
 

House Price Prediction: A Multi-Source Data Fusion Perspective
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Abstract: House price prediction is of utmost importance in forecasting residential property prices, particularly

as the demand for high-quality housing continues to rise. Accurate predictions have implications for real estate

investors, financial institutions, urban planners, and policymakers. However, accurately predicting house prices

is  challenging  due  to  the  complex  interplay  of  various  influencing  factors.  Previous  studies  have  primarily

focused on basic property information, leaving room for further exploration of more intricate features, such as

amenities,  traffic,  and  social  sentiments  in  the  surrounding  environment.  In  this  paper,  we  propose  a  novel

approach  to  house  price  prediction  from  a  multi-source  data  fusion  perspective.  Our  methodology  involves

analyzing house characteristics and incorporating factors from diverse aspects, including amenities, traffic, and

emotions.  We  validate  our  approach  using  a  dataset  of 28 550 real-world  transactions  in  Beijing,  China,

providing  a  comprehensive  analysis  of  the  drivers  influencing  house  prices.  By  adopting  a  multi-source  data

fusion perspective and considering a wide range of influential factors, our approach offers valuable insights into

house  price  prediction.  The  findings  from  this  study  possess  the  capability  to  improve  the  accuracy  and

effectiveness of house price prediction models, benefiting stakeholders in the real estate market.
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1　Introduction

House  price  prediction  plays  a  crucial  role  in  the
research  area  focused  on  forecasting  residential
property prices. As economic development progresses,
the  demand  for  higher  quality  housing  has  increased,
underscoring the growing importance of accurate house
price  prediction.  The  implications  of  accurately
predicting house prices extend to various stakeholders,
including  real  estate  investors,  financial  institutions,
urban planners, and policymakers. Accurate predictions

not  only  contribute  to  market  surveillance,  but  also
empower sellers to determine optimal pricing strategies
and  assist  potential  buyers  in  making  well-informed
decisions.

However, accurately predicting house prices poses a
considerable challenge due to the complex interplay of
factors that influence them. The multifaceted nature of
these  factors  makes  it  difficult  to  comprehensively
measure  and  precisely  predict  house  prices.
Consequently, achieving comprehensive measurements
and  accurate  predictions  in  house  price  remains  a
formidable task.

Previous  studies  have  predominantly  focused  on
basic  property  information,  such  as  the  quantity  of
rooms  and  the  total  floor  area,  to  predict  house
prices[1]. However, more intricate factors, including the
surrounding  amenities,  traffic  conditions,  and  social
sentiments,  have  received  limited  attention,  leaving
room for further exploration and research.

In this paper, we present house price prediction from
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a  multi-source  data  fusion  perspective.  Our
methodology  involves  studying  the  characteristics  of
the  house,  as  well  as  considering  factors  such  as
amenities,  traffic,  and  emotions  in  the  surrounding
environment,  as Fig.  1 shows.  To  validate  our
approach, we conduct an analysis of 28 550 real-world
transactions  in  Beijing,  China,  providing  a
comprehensive  analysis  of  the  drivers  influencing
house  prices.  While  Zhao  et  al.[2] laid  the  foundation
for  multi-source  data  fusion  in  house  price  prediction,
we  delve  deeper  into  studying  house  features  and
explores  additional  predictive  methods,  resulting  in  a
more  comprehensive  solution  for  accurate  house  price
prediction.

The  primary  contributions  of  our  research  are
outlined below:

●  The  examination  of  the  correlation  between
various house features and their respective influence on
house  prices.  We  rank  these  features  based  on  their
importance, providing valuable insights into the factors
that significantly affect house prices.

●  The  precision  evaluations  of  different  machine
learning models in the task of multi-source data fusion
for  house  price  prediction.  We  compare  and  analyze
the  results  obtained  from  support  vector  machines,
linear  regression,  XGBoost  regression,  and  random
forest regression. Additionally, we make an attempt to
explore different variants of multi-layer perceptron and
investigate their performance in this particular task.

●  The  ablation  study  to  highlight  the  unexpected
economic  influence  of  different  aspects,  including
amenities, traffic, and emotions, on house prices.

By  adopting  a  multi-source  data  fusion  perspective
and considering a wide range of influential factors, our
approach  provides  valuable  insights  into  house  price
prediction.  The  findings  from  this  study  have  the
potential  to  enhance  the  accuracy and effectiveness  of
house  price  prediction  models,  ultimately  benefiting
various stakeholders in the real estate market.

The subsequent sections of this paper will delve into
the related work (Section 2), methodology (Section 3),
experiments  (Section  4),  and  conclusions  (Section  5),
further  elucidating  our  approach  and  presenting  the
implications of our findings.

2　Related Work

The prediction of house prices is frequently tackled as
the  assessment  of  a  diverse  commodity,  distinguished
by  a  blend  of  utility-bearing  attributes[3, 4].
Consequently,  the monetary value assigned to a house
can  be  perceived  as  a  numerical  depiction  of  a
collection  of  these  attributes.  Extensive  research
endeavors  have  been  undertaken  in  the  past  few
decades to examine the interconnection between house
prices and their  corresponding attributes.  For instance,
Król[5] explored  the  relationship  between  apartment
prices  and  noteworthy  attributes  through  the
application  of  hedonic  analysis  in  Poland.  In  Türkiye,
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Fig. 1    Framework of the multi-source data fusion for house price prediction.
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Refs. [6, 7] examined the positive and negative effects
of  different  house  features  on  house  values.
Kryvobokov  and  Wilhelmsson[8] ascertained  the
relative  significance  weights  of  location  attributes
influencing  apartment  market  values  in  Donetsk,
Ukraine.  Ottensmann  et  al.[9] contrasted  location
metrics,  including  distances  and  travel  time  to  the
Central  Business  District  (CBD)  and  multiple
employment  centers,  in  order  to  comprehend  the
influence  of  residential  location  on  house  prices  in
Indianapolis,  Indiana,  USA.  Ozalp  and  Akinci[10]

identified  housing  and  environmental  attributes  that
impact  residential  real  estate  sale  prices  in  Artvin,
Türkiye. These investigations, among numerous others,
have  delved  into  the  connection  between  house  prices
and diverse attributes, culminating in the advancement
of  house  price  prediction  methodologies  that  estimate
prices based on inputted attributes.

Existing  house  price  prediction  methods,  based  on
their  underlying  methodologies,  estimate  house  prices
by  considering  a  variety  of  constituent  attributes  and
are  typically  applied  directly  to  the  entire  dataset.
Several  studies  have  followed  this  approach.  For
instance,  Gu  et  al.[11] harnessed  Support  Vector
Machines (SVM)[12] to predict house prices, exhibiting
promising  outcomes  using  cases  from  China.  Wang
et  al.[13] introduced  a  novel  model  based  on  SVM  to
predict  average  house  prices  across  different  years,
showcasing  the  effective  utilization  of  Particle  Swarm
Optimization  (PSO)  to  determine  SVM  parameters.
Park  and  Bae[14] devised  a  general  prediction  model
utilizing  machine  learning  techniques,  such  as
RIPPER,  Naive  Bayesian,  and  AdaBoost,  comparing
their classification accuracy performance.

Nevertheless,  these  models  frequently  neglect  the
impact  of  house  location  and  its  surroundings  on
prices,  resulting  in  suboptimal  prediction  performance
as the dataset size expands. Recent studies have shifted
towards  local  perspectives  in  house  price  prediction,
serving  as  viable  alternatives  and  extensions  to
traditional modeling approaches. Among these studies,
Bourassa  et  al.[15] compared  various  methods  to
incorporate  spatial  dependence  into  house  price
prediction.  Case  et  al.[16] emphasized  the  significance
of  incorporating  transactions  from  nearest  neighbors
for accurate predictions. Gerek[17] devised two adaptive
approaches,  considering  grid  partitioning  and  sub-
clustering. Montero et al.[18] explored model variations

to  capture  spatial  effects  in  house  prices,  proposing  a
mixed model that accounted for spatial autocorrelation,
spatial  heterogeneity,  and  nonlinearities.  The  findings
highlighted  the  effectiveness  of  nonlinear  models  in
house price prediction.

While  some  recent  studies  incorporate  factors,  such
as  infrastructure[19] and  neighborhoods[20–25],  they  rely
on  limited  factors  and  overlook  the  intricate
complexities  associated  with  a  multi-source  data
model.

Despite  the  extensive  research  on  the  house  price
prediction  problem,  our  work  diverges  from  most
existing  studies  in  several  aspects.  Firstly,  our  house
dataset[2], as illustrated in Table 1, encompasses a more
comprehensive range of  transaction records  and house
attributes compared to the datasets utilized in previous
studies.  This  enables  us  to  conduct  a  more  thorough
exploration of the impact of various attributes on house
prices  and  enhances  our  understanding  of  the
prediction problem. Secondly, we approach house price
prediction  from a  unique  perspective  by  incorporating
multi-source  data  fusion  techniques.  Through  this
approach,  we  have  made  a  discovery,  revealing  that
different  features  from  diverse  perspectives,  such  as
amenities, traffic, and emotions[2], unexpectedly exert a
socioeconomic  influence  on  house  prices.  This  novel
finding adds  a  new dimension to  the  understanding of
the factors driving house price dynamics.

3　Methodology

In  accordance  with  the  findings  of  PATE[2],  our
research aims to provide an in-depth analysis of multi-
source data and its application in accurately predicting
house  prices  per  square  meter.  To  achieve  this,  we
commence  with  a  comprehensive  data  collection  and
pre-processing  phase,  as  outlined  in  Section  3.1.
Subsequently,  we  extract  27  distinct  features  from the
raw  dataset,  followed  by  the  computation  of  feature
correlations,  which  are  detailed  in  Section  3.3.
Furthermore, we conduct a detailed examination of the
significance of each feature in relation to house prices,
as  documented  in  Section  3.4.  Finally,  we  employ  a
range  of  diverse  methods  for  house  price  prediction,
including  SVM[12],  linear  regression[30],  XGBoost[31],
random  forest[32],  and  Multi-Layer  Perceptron
(MLP)[33], as elucidated in Section 3.5.

It  is  important  to  emphasize  that  our  primary
objective  is  to  explore  the  potential  of  data  fusion  in
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predicting  house  prices  by  integrating  various  factors
such as  property characteristics,  amenities,  traffic,  and
social  emotions.  Rather  than  introducing  novel
prediction  techniques,  our  focus  lies  in  assessing  the
efficacy and advantages of data fusion. As exemplified
in  previous  studies  that  have  employed  multi-source
data  for  house  price  prediction[2, 25],  we  adopt  well-
established  prediction  models.  Through  the
experimental  results  presented  in  Section  4,  we
demonstrate that several of these methods have already
achieved  satisfactory  performance  and  provided  a
comprehensive  evaluation  of  the  impact  of  different
factors derived from multi-source data on house prices.

3.1　Data collection and pre-processing

To  facilitate  our  house  price  prediction  task  from  a
multi-source  data  fusion  perspective,  we  undertake
comprehensive  data  collection  and  pre-processing
procedures.  This  subsection  presents  the  various  steps
involved  in  acquiring  and  preparing  the  data  for
analysis.
3.1.1　Property data collection
We  initiate  the  data  collection  process  by  sourcing
house  transaction  data  from  online  platforms  using
Python  web  scraping  techniques.  We  utilize  the
Requests  library  in  Python  to  implement  HTTP
requests  and access real  estate  websites  to retrieve the
HTML  content  of  the  property  details  pages.  By

analyzing  the  HTML  structure  of  these  pages,  we
determine  the  specific  locations  from which to  extract
the  relevant  information.  For  each  house  transaction,
we  extract  pertinent  features  that  reflect  the
fundamental  characteristics  of  the  properties,  such  as
the  availability  of  elevators  and  the  number  of
bathrooms.  Furthermore,  we  employ  advanced
geocoding  techniques  from  Baidu  Maps  to  accurately
derive  and  store  the  geographic  coordinates  for  each
property  based  on  the  provided  address.  Overall,  by
collecting data from diverse online sources, we amass a
dataset  comprising 28 550 house  transactions[34],  each
accompanied  by  its  corresponding  basic  property
features.
3.1.2　Amenities extraction
Considering  the  large  number  of  properties  in  our
dataset, storing detailed information such as names and
addresses  of  nearby  facilities  after  web  scraping
requires significant storage space. Therefore, we retain
only  the  counts  and  mean  distances  of  amenities  for
statistical analysis. Our web scraping strategy involves
iterating  over  the  existing  real  estate  data  in  the
database and using the latitude and longitude values as
parameters  to  request  web  services.  We  retrieve
information  on  surrounding  facilities  within  a  one-
kilometer  radius  of  each  property,  leveraging  the
geographical  coordinates  obtained  earlier  and  the
capabilities  of  Baidu  Maps.  These  amenities  are

 

Table 1    Comparisons with prior studies on house price prediction, our research stands out in terms of the comprehensiveness
of our multi-source data and features.

Reference
⩾

Number of data
(  10 000)

Property Amenity
Traffic Emotion

Basic Info Geo-Info Transport Education Hospital Shop Tourism
[3] ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘
[5] ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[6] ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘
[7] ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[8] ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘
[9] ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘
[10] ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘
[14] ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘
[15] ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[16] ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[18] ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[26] ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘
[27] ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘
[28] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘
[29] ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
Ours ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

    606 Big Data Mining and Analytics, September 2024, 7(3): 603−620

 



classified  into  five  distinct  categories:  Transportation,
tourist  sites,  educational  establishments,  healthcare
centers,  and dining establishments.  As part  of  the pre-
processing stage, we compute two key features for each
property:  The  overall  count  and  the  mean  distance  to
each  amenity  type.  These  features  provide  valuable
information regarding the availability and proximity of
amenities in the vicinity of the properties.
3.1.3　Traffic data acquisition
To  incorporate  the  impact  of  transportation  efficiency
on  house  prices,  we  leverage  Baidu  Maps  to  capture
detailed  traffic  flow  data  around  each  property.  We
collect  granular  traffic  speed  data  at  five-minute
intervals  throughout  the day,  from 6 a.m. to midnight.
Processing  this  data  involves  calculating  the  average
traffic  speed  metric  for  each  property,  which
encapsulates  the  transportation  dynamics  in  the
vicinity.  This  feature  provides  a  quantitative  indicator
of the accessibility and convenience associated with the
location[35, 36].
3.1.4　Emotional sentiment analysis
In  order  to  incorporate  the  emotional  aspect  into  our
predictive  model,  we  acquire  microblog  posts.
Following  the  social  sentiment  analysis  method
proposed  by  Fan  et  al.[37],  we  analyze  the  emotional
content  of  each  post  and  categorize  them  into  five
distinct  emotional  states:  anger,  dislike,  happiness,
sadness,  and  fear.  For  each  property,  we  compute  the
distribution  of  these  emotional  sentiments,  thereby
deriving  a  set  of  features  that  reflect  the  emotional
ambiance  associated  with  it.  This  innovative  approach
enables us to integrate a layer of emotional intelligence
into  our  dataset,  offering  a  more  comprehensive
perspective on the factors influencing house prices.

3.2　Feature selection

In our comprehensive research endeavor, we diligently
collect  and  preprocess  a  vast  amount  of  data  from
multiple sources, resulting in the extraction of a total of
27  features.  These  features  encompass  various  crucial
aspects that play a significant role in determining house
prices. We include detailed information, notations, and
descriptions in Table 2 to provide a clear understanding
of these features.

Our feature selection process meticulously integrates
a  spectrum  of  factors  pivotal  to  determining  house
prices.  It  spans  essential  property  attributes,  such  as
bedroom count, bathroom count, and elevator presence,

alongside  proximity  to  key  amenities  like
transportation,  educational  institutions,  healthcare
centers,  dining  options,  and  tourist  attractions,
acknowledging  their  critical  role  in  enhancing  a
property’s  desirability  and  convenience.  Additionally,
leveraging Baidu Maps, we assess traffic dynamics by
monitoring  average  traffic  speeds,  acknowledging  that
superior  transportation  links  can  significantly  elevate
property values. Furthermore, to enrich our model with
a  nuanced  perspective,  we  analyze  emotional
sentiments  from  microblog  posts,  categorizing  them
into  emotions,  such  as  anger,  dislike,  happiness,
sadness,  and  fear,  thereby  incorporating  the  emotional
ambiance  into  our  assessment  of  factors  influencing
house  prices.  This  holistic  approach  ensures  a
comprehensive analysis of both tangible and intangible
elements that affect property valuations.

y xi

i = 0, 1, . . . , 25

As  our  primary  objective  is  to  accurately  predict
house  prices,  we  designate  the  feature “Price” (as
depicted in Table 2) as the dependent variable, denoted
by . The remaining features, represented as , where

,  are  treated  as  independent  variables.
Each  of  these  independent  variables  encompasses
valuable  information  that  contributes  to  the  predictive
power  of  our  model.  By  incorporating  this  rich  set  of
features,  we  aim  to  develop  a  robust  and  accurate
predictive model for house prices.

3.3　Feature correlation

rpq

p
q

Understanding  the  relationships  between  different
features  is  crucial  in  our  analysis.  We  employ  the
Pearson’s  correlation  coefficient,  denoted  as ,  to
quantify  the  correlation  between  two  features  and

[38]. The coefficient is calculated as follows:
 

rpq =

n∑
j=1

(p j− p)(q j−q)√
n∑

j=1
(p j− p)2

√
n∑

j=1
(q j−q)2

(1)

n
p q p j

q j p
p = 1

n
∑n

j=1 p j q

where  represents  the  sample  size.  The  individual
sample  points  of  features  and  are  denoted  as 
and ,  respectively.  The sample mean  is  calculated
as , and a similar calculation is for .

The Pearson’s correlation coefficient ranges between
−1 and 1. A value in proximity to 1 signifies the strong
positive correlation between the features, while a value
near −1  suggests  the  strong  negative  correlation,
implying that a feature is more “opposite” in nature. A
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value close to 0 denotes the weak correlation between
the features.

3.4　Feature importance

The  concept  of  feature  importance  is  crucial  in
evaluating  the  usefulness  and  value  of  every  attribute
in  the  decision  tree  construction.  The  frequency  with
which  an  attribute  is  employed  in  making  pivotal
decisions  within  decision  trees  directly  influences  its
relative  significance.  By  explicitly  estimating  the
importance  of  different  features,  we  can  rank  and
compare them.

To estimate the importance of features in the context
of predicting house prices, we utilize the random forest
library in Python.  This approach allows us to evaluate
the comparative significance of every feature and gain
insights into their contributions to the predictive model.

3.5　Prediction model

In our study, our choice of machine learning models is
carefully  curated  to  encompass  a  diverse  array  of
algorithms,  each  renowned  for  its  strengths  in
predictive  analytics  within  the  domain  of  house  price
forecasting. Specifically, we employ SVM (we employ
four  distinct  machine  learning  methods:  SVM)[12],
linear  regression[30],  XGBoost[31],  and  random
forest[32].  This selection is substantiated by a thorough
review  of  existing  literature[2, 25, 39],  where  these
models  have  been  identified  for  their  high  precision
and reliability in the prediction of housing prices. Each
model’s  unique  capabilities—ranging  from  SVM’s
proficiency  in  modeling  complex,  non-linear
relationships, linear regression’s transparency and ease
of  interpretation,  XGBoost’s  exceptional  handling  of

 

Table 2    Features collected and extracted from multiple sources for house price prediction, along with descriptions[2].
Category Feature Description

Property

Year Construction year of the building
Elvt Presence of an elevator in the building

RmNum Number of bedrooms in the house
HllNum Number of living and dining rooms in the house
KchNum Number of kitchens in the house
BthNum Number of bathrooms in the house

Lat Latitude coordinate of the house
Lng Longitude coordinate of the house

Amenity

TspNum Number of surrounding transportation infrastructures
TspDst Average distance to surrounding transportation infrastructure
AtrNum Number of surrounding tourist attractions
AtrDst Average distance to surrounding tourist attractions

EdcNum Number of surrounding education and training institutions
EdcDst Average distance to education and training institutions

HthNum Number of surrounding healthcare infrastructures
HthDst Average distance to surrounding healthcare infrastructure
RstNum Number of surrounding restaurants
RstDst Average distance to surrounding restaurants
RtlNum Number of surrounding retail goods and services
RtlDst Average distance to surrounding retail goods and services

Traffic TrfV Average value of daily traffic speeds

Emotion

AgrPct Percentage of anger in all emotions
DstPct Percentage of detestation in all emotions
HppPct Percentage of happiness in all emotions
SadPct Percentage of sadness in all emotions
FeaPct Percentage of fear in all emotions

Price Price Price per square meter of the house in Renminbi (RMB)
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varied  data  types  and  structures,  to  random  forest’s
robustness  against  overfitting  through  its  ensemble
approach—collectively  contribute  to  a  comprehensive
analytical framework.

In  addition  to  these  traditional  machine  learning
models,  we  delve  into  the  realm  of  deep  learning  by
experimenting with MLP of varying architectures. This
exploration  is  motivated  by  the  deep  learning
methodology’s potential for capturing intricate patterns
in  large-scale  data.  For  the  MLP  configuration,  given
the  dataset  includes  27  features,  the  initial  layer  is
designed with 32 neurons. This design strategy aims to
expand  the  dimensionality  from  the  original  feature
space  to  a  more  complex  representation,  potentially
uncovering  deeper  relationships  within  the  data.
Subsequent  layers  are  configured  to  either  expand  or
contract  in  size,  adhering  to  a  strategy  of  doubling  or
halving  the  neuron  count,  with  the  centerpiece  layer
being  the  most  expansive.  This  architectural  design
facilitates  a  deep  and  nuanced  processing  of  features
through  the  network,  allowing  for  a  sophisticated
synthesis of information.

As  a  practical  illustration,  our  three-layer  MLP
model  adopts  a  configuration  of “27-32-16-8-1”,
signifying the progression from the input layer, through
intermediate layers, and culminating in the output layer
for price prediction. In contrast, a more complex, five-
layer  model  is  structured  as “27-32-64-32-16-8-1”,
showcasing an initial expansion followed by a gradual
contraction,  mirroring  the  network’s  attempt  to  distill
the most salient features for accurate price estimation.

These  configurations  reflect  a  deliberate  effort  to
harness the multifaceted nature of  our dataset,  derived
from  multiple  sources,  for  the  prediction  of  house
prices.  By  integrating  traditional  machine  learning
models  with  deep  learning  architectures,  we  aim  to
leverage  the  unique  advantages  of  each  approach,
thereby  establishing  a  robust  and  versatile  predictive
model.  This  meticulous  approach  to  model  selection
and  configuration  underlines  our  commitment  to
advancing  the  predictive  accuracy  and  interpretability
of  house  price  forecasting  models,  ensuring  they  are
well-equipped to navigate the complexities inherent in
real estate data.

3.6　Evaluation

R2
For  the  prediction  accuracy  measurement,  five
evaluation  metrics  are  employed:  R-squared  ( ),

R2adjusted ,  Mean  Absolute  Error  (MAE),  Mean
Squared  Error  (MSE),  and  Root  Mean  Squared  Error
(RMSE).  Those  metrics  offer  comprehensive  insights
into the effectiveness of the models.

The formulas for these metrics are as follows:
 

R2 = 1−

n∑
j=1

(y j− ŷ j)2

n∑
j=1

(y j− y)2
(2)

 

Adjusted R2 = 1−
[
(1−R2)× (n−1)

n− k−1

]
(3)

 

MAE =

n∑
j=1
|y j− ŷ j|

n
(4)

 

MSE =

n∑
j=1

(y j− ŷ j)2

n
(5)

 

RMSE =

√√√√√ n∑
j=1

(y j− ŷ j)2

n
(6)

y j

ŷ j

y
k

The  actual  values  of  the  dependent  variable  and  their
corresponding  predicted  values  are  denoted  by  and

,  respectively.  The  mean  value  of  all  the  observed
dependent variable values is represented by . The term

 denotes  the  count  of  independent  variables,  except
for  the constant  term. These evaluation metrics enable
us  to  assess  the  accuracy  and  performance  of  our
prediction models.

4　Experiment

4.1　Feature distribution

In Fig.  2,  the  multi-source  features  are  represented
using  boxplots,  providing  a  visual  depiction  of  their
distributions.  To  further  examine  the  distributions  of
the  multi-source  features, Fig.  3 presents  histograms.
The  histograms  reveal  certain  characteristics  of  the
features. Notably, features, such as Price and Year,
exhibit highly skewed distributions. On the other hand,
features like EdcNum and EdcDst appear to follow a
normal distribution, while other features show either a
normal  or  bimodal  distribution  of  data,  except  for
Elvt, RmNum, KchNum,  and BthNum,  which  are
discrete variables.
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4.2　Feature correlation

|r|
According  to Fig.  4,  the  absolute  value  of  the
correlation  coefficient  ( )  between Price and  other
features lies within the interval of [0, 0.5], indicating a
weak linear correlation. This implies that relying solely
on  one  or  a  few  features  is  unlikely  to  accurately
predict  house  prices.  Instead,  a  collective  gathering  of
multiple features from various sources is necessary and
effective for accurate prediction.

Furthermore,  in  terms  of  the  correlation  with  house
prices,  we  also  observe  correlations  between  features
within  the  same  category.  Specifically,  the  following
interesting patterns are observed:

(1)  Property  features,  such  as RmNum (number  of
bedrooms)  and BthNum (number  of  bathrooms),
exhibit  a  correlation  coefficient  of  0.62,  indicating
substantial  association  between  the  quantity  of
bedrooms and bathrooms within a residence.

(2)  Amenity  features  exhibit  diverse  relationships.
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Fig. 2    Boxplots of the multi-source features with interesting trends or statistics.
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Fig. 3    Plots illustrate the distributions of the multi-source features. The histograms also show that features, like Price and
Year have  highly  skewed  distributions.  Also EdcNum and EdcDst look  to  have  a normal distribution  and  other  features
seem to have norma or bimodel ditribution of data except Elvt, RmNum, KchNum, and BthNum (which are discrete variables).
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For  instance,  the  correlation  coefficient  between
EdcNum (number  of  educational  institutions)  and
RstNum (number  of  restaurants)  is  0.77,  between
RstNum and RtlNum (number of retailing facilities) it
is 0.74, and between EdcNum and RtlNum it  is 0.68.
These  suggest  that  educational  institutions  usually
coexist  with  restaurants  and  retail  establishments  in
close proximity.  Furthermore,  restaurants and retailing
establishments are frequently clustered within the same
vicinity.

(3)  The  traffic  value TrfV exhibits  a  relatively
strong  relationship  with AtrNum (number  of  tourist
attractions),  indicating  that  regions  with  a  high
concentration  of  tourist  attractions  tend  to  have  high
vehicular traffic.

Price

Notably,  the  features AtrNum, EdcNum, HthNum,
RstNum, TrfV,  and DstPct exhibit  a  higher
correlation  score  with .  To  delve  deeper  into  the
relationship  between  each  individual  feature  and  the
price,  we  present Fig.  5.  As  depicted  in Fig.  5,  while
there is a faint hint of a linear fit in the overall trend of
the  data,  it  is  not  evident  and  can  be  considered
negligible.

4.3　Feature importance

To  assess  the  significance  of  various  attributes  in  the
random  forest  regression  model, Fig.  6 provides  a
ranking. The following observations can be made:

(1)  The  geographical  coordinates  of  the  house,
denoted  by  the  latitude  (Lat)  and  longitude  (Lng),
emerges  as  the  most  influential  factors  affecting  the
house price.

(2)  Considering all  the  features  related to  amenities,
the  average  count  of  nearby  tourist  attractions
(AtrNum)  and education institutions (EdcNum)  prove
to  be  the  most  significant.  This  implies  that  the
availability  of  sightseeing  opportunities  and
educational  proximity  are  crucial  considerations  for
potential house buyers.

(3)  The year  of  construction (Year),  which denotes
the  vintage  of  the  property,  holds  the  fifth  position  in
terms of its significance in impacting the housing price.

(4)  The  mean  proximity  to  adjacent  transportation
facilities (TspDst)  emerges as the sixth most notable
factor influencing the price.

(5)  Interestingly,  the  average  magnitude  of  daily
traffic  velocities  (TrfV)  attains  the  24th  position
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rFig. 4    Association  between  multi-source  features,  quantified  by  the  absolute  magnitude  of  the  value  of  from  Eq.  (1),

commonly  known  as  Pearson’s  correlation  coefficient[38].  From  this  correlation  matrix,  we  can  see  that  if  we  only  consider
individual features, there is no significant correlation between any feature and Price. However, we can also observe that there
may be  strong correlations  between some features  (excluding Price).  For  instance,  we  see  RmNum and BthNum,  EdcNum
and RstNum are highly correlated features.
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Fig. 5    Plots  of  the  selected  features  against Price,  where  the  features  are  with  a  higher  correlation  score  with Price
according to the correlation matrix in Fig. 4.
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Fig. 6    Ranking  of  features  in  the  random  forest  regression  model,  assessing  their  importance  in  predicting  house  prices.
Several  key  observations  can  be  made  from  the  ranking:  (1)  The  dominant  factor  exerting  influence  on  house  prices  is  the
geographical  location,  characterized by latitude (Lat)  and longitude (Lng).  (2)  Pertaining to amenities,  the average count of
nearby  tourist  attractions  (AtrNum)  and  educational  institutions  (EdcNum)  emerges  as  highly  influential,  underscoring  the
significance  of  sightseeing  opportunities  and  educational  accessibility  for  potential  purchasers.  (3)  The  year  of  construction
(Year)  assumes  the  fifth  position  in  terms  of  importance,  signifying  its  impact  on  pricing.  (4)  The  average  distance  to
transportation infrastructure (TspDst) ranks as the sixth most noteworthy factor. (5) Interestingly, the average daily traffic
speeds (TrfV) demonstrate relatively lower significance, suggesting that proximity to public transportation outweighs concerns
regarding traffic congestion.
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among  the  26  examined  attributes,  suggesting  that
while  proximity  to  public  transportation  is  valued  by
house consumers, the level of traffic congestion in the
vicinity holds relatively less importance.

These findings shed light  on the relative importance
of  various  features  in  predicting  house  prices,
providing  valuable  insights  for  real  estate  market
analysis and decision-making.

4.4　Prediction model

Before  applying  the  prediction  model,  we  conduct
experiments  to  detect  and  mitigate  the  effects  of
multicollinearity using Variance Inflation Factor (VIF)
and  Principal  Component  Analysis  (PCA).  The  VIF
value  indicates  the  severity  of  multicollinearity,  with
values  closer  to  1  suggesting  a  lighter  degree,  while
higher values indicate a stronger presence. Typically, a
VIF equal to or greater than 10 is considered too large.
In  our  study,  as  presented  in Table  3,  all  variables
exhibit  VIF  values  below 5,  indicating  the  absence  of
severe multicollinearity.

Additionally, we perform PCA to explore the results
further.  The  PCA  results,  depicted  in Fig.  7,  indicate
that only Component 1 contains a relatively substantial
amount  of  information,  while  the  remaining
components  experience  a  rapid  decline  in  variance.
Even  Component  1,  which  captures  more  information
than  other  components,  only  explains  approximately
25% of  the  variance,  suggesting  suboptimal
performance.  Moreover,  the  other  components  contain
even  less  information.  Therefore,  our  data  can  be
directly proceeded with the linear regression.

y
xi i

The  dataset  consists  of 28 550 data  points,
comprising a dependent variable, denoted as , and 26
independent  features  denoted  as  (where  ranges
from  0  to  25).  To  train  and  evaluate  our  prediction
models,  we  randomly  partition  the  dataset.  This
involves  the  allocation  of  70% of  the  dataset  as  the
training  set,  while  the  remaining  30% served  as  an
independent testing set.

We  employ  a  diverse  set  of  four  distinct  machine
learning techniques to predict house prices and conduct
a comprehensive analysis of their outcomes. Following
the  training  phase,  we  obtain  models  based  on  SVM,
linear  regression,  XGBoost,  and  random  forest
algorithms.  To  facilitate  a  comprehensive  comparison
among  the  linear,  XGBoost,  and  random  forest
regression  models,  we  present  their  outcomes  on  the
testing set visually in Fig. 8. Some observations can be

made:
(1) Figures  8a, 8b,  and 8c  illustrate  the  disparities

between  the  ground-truth  prices  and  the  predicted
values  from  the  linear  regression,  XGBoost,  and
random  forest  regression  models,  respectively.  In

 

Table 3    Results  of  VIF  analysis  for  the  variables  included
in  our  study.  The  variables  are  listed  in  descending  order
based  on  their  VIF  values,  which  indicate  the  extent  of
multicollinearity among the variables.

Variable VIF
RstNum 4.160 353
EdcNum 3.863 456
RtlNum 3.081 778
RstDst 2.597 066

TspNum 2.573 293
HthNum 2.210 560
RtlDst 2.096 533

BthNum 2.004 899
TspDst 1.992 980
Year 1.898 299

RmNum 1.825 553
AtrNum 1.802 491
HllNum 1.764 224

Lat 1.608 337
DstPct 1.596 789

Lng 1.547 029
SadPct 1.503 720
HppPct 1.473 639

Elvt 1.464 674
EdcDst 1.433 411
AgrPct 1.392 132
AtrDst 1.362 955

KchNum 1.307 281
TrfV 1.235 336

HthDst 1.219 479
FeaPct 1.170 280
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Fig. 7    Results of PCA for the dataset used in our study.
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x = y

contrast  to the linear regression model,  which exhibits
a tendency to overestimate actual prices,  the XGBoost
and  random  forest  models  demonstrate  a  balanced
dispersion of  data  points  around the unity line ( ).
This indicates that the predictions of the XGBoost and
random forest models are more accurate.

(2) Figures  8d, 8e,  and 8f  display  the  residuals,
representing  the  disparities  between  the  ground-truth
prices  and  the  predicted  values  from  the  linear
regression,  XGBoost,  and  random  forest  models.  The
residuals of the XGBoost and random forest models are
evenly  distributed  around  zero  point,  indicating  a
favorable  performance.  Conversely,  the  linear
regression  model  exhibits  numerous  noticeable
outliers,  particularly  around  the  predicted  value  of
80 000.

(3) Figures  8g, 8h,  and 8i  depict  the  histograms  of
the  errors  for  the  linear  regression,  XGBoost,  and
random  forest  regression  models,  respectively.  The
errors  in  all  models  exhibit  a  normal  distribution.
Nevertheless, the error variance in the linear regression
model  is  greater  than  those  of  the  XGBoost  and
random forest models.

These  comparisons  offer  valuable  insights  into  the
efficacy of different prediction models for house price
estimation. Table  4 provides  the  evaluation  and
comparison  of  all  the  models.  From Table  4,  we  can
observe that the performance of MLP surpasses that of
SVM and linear  regression,  but  it  still  has  limitations.
Even the  15-layer  MLP performs inferior  to  XGBoost
and  random  forest.  Furthermore,  as  the  depth  of  the
MLP  increases,  its  performance  tends  to  improve.
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Fig. 8    Comparative analysis of house price prediction models: linear regression, XGBoost,  and random forest.  The top row
presents the disparities between actual prices and predicted values from (a) linear regression, (b) XGBoost regression, and (c)
random  forest  models.  The  red  line  represents  the x=y reference.  The  middle  row  illustrates  the  residuals,  showcasing
deviations between actual prices and predicted values for (d) linear regression, (e) XGBoost regression, and (f) random forest
models.  The bottom row displays the error distribution histograms for (g)  linear regression,  (h)  XGBoost  regression,  and (i)
random forest regression models.
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Specifically, as we increase the number of layers from
3  to  15,  the  depth  of  the  MLP  expands  fivefold  and
leads to an approximate 20% reduction in error.

4.5　Ablation study

To  assess  the  influence  of  various  features  derived
from  a  fusion  of  multi-source  data  for  house  price
prediction,  we  examine  the  performance  of  the  SVM,
linear regression, XGBoost, and random forest models
on both the training and testing datasets.

As presented in Table 5, in contrast to the scenario of
utilizing  solely  property  features  (with  only  P),  the
addition of any supplementary feature (amenity, traffic,
or  emotions)  demonstrates  performance  improvement.
Furthermore, the following observations are noted: (1)
The  utilization  of  comprehensive  attributes
encompassing  diverse  dimensions  such  as  property
characteristics, amenities, transportation, and emotional
factors leads to the attainment of optimal performance
levels.  (2)  Notably,  the  omission  of  amenity-related
features  induces  the  most  pronounced  decrease  in
performance,  surpassing  the  impact  observed  from
excluding  traffic  or  emotional  features.  This
observation accentuates  the  influential  role  of  amenity
features  compared  to  traffic  and  emotions.  (3)  The
exclusion  of  traffic-related  attributes  exhibits  a
comparatively  moderate  effect  on  performance.  This
can be attributed to the unidimensional nature of traffic
features, which inherently contributes to their relatively
lower  influence  on  the  overall  predictive  capability.
Nevertheless,  even  the  inclusion  of  this  one-
dimensional  traffic  feature  contributes  to  performance
enhancement.

These  findings  highlight  the  importance  of
incorporating  various  types  of  data,  particularly

amenity features, in accurately predicting house prices.
The  ablation  study  provides  valuable  insights  into  the
relative  contributions  of  different  feature  categories,
facilitating  a  deeper  understanding  of  the  underlying
factors influencing house prices.

4.6　Sensitivity analysis

To  provide  further  insights  into  the  contribution  of
each data source to the prediction accuracy, we conduct
a  sensitivity  analysis.  The  analysis  aims  to  assess  the
impact of variations in the input variables on the target
variable,  using  the  adopted  random  forest  prediction
model,  which  demonstrates  the  best  performance
according to Table 4.

y
In  this  analysis,  we  focus  on  26  input  variables  and

predict  the  target  variable,  denoted  as ,  using  the
random  forest  model.  We  address  two  key  questions
during the sensitivity analysis:

●  Impact  of  a  5% independent  increase  in  input
variables:  We examine the  influence of  a  5% increase
in  each  input  variable  on  the  target  variable.  By
systematically  varying  the  input  variables  while
keeping  other  factors  constant,  we  determine  the
resulting changes in the predicted price.

●  Impact  of  a  5% independent  decrease  in  input
variables: Similarly, we investigate the impact of a 5%
decrease  in  each  input  variable  on  the  target  variable.
By  reducing  the  input  variables’ values  while  holding
other  factors  constant,  we  measure  the  corresponding
changes in the predicted price.

The  outcomes  of  these  sensitivity  analyses  are
presented  in Figs.  9 and 10,  respectively. Figure  9
illustrates  the  results  pertaining  to  the  impact  of  a  5%
independent  increase  in  the  input  variables  on  the
target  variable.  Conversely, Fig.  10 showcases  the
effects  of  a  5% independent  decrease  in  the  input
variables on the target variable.

By  examining  these  figures,  we  made  several  key
discoveries that shed light on the influence of different
variables on house prices. These findings contribute to
a  deeper  understanding  of  the  factors  affecting  the
prediction  accuracy.  The  following  important
observations are made:

(1) The changes in the Latitude (Lat) and Longitude
(Lng)  variables  have  a  significant  impact  on  house
prices.  This  finding  is  reasonable  since  variations  in
latitude  and  longitude  can  result  in  houses  being
located  further  away  from  the  city  center.  In  real-life
scenarios,  house  prices  are  generally  highly  correlated

 

Table 4    Evaluation and comparision of all the models.
Model R2 MAE RMSE
SVM −0.5579 19 833 25 243

Linear regression 0.3651 15 235 20 057
3-layer MLP 0.3756 14 999 19 889
5-layer MLP 0.4091 14 426 19 189
7-layer MLP 0.4510 14 005 18 734
9-layer MLP 0.4615 13 707 18 926
11-layer MLP 0.4903 13 884 18 186
13-layer MLP 0.5414 12 502 17 064
15-layer MLP 0.5525 12 302 16 318

XGBoost 0.8770 5721 8829
Random forest 0.8934 4932 8219
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Table 5    Experiments  with  with  diverse  setups:  (1)  Utilizing  solely  property  features,  referred  to  as  with  only  P;  (2)
incorporating property, traffic, and emotional features, excluding amenity features, referred to as without A; (3) incorporating
property,  amenity,  and  emotional  features,  excluding  traffic  features,  referred  to  as  without  T;  (4)  incorporating  property,
amenity,  and  traffic  features,  excluding  emotional  features,  referred  to  as  without  E;  and  (5)  employing  all  features
encompassing  property,  amenity,  traffic,  and  emotions,  referred  to  as  with  PATE.  The  directions  of  the  arrows  indicate
whether higher or lower values are better, and bold text highlights these better values.

Data Method R2 ↑ R2 ↑Adjusted  ↓MAE ↓MSE ↓RMSE 

Training set

SVM with only P −0.0148 −0.0152 20 251 672 425 564 25 931
SVM without A −0.0122 −0.0129 20 219 670 742 089 25 898
SVM without T −0.0075 −0.0088 20 177 667 666 607 25 839
SVM without E −0.0085 −0.0095 20 189 668 287 594 25 851

SVM with PATE −0.0082 −0.0095 20 182 668 044 046 25 847
Linear regression with only P 0.1674 0.1671 18 284 551 713 399 23 489
Linear regression without A 0.2520 0.2515 16 947 495 668 829 22 264
Linear regression without T 0.3730 0.3722 15 499 415 469 247 20 383
Linear regression without E 0.3636 0.3629 15 582 421 702 012 20 535

Linear regression with PATE 0.3797 0.3789 15 391 411 032 381 20 274
XGBoost regression with only P 0.9095 0.9095 5206 59 965 069 7744
XGBoost regression without A 0.9184 0.9183 4941 54 069 367 7353
XGBoost regression without T 0.9331 0.9330 4416 44 350 499 6660
XGBoost regression without E 0.9319 0.9318 4477 45 145 802 6719

XGBoost regression with PATE 0.9343 0.9342 4387 43 549 356 6599
Random forest with only P 0.9721 0.9721 2480 18 466 444 4297
Random forest without A 0.9722 0.9722 2461 18 372 367 4286
Random forest without T 0.9726 0.9725 2448 18 143 797 4259
Random forest without E 0.9726 0.9726 2456 18 135 870 4265

Random forest with PATE 0.9726 0.9726 2448 18 133 433 4258

Testing set

SVM with only P −0.0124 −0.0134 19 899 641 522 761 25 328
SVM without A −0.0099 −0.0116 19 871 639 963 349 25 297
SVM without T −0.0049 −0.0078 19 827 636 760 159 25 234
SVM without E −0.0059 −0.0084 19 840 637 453 688 25 247

SVM with PATE −0.0056 −0.0086 19 833 637 188 037 25 243
Linear regression with only P 0.1626 0.1618 17 905 530 648 157 23 036
Linear regression without A 0.2437 0.2424 16 696 479 250 332 21 892
Linear regression without T 0.3591 0.3572 15 324 406 118 449 20 152
Linear regression without E 0.3510 0.3494 15 358 411 213 070 20 278

Linear regression with PATE 0.3651 0.3632 15 235 402 302 484 20 057
XGBoost regression with only P 0.8560 0.8558 6244 91 267 181 9553
XGBoost regression without A 0.8646 0.8644 6080 85 802 314 9263
XGBoost regression without T 0.8751 0.8747 5773 79 153 827 8897
XGBoost regression without E 0.8740 0.8737 5814 79 830 419 8935

XGBoost regression with PATE 0.8770 0.8766 5721 77 956 264 8829
Random forest with only P 0.8867 0.8866 5037 71 763 746 8471
Random forest without A 0.8893 0.8891 4967 70 132 674 8374
Random forest without T 0.8920 0.8917 4941 68 382 700 8269
Random forest without E 0.8929 0.8926 4941 67 855 085 8237

Random forest with PATE 0.8934 0.8931 4932 67 547 377 8219
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Fig. 9    Impact of a 5% independent increase in input variables on the target variable.
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Fig. 10    Impact of a 5% independent decrease in input variables on the target variable.
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with location.
(2)  An  increase  in  the  number  of  nearby

transportation  facilities,  represented  by  the  variable
TspNum, leads to a noticeable increase in house prices.
This  observation  is  also  logical,  as  areas  with  better
transportation  accessibility  typically  command  higher
property values.

(3) Surprisingly, a decrease in the ArgPct variable,
which  represents  the  percentage  of  anger  among  all
emotions,  is  associated  with  an  increase  in  house
prices.  This  finding  is  intriguing  and  unexpected,
suggesting  a  potentially  interesting  relationship
between emotional expressions and property values.

These  discoveries  highlight  the  significance  of
specific  variables  in  influencing  house  prices.  The
sensitivity  analysis  provides  valuable  insights  into  the
relative  importance  and  unexpected  associations
between  the  variables  and  the  target  variable,
enhancing our understanding of the prediction model’s
accuracy  and  the  underlying  dynamics  of  the  housing
market.

4.7　Mixed-effects model

Figure 4 implies the potential presence of batch effects
and other stochastic influences, thereby indicating that
utilizing  a  mixed-effects  model  could  be  a  more
suitable  alternative.  Furthermore,  the  Sensitivity
Analysis  conducted  in  Section  4.6  reveals  that  the
variables Lat, Lng, TspNum,  and AgrPct exhibit
considerable  impacts  on  the  target  variable.  Given
these findings, we have chosen to utilize Linear Mixed
Effects  (LME)[40] models  to  analyze  the  data,  as
presented in Fig. 11.

Although  we  have  obtained  initial  experimental
outcomes,  it  is  important  to  acknowledge  that  the
model’s performance is significantly inferior to that of
the  XGBoost  and random forest  methods.  These  more
advanced  algorithms  have  demonstrated  superior
predictive capabilities throughout our study.

5　Conclusion

In  this  paper,  we  present  a  comprehensive  analysis  of
house price prediction from a multi-source data fusion
perspective.  By  incorporating  property  features,
amenity data,  traffic  information,  and social  emotions,
we  aim  to  uncover  the  underlying  factors  influencing
house  prices.  Through  extensive  experiments,  we
demonstrate  that  the  integration  of  various  types  of
data  improves  the  predictive  precision  of  the  models.

The comprehensive consideration of property features,
amenity  data,  traffic  information,  and  social  emotions
yields the highest predictive accuracy.

These  findings  can  guide  real  estate  buyers,  sellers,
and  policymakers  in  making  informed  decisions.
Moreover,  it  stirs  and  benefits  social  and  economic
analysis[41]. Future research can explore additional data
sources[42] and  advanced  modeling  techniques[43–45] to
further enhance the accuracy of house price prediction
models.
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