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Abstract: Traffic  prediction  is  crucial  for  urban  planning  and  transportation  management,  and  deep  learning

techniques have emerged as effective tools for this task. While previous works have made advancements, they

often  overlook  comprehensive  analyses  of  spatio-temporal  distributions  and  the  integration  of  multimodal

representations.  Our  research  addresses  these  limitations  by  proposing  a  large-scale  spatio-temporal

multimodal  fusion  framework  that  enables  accurate  predictions  based  on  location  queries  and  seamlessly

integrates  various  data  sources.  Specifically,  we  utilize  Convolutional  Neural  Networks  (CNNs)  for  spatial

information processing and a combination of Recurrent Neural Networks (RNNs) for final spatio-temporal traffic

prediction. This framework not only effectively reveals its ability to integrate various modal data in the spatio-

temporal hyperspace, but has also been successfully implemented in a real-world large-scale map, showcasing

its practical importance in tackling urban traffic challenges. The findings presented in this work contribute to the

advancement  of  traffic  prediction  methods,  offering  valuable  insights  for  further  research  and  application  in

addressing real-world transportation challenges.
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1　Introduction

In  recent  decades,  the  automobile  industry  has
experienced  a  remarkable  growth,  leading  to  a
noticeable rise in both the production and ownership of
vehicles.  According  to  the  annual  report  of  the  China
Association of Automobile Manufacturers, new energy
vehicle  production  in  2022  increased  by  90.5% year-

on-year.  The  total  number  of  motor  vehicles  in  China
reached  430  million,  and  the  number  of  licensed
drivers reached 520 million in 2023[1]. The increase in
private  vehicle  holdings  has  been  accompanied  by
rapid  urbanization  process,  resulting  in  a  mounting
need  for  efficient  mobility  networks  within  urban
areas,  which  have  led  to  higher  traffic  flows  on  road
networks. The intensifying road traffic has contributed
to more severe traffic congestion issues in urban areas,
calling for adopting traffic speed prediction to develop
effective  traffic  flow  management  approaches[2, 3].
With  reliable  predictions  of  future  traffic  speeds  and
volumes,  authorities  can  now  optimize  traffic  signal
timing  and  provide  routing  recommendations  to
dynamically  alleviate  bottlenecks.  Strategies  like
flexible  signal  coordination  and  dynamic  route
guidance  can  be  employed,  helping  to  reduce  travel
times  and  emissions[4].  Furthermore,  traffic  speed
prediction  plays  a  vital  role  in  Intelligent
Transportation  Systems  (ITS),  smart  city  initiatives,
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and  intelligent  driving  systems[5–13].  By  leveraging
real-time traffic data, cities can optimize transportation
infrastructure,  improve  public  transportation  services,
and  reduce  environmental  impacts.  Consequently,  the
domain  of  traffic  prediction  has  been  receiving
escalating  scholarly  attention,  as  evidenced  by  the
burgeoning corpus of literature on the subject[14–19].

Previous  researchers  preferred  to  apply  classical
statistical  models  to  predict  traffic  volumes[20, 21],  of
which the Auto Regressive Integrated Moving Average
(ARIMA)  family  of  models  is  the  most  widely
used[22–24].  At  that  time,  the  data  sources  rely  on
historical  data,  such  as  loop  detector  data  or  GPS
traces[25–27].  However,  these  methods  suffer  from
limitations,  such  as  insufficient  service  coverage,
limited  temporal  resolution,  and  lack  of  real-time
updates.  The  emergence  of  technologies  like
smartphones  and  connected  vehicles  has  provided  a
wealth  of  real-time  data  that  can  be  leveraged  to
improve  the  accuracy of  traffic  speed prediction[28–34].
The  diversification  of  data  and  advancements  in
computer  technology  have  made  more  accurate  traffic
prediction  possible.  Therefore,  recent  studies  have
predominantly  employed  machine  learning
methodologies,  such  as  the  hidden  markov  model,
fuzzy neural network, and support vector machines, to
enhance the models’ ability to handle high-dimensional
data  and  capture  nonlinear  relationships  in  traffic
prediction problems[15, 16, 35].

In  terms  of  spatial  modeling,  many  approaches  rely
on  static  graphs  for  graph  convolution[36].  When  it
comes  to  temporal  modeling,  the  majority  of  existing
strategies fall into one of three categories: those based
on Recurrent Neural Networks (RNNs), Convolutional
Neural  Networks  (CNNs),  and  attention-based
approaches[37–41].  While  previous  forecasting  methods
primarily rely on temporal and spatial information, and
some  studies  have  considered  spatio-temporal
information,  they  have  not  taken  into  account  the
application  of  multimodal  data.  Although  these
methods  have  achieved  some  success,  they  have  not
considered  temporal-spatial  heterogeneity,  limiting
their  ability  to  capture  complex  relationships  between
different  locations  and  their  impact  on  traffic  speeds.
Furthermore,  these  methods  have  been  evaluated  on
small-scale datasets,  which may not generalize well to
real-world scenarios.

Thus,  developing  models  which  are  capable  of  real-

time network-wide traffic speed prediction poses tough
challenges  by  utilizing  comprehensive  spatio-temporal
traffic  data.  One  of  the  critical  challenges  is  how  to
effectively  extract  the  complex  spatio-temporal
correlations  between  different  nodes.  Because
observations  from  neighboring  locations  and
timestamps are not independent, but rather dynamically
interrelated[42, 43]. For example, in the context of point-
of-interest  recommendation,  as  information  spreads
online,  the  popularity  of  a  certain  place  at  a  certain
moment will  strongly affect  the traffic conditions near
this  place.  Models  aimed  at  forecasting  traffic
conditions  need  to  model  how  conditions  propagate
from one area to adjacent regions or cascade forward in
time  according  to  different  data  sources.  Prediction
approaches  can  reach  their  full  potential  only  by
adequately  representing  these  spatio-temporal
interaction  patterns.  Therefore,  how  to  mine  the  non-
linear and complex spatio-temporal data to discover the
underlying spatio-temporal patterns and make accurate
traffic  flow  predictions  is  a  highly  challenging
problem.  Recently,  Zhou  et  al.[44] proposed  a  method
that leverages spatial information from large-scale map
data to predict traffic congestion. While their approach
demonstrates the potential of using spatial information
alone,  it  still  has  limitations  in  terms  of  prediction
accuracy  and  does  not  incorporate  temporal
information  from  historical  traffic  speeds.  Overall,
existing  researches  show  that  few  studies  can  predict
network-wide traffic speed propagation dynamics with
multimodal  data  source,  signifying  a  significant
research gap and calls for innovative solutions.

To cope with the aforementioned issues, we present a
model to solve the problem of traffic speed prediction.
Previous methods fail to capture the multimodal data in
different  layers.  To  solve  this,  our  method  integrates
spatial  and  temporal  data,  providing  a  comprehensive
synthesis  of  the  abundant  information  found  on
expansive  maps,  which  enhances  the  accuracy  in
predicting  traffic  scenarios.  As  a  result,  the  diverse
global  multimodal  data  pertinent  to  traffic  forecasting
is  consolidated  into  a  spatio-temporal  hyperplane[45].
This  hyperplane  can  then  be  effectively  utilized  in
conjunction  with  mapped  locations  to  forecast  traffic
situations  at  various  points  in  both  space  and  time.  In
order  to  better  fuse  the  rich  information  on  a  large-
scale  map  and  infer  traffic  situations,  a  novel  and
efficient  framework  is  proposed  in  this  paper,  so  that
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the global multimodal information referenced by traffic
prediction  is  aggregated  into  a  geo-preserving
representation in a high-dimensional superspace, which
can be utilized with mapped locations to predict traffic
situations  at  different  locations  and  time  points  (see
Fig. 1).

The main contributions of this work are summarized
as follows:

● We propose a novel approach for large-scale real-
time  network-wide  traffic  speed  prediction  by
integrating  various  modalities  from  both  spatial  and
temporal  aspects.  Our  approach  successfully  fuses
these  rich  information  which  includes  social  media
texts,  real  estates,  points  of  interest,  and  traffic  speed,
enabling  its  practical  application  in  real-world
scenarios.  This  distinguishes  it  from previous  work[44]

that only focuses on the spatial aspect.
●  We  introduce  an  innovative  framework,  large-

scale  spatio-temporal  multimodal  fusion  framework,
which  effectively  captures  the  complex  relationships
between  spatial  and  temporal  features  in  traffic  data.
This  complex  framework  leverages  advanced
techniques,  such  as  recurrent  neural  networks  and
fusion  encoders,  to  enhance  the  accuracy  and
robustness of the prediction.

●  Extensive  experiments  have  been  conducted  on  a
real  large-scale  map  dataset  to  evaluate  the
performance  of  the  approach.  Our  approach  achieves
improved  prediction  accuracy  compared  to  existing
methods  that  only  consider  the  fusion  of  map  spatial
information.  This  demonstrates  the  effectiveness  and
practicality  of  our  approach  in  real-world  traffic
planning and management.

2　Related Work

2.1　Spatial traffic prediction

The  field  of  traffic  forecasting  has  been  extensively
studied  for  several  decades,  primarily  in  civil
engineering  and  traffic  engineering  research.  Over
time,  researchers  have  made  advancements  in
understanding  traffic  patterns  and  developing
sophisticated forecasting models. Existing studies show
that traffic speed prediction has primarily been tackled
using  three  approaches:  statistical  methods,  traditional
machine  learning  methods,  and  deep  learning
methods[19].  In  recent  years,  there  has  been  a  shift
towards  using  deep  learning  techniques  for  traffic
prediction[46–48]. Among them, CNNs have been widely
used[49–52]. These models map traffic speed values onto
the  geographical  space  and  leverage  CNNs  to  extract
meaningful spatial features and patterns from the data,
leading  to  accurate  predictions  of  future  traffic
conditions.  The  power  of  deep  learning  allows  the
CNN  models  to  effectively  capture  and  analyze  the
complex  spatial  relationships  in  traffic  data,  resulting
in  improved  prediction  accuracy  compared  to
traditional  methods.  The utilization of  CNNs in traffic
prediction  demonstrates  the  potential  of  deep  learning
techniques  in  addressing  real-world  transportation
challenges.

Li  et  al.[46] employed  a  Diffusion  Convolutional
Recurrent Neural Network (DCRNN) to predict traffic
flow,  modeling  the  traffic  flow  as  a  directed  graph.
They captured  the  spatial  dependencies  of  traffic  flow
by  utilizing  bidirectional  random  walks  on  the  graph.
Wang et al.[47] developed a graph-based neural network
approach  that  utilizes  a  deep  learning  framework  to
capture  the  topological  structure  of  road  networks.
They  employed  a  regression  Graph  Recursive  Neural
Network  (GRNN)  to  track  speed  variations  across  the
network, using trajectory data to predict average traffic
speed. Zhang et al.[48] presents a Gated Recurrent Units
(GRU)  based  multitask  deep  learning  model  for
predicting  network-wide  traffic  speed,  enhanced  by
two  performance-improving  methods:  a  nonlinear
Granger  causality  test  and  Bayesian  optimization.
Nguyen  et  al.[49] designed  an  EO-CNN  model  for
traffic  prediction,  which  is  based  on  the  Equilibrium
Optimizer  (EO),  a  metaheuristic  algorithm.  Mehdi
et  al.[51] proposed  an  approach  based  on  differential
entropy for labeling congestion levels and developed a
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Fig. 1    A  variety  of  multimodal  information  is  created  at
different  locations  on  a  large-scale  map  of  the  real  world.
Traffic speed prediction at any query location can be learned
based on these diverse information.
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supervised  congestion  prediction  model  using  a  CNN.
The study incorporates various traffic meta-parameters,
such  as  node  localization,  date,  day  of  the  week,  time
of  day,  special  road  conditions,  and  holidays.  The
model  is  validated  on  the  CityPulse  dataset,  which
contains  vehicle  traffic  records  collected  in  Aarhus
city,  Denmark,  over  a  six-month  period.  The
simulation  results  demonstrate  accurate  predictions  of
congestion  rates  for  different  observation  nodes.  The
authors suggest that this system can help prevent traffic
congestion by redirecting drivers to alternative routes.

Furthermore,  Zhou  et  al.[44] proposed  an  end-to-end
framework  based  on  CNNs  that  learns  geo-preserving
representations from a real-world large-scale dataset to
predict  traffic  congestion  situations.  The  framework
effectively  predicts  traffic  congestion  at  any  location
on  a  large-scale  map  by  aggregating  comprehensive
congestion  factors  and  leveraging  global  reference
information. The framework incorporates a multimodal
fusion module and a representation mapping module to
achieve accurate predictions of traffic congestion.

2.2　Spatio-temporal traffic prediction

Predicting traffic solely based on spatial information is
insufficient  since  traffic  data  exhibit  temporal
characteristics.  To  improve  the  accuracy  of  traffic
prediction  by  leveraging  the  synergy  between  spatial
and  temporal  information,  several  approaches  have
been  proposed  that  combine  RNNs  with  either  K-
Nearest Neighbors (KNNs) or CNNs[53–57].

Min and Wynter[53] developed an approach based on
extended  time  series,  utilizing  a  multivariate
spatiotemporal  autoregression  (namely  MSTAR)
model  to  interpret  transient  behaviors  on  traffic
networks.  Yu  et  al.[54] introduced  a  network  grid
representation  method  that  preserves  the  detailed
structure  of  transportation  networks.  They  convert
network-wide  traffic  speeds  into  static  images  and
input  them  into  a  novel  deep  architecture  called
Spatiotemporal  Recurrent  Convolutional  Networks
(SRCNs) for traffic forecasting. Qiu et al.[55] employed
various  recurrent  neural  network  architectures,
adopting  a  multi-task  learning  approach  to  explore
spatial  and  temporal  correlations  between  different
cellular  regions.  In  pursuit  of  enhanced  predictive
accuracy,  Luo  et  al.[56] proposed  a  spatiotemporal
traffic  flow  prediction  method  that  combines  KNN
with  Long  Short-Term Memory  (LSTM)  networks.  In
this  approach,  KNN  is  employed  to  capture  spatial

features,  while  LSTM  is  utilized  to  capture  temporal
features.  This  model  is  referred to  as  the KNN-LSTM
model.  Wang  et  al.[57] developed  a  model  using
Bidirectional  Long  Short-Term  Memory  Neural
Networks (Bi-LSTM NNs) to represent the structure of
critical  road  networks.  They  then  fed  the  captured
spatiotemporal features into a fully connected layer for
predicting network traffic speed. An empirical study is
conducted  to  demonstrate  the  interpretability  of  their
model.

Pan  et  al.[39] proposed  a  deep-meta-learning  based
model  called  ST-MetaNet,  which  collectively  predicts
traffic  for  all  locations  simultaneously.  ST-MetaNet
utilizes  a  sequence-to-sequence  architecture  with  an
encoder to learn historical information and a decoder to
make  predictions  step  by  step.  The  encoder  and
decoder have the same network structure, consisting of
a recurrent neural network to encode the traffic, a meta
graph attention network to capture spatial correlations,
and  a  meta  recurrent  neural  network  to  consider
temporal  correlations.  This  structure  successfully
addresses  the  challenges  of  complex  spatio-temporal
correlations  in  urban  traffic  and  the  diversity  of  such
correlations across locations.

In  summary,  while  the  review  discusses  the
utilization  of  various  traffic  meta-parameters  and
trajectory  data,  it  falls  short  of  addressing  the
integration  of  heterogeneous  data  sources,  such  as
social media, weather conditions, or unexpected events,
which  could  potentially  improve  the  accuracy  of
predictions.  Moreover,  the  review  does  not  tackle  the
scalability  of  these  models  to  more  extensive  and
intricate  road  networks,  nor  does  it  consider  their
computational  efficiency—both  critical  aspects  for
practical applications in the real world.

In  our  research,  we  conduct  a  comprehensive
analysis  of  spatio-temporal  distributions  using  three
distinct  spatial  sources:  text,  other  inputs,  and  traffic
speed  as  temporal  features.  To  accomplish  this,  we
employ  convolution  operations  on  these  three
modalities.  By  combining  sentences  and  numerical
values in a 2D map space, we successfully learn a joint
representation.  Additionally,  we  utilize  a  recurrent
structure  to  effectively  capture  the  interdependencies
between  these  joint  features  and  speed  inputs.  This
enables  accurate  prediction  of  specific  traffic  speed
values  based  on  location  queries.  As  a  result,  the
distribution  of  location  queries  and  multimodal
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representations are seamlessly integrated into a unified
mapping space.

3　Methodology

3.1　Overview

Previous  traffic  prediction  models  have  focused  only
on  spatial  or  temporal  information  and  have  used
relatively simple neural network structures, resulting in
unsatisfactory  prediction  accuracy.  To  address  issues
above,  we  propose  a  spatio-temporal  multimodal  end-
to-end traffic speed prediction network. This approach
utilizes a CNN to learn spatial information and a GRU
network  to  predict  the  final  speed  sequence  values  at
any  location  on  a  large-scale  map  efficiently.  It  also
incorporates  multimodal  social  data  with  the  location
of the large-scale map as global reference information.

The global reference information is divided into three
categories:  social  media  texts,  real  estates,  and  points
of  interest.  These  categories  are  scattered  across  the
entire map with different distributions (see Fig. 1). The
multimodal  global  reference  information  is  formatted
in a learnable and adaptive manner and is  learned and
fused  into  a  global-aware  geo-preserving
representation,  also  known  as  a  meta-representation.
This  meta-representation  aggregates  all  reference
information  from  the  entire  large-scale  map.
Additionally,  the geo-temporal representation of speed
values is learned as a crucial part of the spatio-temporal
fusion  structure.  A  geo-preserving  representation  is
also learned to match a specific location, which is used
to  capture  traffic  speed  situations.  Finally,  the  global-
aware  representation,  temporal-aware  representation,
and  location-aware  representation  are  aggregated  and
learned to obtain location-specific traffic speed results.

By  incorporating  both  spatial  and  temporal
information,  as  well  as  multimodal  global  reference
information,  our  proposed  model  aims  to  improve  the
accuracy  of  traffic  speed  prediction.  The  use  of
advanced  neural  network  structures  and  the  fusion  of
various data sources contribute to a  more detailed and
comprehensive analysis of traffic patterns.

3.2　Problem statement

The  task  of  predicting  traffic  speed  can  be  effectively
addressed  using  the  proposed  method,  yielding
valuable  results.  The  first  step  is  to  grid  the  entire
large-scale  map in  order  to  characterize  the  data.  This
results  in  the  original  map  being  formatted  as  a  2-

H×Wdimensional grid array with dimensions of . Each
grid on the map is associated with three types of global
reference  information  in  the  region,  which  are
quantized as multi-dimensional features. These features
are  then placed into  the  corresponding location on the
gridded map, resulting in three multi-channel matrices.

Dmt

Dre

Dpi

Fmt Fre Fpi

H×W ×Dmt

H×W ×Dre H×W ×Dpi

Specifically,  for each grid,  a vector of length  is
generated  to  represent  the  social  media  information
from the dataset after preprocessing. If a grid does not
have  any  social  media  information,  a  zero-vector  is
used  instead.  Similarly,  the  preprocessed  real  estate
information and points of interest information for each
grid  can  be  represented  by  vectors  of  length  and

, respectively. Consequently, the social media texts,
real  estate  data,  and  points  of  interest  information  for
the  entire  gridded  map  can  be  formulated  as  three
multi-channel matrices: , , and , respectively.
These  matrices  have  dimensions  of ,

, and , respectively, are utilized
as part of the input for the proposed framework.

H×W

xh, w

h w
h = 1, 2, . . . ,H w = 1, 2, . . . ,W xh, w

ŷL′
h, w

L′

VL
h, w

L
L′

ŷL′
h, w yL′

h, w

For  the  gridded  map  with  dimensions ,
different  regions  are  divided  into  training,  validation,
and test regions. The data within these regions are then
aggregated  into  training,  validation,  and  test  sets.  For
the entire gridded map, each grid  is indexed by its
location  in  the -th  row  and -th  column,  where

, and . For each , the
proposed  model  is  capable  of  generating  results ,
which  is  a  vector  of  length  representing  multiple
time points in a day. Given a query point, the length of
the speed sequence  can be learned as a temporal-
aware representation,  where  denotes  additional  time
points preceding . By incorporating the global-aware
reference  information  and  the  temporal-aware
representation, the task is to predict the speed values of
roads  at  subsequent  time  points  after  the  given  one  at
any unvisited grid area (test area). The objective of the
proposed method is to minimize the difference between
the predicted  and the ground truth values  for
the corresponding location.
3.2.1　Framework and methods
The  traffic  speed  prediction  task  is  addressed  by  a
novel,  spatio-temporal,  and  lightweight  framework,
that effectively learns and generalizes global reference
information  and  temporal  reference  information.  This
enables  the  framework  to  handle  predictions  by
matching and fusing specific query points.

To  achieve  this,  the  framework,  as  show  in Fig.  2,

  Bodong Zhou et al.:  A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction 625

 



Fmt Fre

Fpi

xh, w

utilizes featured global reference information ( , ,
and )  of  the  entire  large-scale  map.  These  features
are  first  inputted  into  the  Multimodal  Fusion  and
Generalization  Module  (MFGM)  (Part  B  in Fig.  2)  to
obtain  the  global-aware  meta-representation  of  the
map. Simultaneously, based on a query location ( ),
the  Speed  Encoder  Module  (SEM)  (Part  C  in Fig.  2)
learns  the  temporal-aware  speed-representation.
Additionally,  the  query  location  is  transformed  into  a
location-aware  mapped-representation  through  the
Query Location Mapping Module (QLMM) (Part D in
Fig.  2).  Finally,  the  Representation  Fusion  and
Prediction Module (RFPM) (Part E in Fig. 2) combines
the  global-aware  meta-representation,  temporal-aware
speed-representation,  and  location-aware  mapped-
representation  to  make  predictions  using  a  neural
network.

To  be  specific,  MFGM  is  tailored  to  extract  three
distinct  global  map  features,  employing  three  separate
convolutional  layers  accompanied  by  corresponding
linear  layers.  Subsequently,  these  three  linear  layers
undergo  concatenation  before  being  fed  into  another
convolutional  network  to  extract  the  fusion  linear
features  of  the  map.  Meanwhile,  SEM  employs
multiple linear layers to extract speed features. QLMM
initially  expands  the  input  location  points  into  two-
dimensional  global  features  using  a  Gaussian
distribution  and  then  utilizes  convolutional  networks
and  linear  layers  for  feature  extraction.  RFPM
consolidates  the  linear  features  obtained  from  the

previous  three  components  through  concatenation,
feeding  them  into  a  GRU  network[58] to  ultimately
predict  the  speed  values  corresponding  to  the  current
position on the map.

During  training,  all  features  of  the  global  reference
information  are  consistently  fed  into  the  MFGM  at
each  step.  This  ensures  that  the  MFGM  is  robust
enough  to  comprehensively  extract  and  generalize
multimodal  global  reference  information,  resulting  in
the  global-aware  meta-representation.  Consequently,
during  inference,  the  stable  and  informative  global-
aware  meta-representation,  which  is  saved  after
training, is directly inputted into the RFPM without the
need  for  the  heavy  MFGM  architecture  and  complex
global reference information. This design choice allows
the framework to maintain lightweight parameters and
achieve incredible efficiency.

The  details  of  each  module  in  the  proposed
framework will be introduced below.
3.2.2　MFGM

Hur×Wur×Dur Hur Wur Dur

{
f uni
m (·)

}
m=mt, re, pi

Fmt Fre Fpi

Different  kinds  of  global  reference  information  are
formatted  into  a  matrix  with  various  channels.  To
obtain three unimodal representations of the same size

,  where , ,  and  denote  the
dimensions  of  the  output  of  neural  networks.  Three
distinct  convolutional  neural  networks  are  leveraged,
denoted  as ,  where  each  represents
convolutional  neural  network  which  is  designed  for

, ,  and .  These  networks  aim  to  capture  the
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Fig. 2    The proposed framework. Firstly, the featured global reference information is fed into the MFGM to obtain a global-
aware meta-representation in a high-dimensional superspace. In addition, speed value at the query point is fed into the SEM to
obtain  the  temporal-aware  speed-representation.  Also,  the  QLMM  maps  a  query  location  as  a  location-aware  mapped-
representation in the same superspace. Finally, the RFPM makes prediction on traffic speed based on the global-aware meta-
representation, temporal-aware speed-representation, and location-aware mapped-representation.

    626 Big Data Mining and Analytics, September 2024, 7(3): 621−636

 



Fmt Fre Fpi

{Um}m=mt, re, pi Um ∈ RHur×Wur×Dur

unique characteristics  of  each type of  global  reference
information  for , ,  and ,  denoted  as

,  where  any ,  and  the
forward procession can be formulated as
 

Um = f uni
m (Fm), m =mt, re, pi (1)

f multi(·)

To  create  a  joint  representation,  the  three  unimodal
representations  are  channel-wise  concatenated.  This
representation  is  then  fed  into  a  convolutional  neural
network, ,  which  learns  joint  representation  of
multiple  features,  similar  to  an  auto-encoder.  The
purpose  of  this  network  is  to  mix  the  representations
from different modalities and shape them into a global
reference-rich  multi-channel  representation.
Importantly,  the  resulting  representation  maintains  the
spatial structure of the original map on each channel.

Rmeta Rmeta

This final representation is referred to as the global-
aware  meta-representation.  It  encapsulates  the
combined  information  from  the  different  types  of
global  reference  information  and  serves  as  a
comprehensive and detailed representation of the data.
This  global-aware  meta-representation  is  denoted  as

,  where  is  a  one-dimensional  neural  vector,
which is obtained by
 

Rmeta = f multi(concat [Umt,Ure,Upi]) (2)

3.2.3　SEM
xh,w

Rspeed
h, w

For  each  query  location ,  it  is  necessary  to  utilize
the temporal continuity information of traffic speeds to
predict the subsequent speed values. Therefore, the first
step  is  to  transform  the  speed  values  within  a  certain
time  period  into  neural  representations  using  a
MultiLayer  Perceptron  (MLP)  network.  This
conversion allows us to obtain one-dimensional vector
representations  for  speed  through  the  fusion
encoder,  which  combines  these  speed  representations
with other spatial representations on the map.

VL
h, w

L

f speed(·) (h, w)
Rspeed

h, w

xh, w

To be more specific,  the original speed values ,
which monitored time series’ length is ,  and its  each
single element is a time point among that series. Those
would  be  input  into  the  speed  encoder,  denoted  as

 at  the  current  query  point ,  resulting  in
the generation of dense representations for speed 
for each . The forward process is formulated as
 

Rspeed
h, w = f speed(VL

h, w), h ∈ [1,H],w ∈ [1,W] (3)

3.2.4　QLMM
Describing the spatial relationship between each query
location  in  a  gridded  map  and  the  entire  map  using

xh, w

Rloc
h, w xh, w

coordinate  pairs  ( )  is  challenging.  Instead,  a  more
effective  approach  is  to  generate  a  learnable  geo-
preserving representation that encapsulates the location
information.  This  representation  takes  the  form  of  a
location-rich multi-channel matrix, which can adapt the
location  to  the  global  information  and  enhance  the
neural  network’s  prediction  capabilities.  By  spatially
capturing  the  interaction  between  the  current  query
location and all other locations in relation to the global
information,  the  multi-channel  matrix,  referred  to  as
location-aware  mapped-representation  and  denoted  as

 for  each ,  becomes  an  integral  part  of  the
overall framework.

xh, w

(h′, w′)

m
′

(h, w)→(h′, w′ )

However,  due  to  the  complex  and  high-dimensional
nature  of  geo-spatial  interactions,  the  distribution
represented  by  the  Location-aware  mapped-
representation  is  not  easily  discernible.  Therefore,  a
simplified distribution is  assumed as prior information
for  the  location-aware  mapped-representation.
Specifically,  in  the  initial  state,  the  influence  of  the
query location on the entire  map is  assumed to spread
from  the  location  to  its  surroundings  in  a  two-
dimensional Gaussian distribution. This means that the
probability of each location being affected by the query
location  follows  a  two-dimensional  Gaussian
distribution.  Consequently,  for  each  query  location

,  the  affected  probability  value  of  the  grid  at
location  can be determined, which is denoted as

, and
 

m
′

(h, w)→(h′, w′ )
= P ((a,b) = xh′, w′ ) (4)

(a, b)
(a, b) ∼ N(xh, w, Σ) (a, b)

xh, w

Σ

xh, w

where  are two-dimensional random variables and
 represents  that  follows  a

normal  distribution  centered  around  the  point  on
the map with covariance matrix . As a result, for each
query  location ,  a  matrix  of  the  same  size  as  the
original gridded map can be obtained,
 

M
′
h, w =


m
′
(h, w)→(1, 1) · · · m

′
(h, w)→(1,W)

...
. . .

...

m
′
(h, w)→(H, 1) · · · m

′
(h, w)→(h, w)

 (5)

M
′
h, w

Mh, w

f map(·)

Then  can  be  normalized  for  constructing  a
Gaussian  location  mask .  Based  on  the  Gaussian
location mask as a  prior,  the Location-aware Mapped-
representation  can  be  learned  as  a  posterior  via  a
convolutional  neural  network  and  be  represented  as  a
neural vector  finally, and the forward process is
formulated as
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Rloc
h, w = f map(Mh, w), h ∈ [1, H], w ∈ [1, W] (6)

3.2.5　Global-temporal-location representations

Rmeta

Rspeed
h, w

Rloc
h, w

The framework consists  of three main representations:
the  global-aware  meta-representation  ( ),  the
temporal-aware  speed-representation  ( ),  and  the
location-aware mapped-representation ( ).

In  this  framework,  each  of  these  representations  is
assigned  a  different  size  as  a  neural  vector
representation.  Additionally,  all  three  representations
have  a  one-dimensional  channel.  This  means  that  for
each  grid  in  a  query  location,  there  are  three  one-
dimensional vectors representing global reference data,
temporal  speed data,  and spatial  relations.  This  allows
these  vectors  to  carry  information  for  making
predictions.

The  global-aware  meta-representation  specifically
represents all global reference information. As a result,
it can be used as a generalized feature map and has the
potential to complete multiple tasks.
3.2.6　RFPM

xh, w

Rmeta

Rspeed
h, w

Rloc
h, w

Rmeta

Rspeed
h, w

Rloc
h, w

In order to obtain accurate prediction results for a given
query location , a concatenation fusion technique is
employed  on  three  key  representations:  global-aware
meta-representation  ( ),  temporal-aware  speed-
representation  ( ),  and  location-aware  mapped-
representation  ( ).  The  global-aware  meta-
representation  ( )  captures  high-level  information
about  the  overall  context  and  global  patterns  in  the
data.  It  provides  a  broad  understanding  of  the
underlying factors that influence the prediction results.
The  temporal-aware  speed-representation  ( )
focuses  on  the  temporal  dynamics  and  speed-related
features  of  the  data.  It  takes  into  account  the  changes
and  trends  over  time,  which  are  crucial  for  accurate
predictions. The location-aware mapped-representation
( )  incorporates  spatial  information  and  maps  the
query  location  to  its  corresponding  features.  This
representation  enables  the  model  to  consider  the
specific  characteristics  and  context  of  the  query
location.

f GRU
h, w (·)

By  concatenating  these  three  representations,  the
fusion  process  combines  their  unique  strengths  and
enhances  the  overall  predictive  power.  The
concatenated  representation  is  then  fed  into  a  GRU
with  a  fully  connected  output  layer,  which  are
collectively  referred  to  as .  The  GRU[58] is  a
type  of  recurrent  neural  network  that  effectively

captures  sequential  dependencies  in  the  data,  and  it
processes the concatenated representation and learns to
extract relevant patterns and relationships. Specifically,
the input to the GRU network is a concatenation vector
of three different spatio-temporal information,
 

c = concat [Rmeta, Rspeed
h, w , Rloc

h, w] (7)

The  GRU  network  then  performs  the  task  of
predicting  the  temporal  ordering  of  this  fused
concatenation vector.

y′h, w

ŷL′
h, w

xh, w

L′

ŷL′
h, w VL

h,w

Finally,  the  output  of  the  GRU  is  passed  through  a
fully connected output layer, since  has a different
length with the final output that needs to be predicted.
That  applies  appropriate  transformations  and
computations to generate the prediction results  for
the  query  location .  This  output  is  a  multi-
dimensional vector, where each element represents the
speed  value  at  a  specific  time  point  in  the  monitored
time  series.  To  clarify,  the  dimension  of  this  vector
corresponds  to  the  length  of  the  time  series  to  be
predicted,  denoted  as .  There  is  no  overlap  time
series between the  and .

The  forward  propagation  process  of  representation
fusion  and  prediction  module  can  be  described  as
follows:
 

ŷL′
h, w = f GRU

h, w (c) (8)

Overall,  the  concatenation  fusion  technique,
combined  with  the  GRU  and  fully  connected  output
layer,  enables  the  model  to  effectively  leverage  the
global-aware  meta-representation,  temporal-aware
speed-representation,  and  location-aware  mapped-
representation  to  generate  accurate  and  detailed
prediction results for the given query location.
3.2.7　Optimization and inference

xh, w

ŷL′
h, w L′

ŷL′
h, w = [ŷ1

h, w, ŷ2
h, w, . . . , ŷl

h, w]

ŷL′
h, w yL′

h, w

yL′
h, w = [y1

h, w, y2
h, w, . . . , yl

h, w]

When  the  model  is  trained,  each  query  location 
produces  a  temporal  sequence  of  traffic  speed  values

,  consisting  of  time  points.  This  sequence  is
denoted as . To measure the
loss between  and the ground truth , the Mean
Squared Error (MSE) is used as the objective function.
The  ground  truth  sequence  is  represented  as

.  Thus,  the  loss  can  be
formulated as follows:
 

LossL′
h, w =

1
L′

L′∑
l

∥∥∥∥ŷL′
h, w− yL′

h, w

∥∥∥∥2
2

(9)
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The  neural  networks  in  MFGM,  SEM,  QLMM, and
RFPM  are  trained  to  converge  step  by  step  using  the
aforementioned  objective  function.  Due  to  the  diverse
and  complex  nature  of  global  reference  information,
MFGM  is  designed  to  be  bulky  and  heavy.  However,
once  the  model  converges,  the  global-aware  meta-
representation is  preserved and can effectively capture
the  extensive  global  reference  information.
Consequently,  after  the  training  process  is  completed,
only the lightweight  neural  networks in SEM, QLMM
and RFPM are utilized for fast and efficient inference.
Specifically, the location-aware mapped-representation
generated  by  QLMM  and  temporal-aware  speed-
representation achieved by SEM are directly fused with
the  saved  global-aware  meta-representation  and  fed
into RFPM to accomplish the prediction task.

4　Experiment

4.1　Implementation details

The experiments in this study utilize datasets obtained
from  Refs.  [59–61].  The  datasets  consist  of  a
comprehensive  collection  of  data  related  to  a  specific
city,  including 28 550 real  estate  listings, 497 256
points of interest, 250 000 traffic records, and over 100
million  pieces  of  geolocated  social  media  text.  To
effectively  utilize  the  different  types  of  data,  namely
real  estate  listings,  social  media  text,  and  points  of
interest,  they  are  considered  as  the  global  reference
information.  Prior  to  conducting  the  experiments,  the
reference  information  undergoes  a  preprocessing  step
to  extract  multiple  metrics  that  can  be  used  for
analysis.

● Social  media  text: All  the  retrieved  natural
language texts from social media platforms are fed into
a  pre-trained  Bidirectional  Encoder  Representations
from  Transformers  (BERT)[62] model.  This  process
generates a multi-dimensional vector for each grid cell,
representing  the  social  media  text  information.
Subsequently,  a  pre-trained  auto-encoder[63] is
employed to reduce the dimensionality of the obtained
vectors. The result is a multi-channel matrix that serves
as part of the training data for the experiments.

● Real  estates: The  average  price  of  all  real  estate
listings  within  each  grid  cell  is  considered  as  an
indicator of the living quality in that area. To represent
this information, a normalized average real estate price
is  used  as  the  real  estate  vector  for  each  grid  cell.  In
cases  where  there  is  no  real  estate  information

available  for  a  particular  grid  cell,  a  value  of  zero  is
assigned.  Ultimately,  a  single-channel  matrix  is
obtained  for  the  entire  gridded  map,  representing  the
real estate features.

● Points of interest: This part of data consists of 23
different categories, which collectively provide diverse
information about the interests and amenities present in
each  grid  cell.  To  represent  this  information,  a  count-
based  one-hot  encoding  technique  is  applied  to
vectorize  the  points  of  interest  within  each  grid  cell.
This  results  in  a  multi-channel  matrix  that  represents
the  points  of  interest  features  for  the  entire  gridded
map.

By  employing  these  preprocessing  techniques  and
representing  the  reference  information  in  various
formats,  the  experiments  aim  to  leverage  the  rich  and
diverse  data  available  to  gain  insights  and  make
informed analyses.

The  traffic  speed  values  used  in  the  model  are
categorized  into  two  parts:  inputs  and  outputs.  To
provide  a  comprehensive  overview,  the  entire  map
consists  of  approximately 250 000 grids,  out  of  which
around 24 000 grids  have  recorded  traffic  data.  Each
grid contains traffic data for 216 time points, covering
from  6:00  a.m.  to  12:00  a.m.  In  order  to  establish
input-output pairs  for  the traffic speed values,  27 time
points  (equivalent  to  45  minutes)  are  selected  as  the
input,  while  9  time  points  (equivalent  to  15  minutes)
are  designated  as  the  output.  These  pairs  are  utilized
for  training,  validation,  and  testing  purposes.  The
division  of  the  traffic  speed  values  into  these  sets  is
based on geographic locations, and the results obtained
from  the  testing  set  are  reported.  To  ensure  an
appropriate distribution, all grids are divided into three
sets:  training set,  validation set,  and test  set.  The ratio
of this division is 60% for the training set, 20% for the
validation  set,  and  20% for  the  test  set.  This  dataset
split  is  commonly  accepted  in  machine  learning  and
strikes  a  balance  between  having  a  sufficiently  large
test  set  for  meaningful  evaluation  and  ensuring  a
reasonable amount of data for training.

Furthermore,  we  conduct  our  experiment  with  a  set
of  standard  hyperparameters.  The  hyperparameters
used are listed in Table 1. During the training process,
the  model  tends  to  converge  approximately  after  10
epochs  as  shown  in Fig.  3.  As  the  problem  at  hand
transitions  from  a  classification  task  to  a  regression
task,  several  metrics  are  employed  to  evaluate  the
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models.  These  metrics  include  Mean  Absolute  Error
(MAE),  MSE,  Root  Mean Square  Error  (RMAE),  and
R-Squared  ( ). ,  known  as  the  coefficient  of
determination,  is  a  statistical  measure  that  represents
the proportion of the variance in the dependent variable
(target)  that  is  predictable  from  the  independent
variables (features) in a regression model. An  value
closed  to  1  indicates  that  the  model’s  predictions  are
highly  correlated  with  the  actual  data,  reflecting  a
model  that  captures  the  underlying  traffic  patterns
effectively.  Mathematically,  is  calculated using the

following formula:
 

R2 = 1− Sum of squared residuals
Total sum of squares

(10)

4.2　Results

R2

After  training  and  validating  the  entire  framework  on
the  selected  dataset,  quantitative  results  are  obtained
from  the  evaluation  on  the  testing  set,  as  shown  in
Table  2.  Since  our  framework  considers  the
relationship  between  various  spatial  modalities  and
temporal  speed  information,  which  is  currently  with
limited innovation in the field of traffic prediction, we
have conducted comparative experiments from separate
spatial  and  temporal  perspectives.  For  the  temporal
aspect,  RNN-based  traffic  prediction  method  is
employed,  with  RNN,  GRU[58],  and  LSTM[64] serving
as  three  kinds  of  baseline.  For  each  one,  we  conduct
experiments  with  hidden  layers  set  at  8,  16,  and  32.
Specifically, given speed values of a fixed time period
and  a  query  location,  these  baselines  could  output
subsequent  speed  values  on  that  geo-location.  For  the
spatial  aspect,  MFRM[44] is  used  as  the  baseline.  In
detail,  the  MFRM  network  only  utilizes  global-aware
meta-representation  and  location-aware  mapped-
representation,  excluding  the  temporal-aware  speed-
representation compared to our approach. As indicated
in Table  2,  all  metrics  of  the  main  experiment
outperform  the  baselines,  thus  demonstrating  the
effectiveness  of  the  proposed  framework.  Our
framework  boasts  the  highest  score  in  comparison
to  other  baseline  models,  indicating  that  it  effectively
captures  and  explains  all  variations  in  the  target
variable, showcasing its robust predictive capabilities.

 

Table 1    Hyperparameter table.
Hyperparameter Value

Batch size 16
Learning rate 1×10−3

Learning rate decay 0.1
Training epochs 20
Loss function MSE

Input sequence length 27
Ouput sequence length 9
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Fig. 3    Training loss curve and validation loss curve during
model training.

 

Table 2    Evaluation results on our method and baseline methods. MAE, MSE, and RMSE are arranged in descending order,
where lower values indicate better model performance; while R2 is arranged in ascending order, where higher values indicate
better model performance.

Model ↓MAE ↓MSE ↓RMSE R2 ↑ 
MFRM[44] 13.4479 281.5114 16.7783 0.1828
RNN (h=8) 9.9929 175.7345 13.2565 0.5009
RNN (h=16) 9.4586 158.9140 12.6061 0.5487
RNN (h=32) 9.3465 153.7023 12.3977 0.5635
LSTM (h=8) 9.5288 161.7115 12.7166 0.5407
LSTM (h=16) 8.4397 125.9219 11.2215 0.6424
LSTM (h=32) 8.3978 123.5179 11.1139 0.6492

GRU (h=8) 8.6617 135.2399 11.6293 0.6159
GRU (h=16) 8.4636 129.7345 11.3901 0.6316
GRU (h=32) 8.1421 117.7126 10.8495 0.6657

Ours 7.1297 91.4398 9.5624 0.7403
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Furthermore,  it  can  be  observed  that  the  addition  of
temporal information improves the performance of the
network  compared  to  the  MFRM[44],  which  solely
relies  on  spatial  information  from  the  map  for  traffic
speed  prediction.  This  suggests  that  our  model
successfully  integrates  both  spatial  and  temporal
information,  adding an extra dimension to the original
modality. The comparison between the baseline results
and  the  main  experimental  results  highlights  the
difficulty in obtaining meaningful prediction outcomes
by  solely  relying  on  the  simple  geographical
relationship  between  different  roads  on  a  large-scale
map.  This  further  validates  the  necessity  and
effectiveness of the proposed framework.

In  addition,  qualitative  results  are  also  presented
through Figs.  4 and 5.  These  images  are  selected  to
represent  two  different  areas  on  the  map  with  two
different  time  periods. Figure  4 displays  the  ground
truth  and  predicted  average  speed  values  from  15:00
p.m. to 15:45 p.m. Figure 5 shows the ground truth and
predicted  average  speed  values  from  19:30  p.m.  to
20:15  p.m.  The  selection  of  these  two  time  points
allows  for  the  observation  of  different  traffic  flows
during  less  busy  hours  in  the  afternoon  and  evening
rush  hours.  It  is  important  to  note  that  the  specific

speed  values  shown  in  the  images  are  the  average
values of traffic speed flow within the given time range
at each location. By comparing the observed real speed
values  with  the  predicted values  during the  same time
period, it can be observed that the ranges of values are
largely  consistent  in  many  locations.  Despite  the
differences  in  color  representation,  the  differences  in
value  range  are  generally  within  10  km/h.  This
demonstrates  the  robustness  and  accuracy  of  our
network.

4.3　Ablation study

In  the  eventual  fusion  stage  (i.e.,  RFPM)  of  the
framework,  the  global-aware  meta-representation  is
deactivated  by  replacing  the  original  fully  connected
layer with a zero-matrix. Similarly, when the location-
aware  mapped-representation  and  temporal-aware
speed-representation  are  deactivated,  their  respective
zero-matrices  are  also  incorporated  into  the  network,
which effectively nullify their influence on the model’s
output.  By  deactivating  these  representations,  the
model  focuses  solely  on  other  relevant  features,
allowed  for  a  more  targeted  analysis  of  the  remaining
representations  and  enhances  the  model’s  ability  to
capture and interpret specific patterns and relationships
within the data.
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(a) Area 1 on the map (b) Ground truth average speed
at 15:00-15:45.

(c) Predicted average speed at
15:00-15:45.
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Fig. 4    Qualitative results, (a) shows Area 1, (b) shows ground truth average speed values from 15:00 to 15:45, and (c) shows
predicted average speed values from 15:00 to 15:45
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(a) Area 2 on the map (b) Ground truth average speed
at 19:30-20:15.

(c) Predicted average speed at
19:30-20:15.
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Fig. 5    Qualitative results, (a) shows Area 2, (b) shows ground truth average speed values from 19:30 to 20:15, and (c) shows
predicted average speed values from 19:30 to 20:15
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The evaluation results, as shown in Table 3, indicate
that  not  only  do  the  three  modules  of  the  model
perform  individually,  but  also  their  combined
performance  falls  behind  the  network  structure  where
all  three  modules  are  integrated  together.  This  clearly
demonstrates  the  indispensability  of  the  three  parts  of
representations  in  the  proposed  framework.  It  is
noteworthy that the posterior information learned from
the  SEM,  plays  a  crucial  role  in  the  performance.
Additionally,  the  reference  information  included  in
global-aware  meta-representation  and  location-aware
mapped-representation  also  proves  to  be  decisive  in
making accurate predictions.

4.4　Inference performance analysis

We  have  conducted  a  comparative  analysis  of  our
model’s inference speed and performance, as illustrated
in Fig.  6.  Specifically,  the  vertical  axis  in  the  graph
represents  the  model’s  MAE  accuracy,  while  the
horizontal axis signifies the model’s inference time for
each  inference.  Our  model  exhibits  superior
performance,  with  its  inference  time  being  only
marginally  slower  than  that  of  LSTM  or  GRU
networks  by  less  than  20  ms.  Although  the  MFRM

network  shares  a  similar  structure  with  our  model,
including features of  global-aware meta-representation
and  location-aware  mapped-representation,  its
inference  time  surpasses  100  ms.  This  clearly
demonstrates  that  our  model  effectively  balances
inference speed and performance.

O(n)

O(1)

Moreover,  we  have  analyzed  the  complexity
associated  with  our  proposed  method.  In  our
experiments,  varying proportions  of  data  are  extracted
from  the  test  dataset  to  serve  as  inputs  for  the  model
(20%,  40%,  60%,  80%,  and  100%).  As  depicted  in
Fig.  7,  a  obvious  linear  correlation  emerges  between
the  time  spent  on  model  inference  and  the  volume  of
input  data,  establishing  our  algorithm’s  time
complexity  as .  Simultaneously,  we  observe  the
GPU  memory  consumption  during  inference
experiments,  revealing  a  fixed  value  during  inference.
This  underscores  our  algorithm’s  space  complexity,
which stands at .

5　Conclusion

We present an innovative method for large-scale traffic
speed  prediction  by  integrating  both  spatial  and
temporal  information.  By  effectively  representing  the

 

Table 3    Evaluation results with different representations. MAE, MSE, and RMSE are arranged in descending order, where
lower values indicate better model performance; while R2 is arranged in ascending order, where higher values indicate better
model performance.

Global-aware
meta-representation

Location-aware
mapped-representation

Temporal-aware
speed-representation ↓MAE ↓MSE ↓RMSE ↑R2 

✓ – – 22.4678 675.2606 25.9858 −0.9181
– ✓ – 21.2648 608.7488 24.6728 −0.7292
– – ✓ 7.1700 92.3510 9.6099 0.7377

✓ ✓ – 22.2869 665.1166 25.7899 −0.8893

✓ – ✓ 7.1379 91.7397 9.5781 0.7395
– ✓ ✓ 22.2823 664.9396 25.7864 −0.8888
✓ ✓ ✓ 7.1201 91.2136 9.5506 0.7410
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Fig. 7    Time  complexity  analysis  based  on  different
proportions of test dataset as input.
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Fig. 6    Inference time and performance comparison among
our method and baseline methods.

    632 Big Data Mining and Analytics, September 2024, 7(3): 621−636

 



intricate  interplay  between  spatial  and  temporal
features within traffic data, the proposed method offers
a  comprehensive  integration  of  abundant  information
available  on  extensive  maps  and  enable  precise
inference  on  traffic  conditions.  Moreover,  we
implement  our  method  through  extensive  experiments
using  real-world  large-scale  map  data,  demonstrating
its superior performance compared to existing methods.

There  are  numerous  directions  for  our  work  to
explore in the future.  Firstly,  our current methodology
is  based  on  learning  from  several  global  reference
information.  However,  in  our  implementation,  we  do
not consider mixing different types of global reference
information  in  different  proportions.  If  this  can  be
experimented with in future work, better results can be
obtained.  Secondly,  our  method  is  focusing  on  global
map  features.  So  we  may  consider  narrowing  the
receptive  field  to  localized  scopes,  which  allows
network  to  understand  and  interpret  data  better  based
on  the  features  learned.  Thirdly,  the  dataset  contains
multiple modalities. It would be worthwhile to consider
aligning  these  modalities  with  each  other.  This
approach  could  facilitate  the  development  of  a
comprehensive  model  to  predict  across  different
modalities.

In  summary,  this  paper  contributes  to  the  field  of
traffic  prediction  by  introducing  a  multimodal  fusion
framework.  The  proposed  approach  and  the  network
model  hold  substantial  potential  in  real-world  traffic
planning and management.
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