  zooming  out,  respectively.  In  the  subsequent
sections, we respectively describe a zoom-in algorithm
and a zoom-out algorithm in 3WCA.

4　Algorithm  for  Manipulating  Granularity
of Attributes in 3WCA

In  this  section,  we  present  zoom-in  and  zoom-out
algorithms  to  manipulate  the  granularity  level  of
attributes within the framework of 3WCA.

4.1　Zoom-in algorithm

Within  the  framework  of  3WCA,  the  zoom-in  is
performed  by  Algorithm  1.  Generally  speaking,  in
Algorithm 1, we traverse the three-way concept lattice
via the ascending order to the cardinalities of the extent
of  each  concept,  make  modifications,  and  at  the  same
time generate new concepts or not.

OEL (K)
It  is  clear  that  the  number  of  concepts  visited  in

Algorithm  1  is  the  number  of  concepts  of .
Besides, note that Algorithm 1 is a particular case, i.e.,
only  one  attribute  is  refined,  but  the  general  case  is
accessed via iterated applications of this  case.  In what

 

Table 4    Formal concepts of Tables 1 and 2.
Number Formal concept of Table 1 Formal concept of Table 2

1 ({1,2,3,4},∅) ({1,2,3,4},∅)
2 ({1,2,3}, {a}) ({1,2}, {a1})
3 ({2,3,4}, {d}) ({1,3}, {c})
4 ({1,3}, {a,c}) ({2,4}, {b})
5 ({2,3}, {a,d}) ({3,4}, {d2})
6 ({2,4}, {b,d}) ({1}, {a1,c})
7 ({2}, {a,b,d}) ({2}, {a1,b,d1})
8 ({3}, {a,c,d}) ({3}, {a2,c,d2})
9 (∅, {a,b,c,d}) ({4}, {b,d2})
10 − (∅, ({a1,a2,b,c,d1,d2})
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follows, we prove the correctness of Algorithm 1.
Theorem 2　Algorithm zoom-in is correct.

K K′

⟨⋗, ⋖, ∗, ∗⟩
⟨⋗′ , ⋖′ , ∗′ , ∗′⟩

Proof　To begin  with,  let  and  be  the  coarser
and  finer  formal  context,  respectively.  Moreover,
concept-forming  operators  denoted  by  and

.

∀ (X, (A, B)) ∈ OEL (K′) K′

(A, B) ( (A1−{g})∪ (
∪

gi∈α gi),
(B1−{g})∪ (

∪
g j∈β g j)) (A1, B1) K

α, β ⊆ δ
(A1, B1) K X1

g X
g

α β

X1∩ (
∩

gi∈α g∗i )

On  one  hand,  we  need  to  verify  that
 is a three-way concept of .

Obviously,  is  equal  to 
 for  some  intent  in ,

and .  Assume  the  corresponding  extent  to
 in  is .  As  the  only  change  made  to  the

context  is  the  refining  of  attribute ,  it  is  clear  that 
does  not  have  common  attribute  and  derives
commonly possessed positive and negative attributes in

 and ,  respectively.  Then,  we  can  conclude  that
 is  a  set  of  objects  which  possesses  an

(A1−{g})∪ (
∪

gi∈α gi) X1∩ (
∩

g j∈β g∗j)

(B1−{g})∪ (
∪

g j∈β g j)
(A1−{g})∪ (

∪
gi∈α gi)∩ (

∩
g j∈β g∗j)

(A1−{g})∪ (
∪

gi∈α gi)
(B1−{g})∪ (

∪
g j∈β g j) (A, B) = ( (A1−{g})∪

(
∪

gi∈α gi)∩ (
∩

g j∈β g∗j))
⋗′ K′

(A1, B1) (A, B)
( (A1−{g})∪ (

∪
gi∈α gi), (B1−{g})∪ (

∪
g j∈β g j))

(A1, B1) K α, β ⊆ δ
X1∩ (

∩
gi∈α g∗i )∩ (

∩
g j∈β g∗j)

(A1−{g})∪ (
∪

gi∈α gi) (B1−{g})∪
(
∪

g j∈β g j) X1∩ (
∩

gi∈α g∗i )∩ (
∩

g j∈α g∗j)

X = X1∩ (
∩

gi∈α g∗i )∩ (
∩

g j∈β g∗j) K′

attribute  set ,  and 
is  a  set  of  objects,  which  possesses  an  attribute  set

.  Then,  we  can  conclude  that
 is  a  set  of  objects

which  possesses  both  and
.  Ergo, 

 is  an  intent  of .  Let
 be  the  smallest  intent,  for  which  is

equal to 
for  some  intent  in  and .  Then,

 is  the  corresponding
biggest extent, which implies that any object possessed
attribute  sets  and 

 falls  into .  Thus,
 is an extent in .

K′ OEL (K′)
(X, (A, B)) K′

((A−α, B−β)⋖, (A−α, B−β)⋖⋗) (((A−α)∪{g}, B−β)⋖,
((A−α)∪{g}, B−β)⋖⋗) ((A−α, (B−β)∪{g})⋖,
(A−α, (B−β)∪{g})⋖⋗) OEL (K) α, β ⊆ δ

K′ OEL (K′)

On  the  other  hand,  we  verify  that  all  three-way
concepts in  are in . Based on Algorithm 1,
any three-way concept  of  is generated by

, 
,  or 
 in  with .

Hence, we can conclude that all three-way concepts in
 are in .
In all, Theorem 2 is proved. ■

K =
(G,M, I)

G
M

a b c d e

Example  1　 In Table  5,  formal  context 
 demonstrates five travelers and cities in which

they  booked  hotels.  Specifically,  is  an  object  set
consisted  of  five  travelers  and  is  an  attribute  set
consisted of five cities.  Furthermore, , , , ,  and 
denote  Changsha,  Wuhan,  Guangzhou,  Suzhou,  and
Shenzhen, respectively.

OEL (K)

({1, 3}, ({a, e}, {d}))

Figure  1 depicts  the  three-way  concept  lattice
, by which common interests of these travelers

can  be  analyzed.  For  instance,  concept
 manifests that both Travelers 1 and

3 want to visit Changsha and Shenzhen, and meanwhile
neither of them has an interest in Suzhou.

However,  as  there  are  three  regions  of  Wuhan,  it  is
necessary to get more details about their interests. After
 

K = (G, M, I)Table 5    Formal context  of Example 1.

Traveler
City

a b c d e

1 1 0 1 0 1
2 0 1 0 1 0
3 1 1 0 0 1
4 1 1 1 1 0
5 0 1 1 1 0

 

Ø

N
N//
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b1

b2

K′

({3, 5},
({b2}, {b1})) OEL (K′)

further  investigation,  two  regions  are  more  attractive
for  them,  i.e.,  Wuchang  and  Hankou,  denoted  by 
and  respectively. More concretely, Travelers 2 and 4
choose Wuchang, and Travelers 3 and 5 favor Hankou.
Then,  we  obtain  the  updated  formal  context  in
Table  6,  which  describes  the  refined  information.
Based  on  Algorithm  1,  we  obtain  the  updated  three-
way concept lattice depicted in Fig. 2, by which we can
derive  more  details  of  the  common  interests  of
travelers.  For  instance,  by  the  concept 

 of  shows  that  both  Travelers  3

and 5 want to visit  Hankou, and meanwhile neither of
them has an interest in Wuchang.

For the sake of better understanding of Algorithm 1,
we  list  the  sequence  of  the  visited  concepts  and  their
corresponding actions in Table 7.

4.2　Zoom-out algorithm

OEL (G, M, I) g δ = {gi ∈ M |
i ∈ N∗} OEL (K′)

δ

Correspondingly,  the  zoom-out  is  presented  in
Algorithm  2.  In  this  algorithm,  the  input  is

,  be  the  abstraction  of 
,  and  the  output  is  the  updated  after

abstracting .  Generally,  we  traverse  the  three-way
concept  lattice  via  the  descending  order  to  the
cardinalities  of  the  extent  of  each  concept,  and  at  the
same time generate new concepts when necessary.

OEL (G, M, I)

It  is  clear  that  the  number  of  concepts  visited  in
Algorithm  2  is  the  number  of  concepts  of

.  Besides,  note  that  Algorithm  2  is  a
particular  case,  i.e.,  several  related  attributes  are
upgraded to one coarser attribute,  but  the general  case

 

(12345, Ø, Ø)

(134, a, Ø) (2345, b, Ø)

(13, ae, d) (14, ac, Ø) (34, ab, Ø) (245, bd, e) (23, b, c)

(1, ace, bd) (3, abe, cd)

(Ø, abcde, abcde)

(45, bcd, e) (25, bd, ae)

(145, c, Ø)

(4, abcd, e) (5, bcd, ae) (2, bd, ace)

 
OEL (K) (245, bd, e)

({2, 4, 5}, ({b, d}, {e}))
Fig. 1    Three-way  concept  lattice  of  Example  1.  For  convenience,  as  an  example,  we  use  instead  of

.

 

K′Table 6    Updated formal context  of Example 1.

Traveler
City

a b1 b2 c d e

1 1 0 0 1 0 1
2 0 1 0 0 1 0
3 1 0 1 0 0 1
4 1 1 0 1 1 0
5 0 0 1 1 1 0

 

(12345, Ø, Ø)

(134, a, Ø) (245, d, e)

(35, b2, b1) (13, ae, b1d) (15, c, b1) (45, cd, e)

(3, ab2e, b1cd)

(Ø, ab1b2cde, ab1b2cde)

(145, c, Ø)

(1, ace, b1b2d)

(135, Ø, b1) (124, Ø, b2)

(14, ac, b2) (23, Ø, c) (25, d, ae) (24, b1d, b2e)

(5, b2cd, ab1e) (4, ab1cd, b2e) (2, b1d, ab2ce)

 
OEL (K′) (245, bd, e)

({2, 4, 5}, ({b, d}, {e}))
Fig. 2    Updated three-way concept lattice  of Example 1. For convenience, as an example, we use  instead
of .
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is accessed via iterated applications of this case.
Theorem 3　Algorithm zoom-out is correct.

(X, (A, B))Proof　Suppose  the  existing  concept  is ,
and  the  proof  can  be  separated  into  two  independent
halves.

gi ∈ A gi ∈ B
Consider  the  case  for  which  there  does  not  exist

 and .
X ⊈ g∗ X ⊈ g∗

(X, (A, B))
OEL (K′)

(a)  If  and ,  then  it  follows  that
 remains  unchanged,  and  is  a  concept  of

.
X ⊆ g∗ X g

(X, (A∪{g}, B))
OEL (K′)

X∩g∗ < OEL (G, M, I)
(X∩g∗, (A∪{g}, B)) OEL (K′)

(b)  If ,  then  obtains  a  coarser  attribute ,
which  follows  that  is  a  concept  of

. Besides, in line with the proof of Theorem 2,
we  can  prove  that  if ,  then

 is a concept of .
X ⊆ g∗ X
g (X, (A, B∪{g}))

OEL (K′)
X∩g∗ < OEL (G,

M, I) (X∩g∗, (A, B∪{g}))
OEL (K′)

(c)  If ,  then  obtains  a  negative  coarser
attribute ,  which  implies  that  is  a
concept of . Besides, in line with the proof of
Theorem  2,  we  can  prove  that  if 

,  then  is  a  concept  of
.

gi ∈ A
g j ∈ B

Consider  the  case  for  which  there  exists  or
.

There are four independent cases, and each case can
be proved analogously as Theorem 2, and thus we skip
here.

OEL (K)

OEL (K′)

In  addition,  by  considering  that  the  algorithm  visits
all  concepts  of  and  tries  all  possibilities  to
generate  a  new  concept,  we  can  conclude  that  all
concepts of  can be obtained.

In all, Theorem 3 is proved. ■
K = (G, M, I)

G
M

a b
c1 c2

OEL (K)
({4, 5}, ({a}, {b}))

Example 2　In Table 8,  demonstrates
five  high  school  students  and  their  interested  courses.
Specifically,  is  an  object  set  composed  of  five
students  and  is  an  attribute  set  composed  of  four
courses. Moreover,  refers to mathematics;  denotes
chemistry;  and  respectively stand for C and Java
programming. Their common interests can be analyzed
by  depicted  in Fig.  3.  For  instance,  concept

 implies  that  both  Students  4  and  5
favor chemistry, and meanwhile neither of them has an
interest in C or Java programming.

 

Table 7    Summary of zoom-in process of Example 1.
Number Visited concept Action

1 (∅, ({a,b,c,d,e}, {a,b,c,d,e})) (∅, ({a,b1,b2,c,d,e}, {a,b1,b2,c,d,e}))Obtain 
2 ({1}, ({a,c,e}, {b,d})) ({1}, ({a,c,e}, {b1,b2,d}))Obtain 
3 ({4}, ({a,b,c,d}, {e})) ({4}, ({a,b1,c,d}, {b2,e}))Obtain 
4 ({3}, ({a,b,e}, {c,d})) ({3}, ({a,b2,e}, {b1,c,d}))Obtain 
5 ({5}, ({b,c,d}, {a,e})) ({5}, ({b2,c,d}, {a,b1,e}))Obtain 
6 ({2}, ({b,d}, {a,c,e})) ({2}, ({b1,d}, {a,b2,c,e}))Obtain 
7 ({1,3}, ({a,e}, {d})) ({1,3}, ({a,e}, {b1,d}))Obtain 
8 ({1,4}, ({a,c},∅)) ({1,4}, ({a,c}, {b2}))Obtain 
9 ({3,4}, ({a,b},∅)) ({3,4}, ({a},∅))Obtain 
10 ({4,5}, ({b,c,d}, {e})) ({4,5}, ({c,d}, {e}))Obtain 
11 ({2,5}, ({b,d}, {a,e})) ({2,5}, ({d}, {a,e}))Obtain 
12 ({2,3}, ({b}, {c})) ({2,3}, (∅, {c}))Obtain 
13 ({2,4,5}, ({b,d}, {e})) ({2,4,5}, ({d}, {e})) ({2,4}, ({b1,d}, {b2,e}))Obtain  and 
14 ({1,3,4}, ({a},∅)) ({3,4}, ({a},∅))Unchanged, delete 
15 ({1,4,5}, ({c},∅)) ({1,5}, ({c}, {b1}))Unchanged, generate a concept 
16 ({2,3,4,5}, ({b},∅)) ({2,3,4,5}, (∅,∅)) ({3,5}, ({b2}, {b1}))Obtain  and 
17 ({1,2,3,4,5}, (∅,∅)) ({2,3,4,5}, (∅,∅)) ({1,3,5}, (∅, {b1})) ({1,2,4}, (∅, {b2}))Unchanged, delete , obtain , 

 

K = (G, M, I)Table 8    Formal context  of Example 2.

Student
Course

a b c1 c2

1 1 0 1 0

2 0 0 0 1

3 1 0 0 1

4 0 1 0 0

5 1 1 0 0

  Jun Long et al.:  Influence of Attribute Granulation on Three-Way Concept Lattices 661

 



K′

OEL (K′)

({4, 5}, ({b}, {c})) OEL (K′)

However, sometimes there is a need to learn who has
an  interest  in  computer  programming.  Then,  C  and
Java  programming  should  be  upgraded  to  computer
programming,  and  the  updated  formal  context  in
Table  9 is  obtained.  According  to  Algorithm  2,  we
obtain  the  updated  depicted  in Fig.  4,  by
which  we  can  analyze  the  common  interests  of  the
students  from  a  macroscopic  viewpoint.  For  instance,
concept  of  shows that  both
Students  4  and  5  favor  chemistry,  and  meanwhile
neither of them like computer programming.

For the sake of better understanding of Algorithm 2,
we  list  the  sequence  of  the  visited  concepts  and  their
corresponding actions in Table 10.

5　Experimental Evaluation

This  section  demonstrates  the  influence  of  attribute
granulation  on  three-way  concept  lattices  via
experiments.  Besides,  we  compare  these  three-way
concept  lattices  with  formal  concept  lattices.  All
experiments  were  conducted  on  a  single  Intel  Xeon
Silver 4210 CPU@2.2 GHz with 64 GB RAM.

In  order  to  effectively  test  the  influence  of  attribute
granulation  on  three-way  and  formal  concept  lattices,
we use artificial data sets in the experiments, by which

we can control the size of formal contexts. In fact, the
zoom-in  algorithm  has  been  already  proposed  by
Belohlavek[26],  we  can  directly  use  it  in  our
experiments.

The general process is as follows.
K × ×

× ×
1 0

Step  1: Initialize  formal  context  in  6 15,  9 25,
12 35,  and  15 45  matrices  with  values  randomly
from  and .

OEL (K)
L (K)

Step  2: Respectively  build  and  formal
concept  lattice ,  and  track  their  number  of
concepts.

OEL (K) L (K)
Step 3: Respectively perform Algorithm 2 to update

 and .
Step  4: Repeat  Step  3  and  track  the  number  of

concepts in each stage.
Concretely,  we  generate  4  Groups  of  datasets,  each

Group consists of 3 datasets in the same size. Datasets
1−3  possess  6  objects  and  15  attributes  in  Group  1.
Datasets 4−6 have 9 objects and 25 attributes in Group
2. Datasets 7−9 include 12 objects and 35 attributes in
Group 3. And Group 4 consists of Datasets 10−12 with
15 objects and 45 attributes.

Table 11 and Fig. 5 record our experimental results.
In Fig.  5,  the  abscissa  demonstrates  the  number  of
attributes  that  have  been  split,  and  the  ordinate
demonstrates the number of concepts.

OEL (K)

L (K)

It is manifest that repeatedly performing Algorithm 2
on ,  the  number  of  three-way  concepts  keeps
increasing,  and  the  larger  the  number  of  objects,  the
more  significant  the  growth  trend  is.  By  contrast,
repeatedly  performing  Algorithm  2  on ,  the
number  of  formal  concepts  keeps  decreasing,  and  the
larger  the  number  of  objects,  the  more  significant  the
decrease trend is.

The above findings can be explained as follows. For

 

(12345, Ø, Ø)

(2345, Ø, c1)

(23, c2, bc1) (24, Ø, ac1) (13, a, b) (35, a, c1)

(2, c2, abc1)

(Ø, abc1c2, abc1c2)

(145, Ø, c2)

(3, ac2, bc1)

(135, Ø, b) (135, a, Ø)

(45, b, c1c2) (15, a, c2)

(4, b, ac1c2) (1, ac1, bc2) (5, ab, c1c2)

 
OEL (K) (245, bd, e)

({2, 4, 5}, ({b, d}, {e}))
Fig. 3    Three-way  concept  lattice  of  Example  2.  For  convenience,  as  an  example,  we  use  instead  of

.

 

K′Table 9    Updated formal context  of Example 2.

Student
Course

a b c

1 1 0 1

2 0 0 1

3 1 0 1

4 0 1 0

5 1 1 0
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K = (G, M, I) R =
|{I(x, y) | I(x, y) , 0}|

|G| × |M|
K

R

,  fill rate  can be

defined  to  measure  the  sparsity  of .  Studies  have
shown  that  the  smaller ,  the  fewer  the  formal

R

concepts  a  formal  context  has[52].  As  repeatedly
splitting  attributes  will  continually  reduce  the  fill  rate

, the number of formal concepts will keep decreasing.
R K

R′
On  the  other  hand,  when  the  fill  rate  of 

decreases, the fill rate  of the complement increases.
As  a  three-way  concept  lattice  embodies  the
information  of  both  original  context  and  complement,
the number of three-way concepts will keep increasing.

The above findings also show that although there are
relationships  between  three-way  and  classical  concept
lattices,  there  still  exist  many  differences.  In  other
words,  three-way  concept  lattice  has  unique  features,
and is worthy of our in-depth study.

6　Conclusion

In this paper, we investigate the problem of granularity
of  attributes  within  the  framework  of  3WCA,  which
enables  us  to  consider  both  positive  and  negative
attributes  altogether.  Specifically,  we  present  a  zoom-
in algorithm to get more particular three-way concepts,
and  a  zoom-out  algorithm  to  derive  more  abstract
three-way  concepts,  which  also  reveal  that  the
granularity  of  attributes  influences  the  structure  of
three-way concepts extracted from data.

By comparing the algorithms proposed in this  paper
and the ones for classical FCA, we can see that within
the  framework  of  3WCA,  both  positive  and  negative
attributes  are  simultaneously  considered,  which
provides deeper insight into the original formal context
with more detailed information. In addition, if we only
consider positive attributes, the proposed approach will
degrade  to  fit  the  classical  FCA.  In  other  words,  the
methods  already  proposed  for  classical  FCA  can  be
regarded  as  a  particular  case  of  the  ones  proposed  for
3WCA.

For this topic,  although some important results  have
been obtained, there are some challenges. For example,

 

(12345, Ø, Ø)

(Ø, abc, abc)

(123, c, b)

(13, ac, b) (5, ab, c) (2, c, ab)

(24, Ø, a)(135, a, Ø) (45, b, c)

(4, b, ac)

 
OEL (K′)

(245, bd, e) ({2, 4, 5}, ({b, d}, {e}))

Fig. 4    Updated  three-way  concept  lattice  of
Example  2.  For  convenience,  as  an  example,  we  use

 instead of .
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automatic  detection  of  granularity  levels  to  reveal
interesting  patterns  via  three-way  concept  lattices  is  a
promising  study.  Besides,  calculating  concept  lattices
is an NP-hard problem, and the execution time exhibits
exponential  increase  with  the  addition of  cases.  It  is  a
challenge to introduce the concept reduction algorithm
to  obtain  the  number  of  concepts  after  attribute
granulation  efficiently  in  the  big  data  application

scenarios.  Additionally,  the  extension  of  the  proposed
method  to  cater  data  with  multi-valued  attributes  in
machine learning[53] and medical big data analytics[54],
is  another  interesting  topic.  Therefore,  more  efforts
should be made on this topic in the future.
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Table 10    Summary of zoom-out process of Example 2.
Number Visited concept Action

1 ({1,2,3,4,5}, (∅,∅)) ({1,2,3,4,5}, (∅,∅)) OEL (K′)Add  into 
2 ({2,3,4,5}, (∅, {c1})) Do nothing

3 ({1,2,3}, (∅, {b})) ({1,2,3}, ({c}, {b})) OEL (K′)Add  into 
4 ({1,4,5}, (∅, {c2})) Do nothing

5 ({1,3,5}, ({a},∅)) ({1,3,5}, ({a},∅)) OEL (K′)Add  into 
6 ({2,3}, ({c2}, {b,c1})) Do nothing

7 ({2,4}, (∅, {a,c1})) ({2,4}, (∅, {a})) OEL (K′)Add  into 
8 ({1,3}, ({a}, {b})) ({1,3}, ({a,c}, {b})) OEL (K′)Add  into 
9 ({4,5}, ({b}, {c1,c2})) ({4,5}, ({b}, {c})) OEL (K′)Add  into 
10 ({3,5}, ({a}, {c1})) Do nothing

11 ({1,5}, ({a}, {c2})) Do nothing

12 ({2}, ({c2}, {a,b,c1})) ({2}, ({c}, {a,b})) OEL (K′)Add  into 
13 ({3}, ({a,c2}, {b,c1})) Do nothing

14 ({4}, ({b}, {a,c1,c2})) ({4}, ({b}, {a,c})) OEL (K′)Add  into 
15 ({1}, ({a,c1}, {b,c2})) Do nothing

16 ({5}, ({a,b}, {c1,c2})) ({5}, ({a,b}, {c})) OEL (K′)Add  into 
17 (∅, ({a,b,c1,c2}, {a,b,c1,c2})) (∅, ({a,b,c}, {a,b,c})) OEL (K′)Add  into 

 

Table 11    Number of split attributes of formal and three-way concepts.

Dataset
Number of split attributes of formal concepts Number of split attributes of three-way concepts

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

1 23 25 20 15 – – – – – – 42 60 64 64 – – – – – –

2 28 25 20 16 – – – – – – 43 54 56 58 – – – – – –

3 33 30 28 24 – – – – – – 49 54 57 64 – – – – – –

4 90 89 75 62 52 49 – – – – 227 281 317 380 458 476 – – – –

5 141 110 92 77 62 50 – – – – 208 247 336 375 424 468 – – – –

6 157 126 99 83 79 68 – – – – 219 290 345 372 424 462 – – – –

7 342 305 238 198 177 146 124 126 – – 783 1314 1749 2322 2840 3137 3274 3454 – –

8 475 381 310 248 216 172 143 128 – – 830 943 1321 1621 2113 2443 2629 2953 – –

9 575 515 423 332 265 218 171 155 – – 923 1197 1437 1813 2180 2549 2748 2800 – –

10 953 853 661 527 455 383 334 301 282 242 2856 4339 5246 7302 9540 12 293 14 335 15 788 19 990 22 093

11 1135 911 772 692 588 498 405 346 316 271 3006 3819 5177 6980 9560 12 280 14 097 16 527 18 489 20 495

12 1302 1094 934 833 660 568 435 354 320 279 2869 4126 6255 9003 10 418 13 090 15 065 16 194 17 885 19 449
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Fig. 5    Experimental results with Datasets 1−12.
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