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Abstract: Accurate  prediction  of  peptide  spectra  is  crucial  for  improving  the  efficiency  and  reliability  of

proteomic analysis, as well as for gaining insight into various biological processes. In this study, we introduce

Deep MS Simulator (DMSS), a novel attention-based model tailored for forecasting theoretical spectra in mass

spectrometry.  DMSS  has  undergone  rigorous  validation  through  a  series  of  experiments,  consistently

demonstrating  superior  performance  compared  to  current  methods  in  forecasting  theoretical  spectra.  The

superior  ability  of  DMSS  to  distinguish  extremely  similar  peptides  highlights  the  potential  application  of

incorporating  our  predicted  intensity  information  into  mass  spectrometry  search  engines  to  enhance  the

accuracy  of  protein  identification.  These  findings  contribute  to  the  advancement  of  proteomics  analysis  and

highlight the potential of the DMSS as a valuable tool in the field.

Key words:  mass spectrometry; proteomics; machine learning; deep learning

1　Introduction

Mass spectrometry is a powerful analytical tool used in
the  field  of  proteomics  to  identify  and  characterize
proteins[1, 2].  Over  recent  years,  various  methods  have
emerged  for  peptide  identification  based  on  mass
spectrometry  data[3, 4].  Predicting  peptide  spectra  is  a
crucial facet of mass spectrometric analysis, facilitating
the  identification  and  quantification  of  peptides  in
intricate  biological  samples.  Accurate  prediction  of

peptide  spectra  is  crucial  for  enhancing  the  efficiency
and reliability of protein identification and for gaining
insights  into  various  biological  processes.  The
prediction of theoretical spectra involves generating the
expected  fragmentation  pattern  for  a  given  peptide
sequence  based  on  its  amino  acid  composition  and
known  fragmentation  rules[5].  By  comparing  the
experimental  spectrum  with  the  theoretical  spectrum,
researchers can identify the peptide sequence that  best
matches the observed fragmentation pattern. 
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The prediction of  theoretical  spectra  is  an  important
technique  in  peptide  identification,  regardless  of
whether  the  data  acquisition  method  used  is  Data-
Dependent  Acquisition  (DDA)[6, 7] or  Data-
Independent Acquisition (DIA)[8].

In  DDA,  mass  spectrometry  is  used  to  select  and
fragment  precursor  ions  based  on  their  intensity.  The
resulting tandem mass spectra are then compared with
the  theoretical  spectra  generated  from  a  peptide
sequence  database[9],  which  uses  search  engines[10−12].
The prediction of theoretical spectra helps to match the
observed  experimental  spectra  with  the  expected
fragmentation pattern of the peptides in the database to
find the best Peptide Spectrum Match (PSM). This aids
in  the  identification  of  the  peptides  present  in  the
sample.

Similarly,  in  DIA,  mass  spectrometry  is  used  to
acquire  fragment  ion  spectra  for  all  ions  within  a
specific m/z range in a single experiment. The acquired
spectra  are  then  analyzed  by  comparing  them  to
theoretical  spectra  from  a  peptide  sequence  database.
The prediction of theoretical spectra assists in matching
the  observed  fragment  ion  spectra  with  the  expected
fragmentation  patterns,  enabling  the  identification  of
peptides in the sample.

Using  theoretical  spectra  prediction,  researchers  can
improve  the  accuracy  and  efficiency  of  peptide
identification.  It  helps  in  reducing  false-positive
identifications  by  filtering  out  non-matching  spectra
and  focusing  on  the  most  relevant  matches.
Additionally,  it  enables  the  identification  of  post-
translational  modifications  and  other  sequence
variations that may be present in the peptides.

Overall, theoretical spectra prediction plays a crucial
role  in  both  DDA  and  DIA  methods,  aiding  in  the
accurate  identification  of  peptides  and  facilitating
proteomic analysis.

Over the years,  several  computational  methods have
been  developed  to  predict  peptide  spectra,  commonly
known as theoretical spectra, including those based on
physical as well as machine learning models.

The most commonly employed physical model is the
proton transfer  model,  on which MassAnalyzer[13] and
MS-Simulator[14] are  based.  MassAnalyzer  relies  on  a
molecular  dynamics  model,  considering  multiple
competing  fragmentation  pathways  and  employs
molecular  dynamics  simulations  to  calculate  the
theoretical  intensity  of  peptide  fragment  ions.  On  the

other hand, MS-Simulator simplifies the proton transfer
model,  taking  into  account  factors,  such  as  the
protonation  probability  of  amino  acids,  proton
distribution,  amino  acid  energy  levels,  as  well  as  the
influences of amino acids at the fragmentation site and
the peptide sequence. It utilizes a model with numerous
parameters  to  predict  the  intensity  of  theoretical
spectrum y-ion fragments.

Dating  back  two  decades,  the  earliest  machine
learning  based  methods  for  predicting  theoretical
spectra involved the use of decision trees[15] and single-
layer  neural  networks[16].  The  advancement  in  deep
learning[17] has  revolutionized  the  field  of  theoretical
spectra  prediction[18, 19].  Recurrent  Neural  Networks
(RNN), such as Long Short-Term Memory (LSTM)[20]

and  Gate  Recurrent  Unit  (GRU)[21],  are  well  suited  to
modeling  peptide  sequences  and  predict  their
fragmentation  spectra  due  to  their  inherent  abiliby  to
handle  variable-length  sequences[22],  which  are  highly
appropriate  for  modeling  sequential  data.  Among  all
these  methods,  the  most  representative  ones  are
pDeep[23, 24] and  Prosit[25].  pDeep  employs  a
bidirectional  LSTM  architecture  for  theoretical
spectrum prediction.  The  model’s  structure  takes  one-
hot  vector  representations  of  peptide  sequences  as
inputs.  It  then  processes  these  inputs  through  two
layers  of  bidirectional  LSTMs to  predict  fragment  ion
intensities. The median Pearson Correlation Coefficient
(PCC) for theoretical spectra predicted by pDeep often
exceeds  0.90.  However,  this  model  still  has  certain
limitations, including that the accuracy of predictions is
not  sufficiently  high,  particularly  when  precursors  are
charged singly or quadruply.

Unlike pDeep, which is made up of BiLSTM models,
Prosit,  proposed  by  Gessulat  et  al.[25],  utilizes  an
encoder-decoder  architecture.  The  encoder  component
encodes  sequence  information  using  a  bidirectional
GRU  model,  while  precursor  ion  charge  state  and
Normalized  Collision  Energy  (NCE)  are  encoded  as
metadata  through  a  feedforward  neural  network.  Both
the  sequence  encoding  and  metadata  encoding  are
combined to create the latent space for data prediction.
Afterward,  both  encodings  are  inputted  into  the
decoder,  constructed  using  bidirectional  GRU,  to
predict  retention  time  index  and  fragment  ion
intensities.

Transformer  model[26],  underpinned  by  the
fundamental  concept  of  attention,  has  emerged  as  a
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ubiquitous deep learning architecture in recent years. It
has  found widespread  applications  in  various  domains
such  as  computer  vision[27, 28] and  natural  language
process[29−32], and even extends its utility into the realm
of theoretical spectrum prediction[33, 34].

In  the  MS-Simulator,  based  on  the  proton  mobility
model, certain assumptions have been made. Firstly, it
is  assumed  that  the  intensity  of  y-ions  is  directly
proportional  to  the  probability  of  protonation  at  the
terminal site of the ion fragment, and the distribution of
protons  along  the  peptide  follows  the  Boltzmann
distribution.  Secondly,  the  energy levels  of  protonated
microstates  of  residues  are  influenced  by  other  amino
acids, with the effects being dependent on the distance
between  the  amino  acids.  These  assumptions,
combined  with  the  attention  mechanism  of
Transformer,  have  sparked  the  development  of  our
model,  an  attention-based  model  named  Deep  MS
Simulator (DMSS).

As  illustrated  in Fig. 1a,  DMSS  initiates  its
operations  by  encoding  the  amino  acid  sequence

through  a  one-hot  encoding  scheme.  In  this  scheme,
each  amino  acid  is  represented  as  a  binary  vector,
where  every  element  is  zero  except  for  the  element
corresponding to  the  specific  amino acid,  which  is  set
to  one.  This  encoding  method  enables  the  model  to
effectively  distinguish  between  different  amino  acids.
Subsequently,  the  encoded  amino  acid  sequences
traverse  multiple  layers  of  attention.  Each  attention
layer  comprises  self-attention  mechanisms  that
empower  the  model  to  focus  on  the  crucial
relationships  among  amino  acids.  These  relationships
are  characterized  by  attention  weights,  which
determine  the  relative  importance  of  each  amino  acid
in  the  context  of  others.  The  computation  of  these
attention  weights  involves  the  dot  product  of  query,
key, and value vectors derived from the encoded amino
acid  sequences.  The  ensuing  attention  scores  are  then
used  to  weigh  the  values,  which  are  essentially  linear
combinations  of  the  encoded amino acid  vectors.  This
sophisticated  process  enables  the  model  to  emphasize
relevant  amino  acids  while  efficiently  filtering  out
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Fig. 1    Model  architecture  of  DMSS.  Arrows  illustrate  the  information  flow  within  the  network.  (a)  Backbone  network  of
DMSS,  (b)  PositionEmbedding,  (c)  pepFormer,  and  (d)  IntensityPredictor  ( ,  are  intermediate
variables).
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irrelevant ones.
In  experimental  evaluations,  DMSS  has

demonstrated  superior  performance  in  mass  spectra
prediction  tasks,  achieving  state-of-the-art  results  on
benchmark  datasets.  Its  attention-based  approach
allows  it  to  effectively  capture  important  relationships
and dependencies within amino acid sequences, leading
to improved accuracy and predictive power.

2　Method

2.1　Model architecture

L−1 L

The  DMSS  network  is  illustrated  in Fig. 1a and
described  in  Algorithm  1.  The  DMSS  model  receives
peptide sequence along with its position index as input,
and  provides  predictions  for  the  intensities  of  length

 for peptides of length  of each ion type (b+, y+,
b++,  y++,  b+++,  y+++).  Taking  into  account  the
variety  of  ion  types  generated  by  precursor  ions  with
different  charges  (1+,  2+,  3+,  4+),  the  numbers  of
predicted ion types denotes as t,  are 2 (b+, y+), 2 (b+,
y+),  4  (b+,  y+,  b++,  y++),  and  6  (b+,  y+,  b++,  y++,
b+++,  y+++),  respectively.  Additionally,  we  consider
the  prediction  of  indexed  Retention  Time  (iRT)  as  a
special case where the number of predicted ions is 1.

The DMSS network is composed of two main stages.
The  first  part  is  made  up  of  four  pepFormer  blocks.
The original inputs are processed through these blocks,

L×d
L×L×d

generating  arrays  for  sequence  representations
and  arrays  for  position  representations.  The
network  trunk  is  followed  by  the  IntensityPredictor
module,  where  the  fully  updated  sequence
representations  are  utilized  to  predict  fragment  ion
intensity. In this module, we have designed an attention
module,  where  the  input  consists  of  sequence
representations and position representations, as well as
current fragment ion intensities, while the output yields
updated  sequence  representations.  After  the  updates,
the  IntensityPredictor  module  utilizes  the  updated
representations  to  predict  the  fragment  ion  intensities
(b- and y- ion intensities) and iRT.

The  incorporation  of  attention  in  our  model  arises
from  the  objective  of  capturing  the  interplay  between
amino  acids  and  their  mutual  influence.  As  attention
mechanisms  are  intrinsically  agnostic  to  positional
information,  we  address  this  limitation  by  leveraging
the  PositionEmbedding  module  to  encode  the  relative
positions  of  amino  acids.  The  resulting  position
representation is then introduced as a bias term during
the  sequence  representation  update  process  in
pepFormer  module.  The  PositionEmbedding  module
and  the  pepFormer  module  utilize  attention  models  to
depict  the  probability  of  protonation  for  each  amino
acid. Within the IntensityPredictor module, we employ
the  sequence  representation  to  facilitate  the  prediction
of  tandem  mass  spectrometry  (MS/MS)  spectra  using
attention-based  blocks.  Our  aim  is  for  the  sequence
representation to acquire a universal representation that
captures  the  essence  of  mass  spectrometry  prediction.
Remarkably,  our  expectations  are  demonstrated  in
Section  3.3,  where  we  conduct  fine-tuning  on  the
dataset with Q-Exactive HF instrument,  while keeping
the  Embedding  and  pepFormer  modules  frozen,
ultimately achieving impressive performance.
2.1.1　Position embedding

ai

bi

ri, j

ri, j

Position  representations  are  generated  using  the
PositionEmbedding  module,  as  illustrated  in Fig.  1b
and described in Algorithm 2. In this module, the one-
hot  encoded  sequence  representations  are  processed
through two independent linear layers,  yielding  and

,  which  are  then  summed  to  form  one  part  of  the
position  representations.  The  second  part  of  position
representations  involves  relative  positional  encoding,
where  is  calculated  by  the  difference  of  sequence
index of any two residues.  is encoded as a one-hot
vector,  and  then  linearly  transformed  to  obtain  the

 

Algorithm 1　DMSS
{mi} {indexi}Input: amino acid sequence , amino acid index 

{Ii, t}Output: intensity 
{si} {mi} ▷ si1:  =  Embedding  ( );  denotes  single  representation;

　Embedding ( ) is the function used to embed a tensor
{zi, j} {mi} {indexi} ▷ zi, j2:  =  PositionEmbedding  ( , );   denotes

　position representation
k Nupdate ▷Nupdate3: for =1 to  do  denotes the number of updates
{si} {si} {zi, j}4: 　　  = pepFormer ( , );

5: end for
ei6:  = 0;

k Npredict ▷ Npredict7: for =1  to  do   denotes  the  number  of
　iterations in the prediction process

{{si}, {ei}} {si} {zi, j} {ei}
▷ ei

8:  　　  =  IntensityPredictor  ( , , );  　　

　　　   denotes intensity representation
9: end for

Ii, t ei ▷

Ii, t

10:  = exp (view ( ));  exp ( ) is a function used to get the
　 exponentiation  of  a  tensor;  view  ( ) is  a  function  used  to
　 flatten a tensor;  denotes predicted intensities

{Ii, t}11: return 
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pi, j pi, j zi, jpositional  encoding .  is  then  added  to  to
obtain the position representations.
2.1.2　pepFormer

L×d L×L×d

si

qi vi ki

bi, j

zi, j

qi ki ai, j

The pepFormer block (see Algorithm 3) takes sequence
representations  and  position  representations  as  input,
with  size  and ,  respectively.  During  the
update,  sequence  representations  are  updated  using  a
gated  row-wise  self-attention  module  with  bias.  The
sequence representation  goes through linear layers to
produce the  query ,  value ,  and key  used in  the
attention  module.  The  bias  for  position
representation  is  generated  by  a  linear  layer,  and
used  with  and  to  build  the  attention  weight ,
incorporating positional information. In each block, the
updated  sequence  representation  is  incorporated  into
the position representation through the operation of the
outer  product,  effectively  synchronizing  the  updated
information  of  the  sequence  representation  with  the

position representation.
2.1.3　IntensityPredictor

si L×d
zi, j L×L×d
ei L× t

(L−1)× t
1× t
L× t

The input to the IntensityPredictor module (see Fig. 1d,
Algorithm 4) consists of three components: a sequence
representation  of  shape ,  a  position
representation  of  shape ,  and  an  initial
intensity vector  of shape . The shape of intensity
vectors  should  be ,  but  for  dimension
alignment,  a  tensor  is  padded  at  the  end  and
expanded  to .  The  output  consists  of  updated
intensity vectors and sequence representations, with the
shapes of both tensors remaining unchanged.

L× t ∆ei

ei

We construct  a  complex  attention  module,  in  which
attention  weights  are  contributed  by  the  sequence
representations,  position  representations,  and  intensity
representations. The output of the attention calculation
on the three parts is concatenated, and a linear layer is
applied  to  align  the  dimensions  with  the  sequence
representations.  The  updated  sequence  representations
are  obtained  by  the  residual  connection.  Using  the
updated  sequence  representations,  a  linear  layer  is
applied to obtain the update of intensity representation
of shape ,  denoted as ,  which is directly added
to .  To  give  practical  meaning  to  the  addition
operation  and  provide  interpretability  even  when  the

 

Algorithm 2　PositionEmbedding
{si} {indexi}Input: sequence representation , sequence index 
{zi, j}Output: position representation 

ai, bi si ▷1:  =  Linear  ( );  Linear(  )  is  a  function used for  linear
　 transformation on a tensor

zi, j ai b j2:  =  + ;
ri, j indexi index j ▷ ri, j3:  = − ;  denotes  the  distance  between

　 amino acids at positions i and j
zi, j ri, j4:  += Embedding ( );

{zi, j}5: return 

 

Algorithm 3　pepFormer
{si}

{zi, j}
Input: sequence  representation ,  position  representation
　　　

{si}Output: sequence representation 
Constant: feature dimension c

qi vi ki si1: , ,  = Linear ( );
bi, j zi, j2:  = Linear ( );
gi si ▷ gi3:  = sigmoid (Linear ( ));   denotes the gate

ai, j
1
√

c
qikT

j bi, j4:  = softmax ( + );

oi gi ⊙Σ jai, jv j ▷ oi5:  = ;   denotes the output after gating
si si oi6:  =  + Linear ( );
si si si7:  =  + Linear ( );
ai, bi si8:  = Linear ( );
oi, j ai ⊗bi ▷ oi, j

ai bi

9:  =  flatten  ( )   denotes  the  output  of  the  outer
　 product of  and 

zi, j oi, j10:  += Linear ( );
zi, j zi, j zi, j11:  =  + Linear ( );

{si}12: return 

 

Algorithm 4　IntensityPredictor
{si}

{zi, j} {ei}
Input: sequence  representation ,  position  representation

, intensity representation 
{si}

{ei}
Output: sequence  representation ,  intensity  representation

Constant: feature dimension c

qs
i vs

i ks
i si ▷ qs

i vs
i ks

i
si

1: , ,  =  Linear  ( );  , ,  denote  the  linear
　 encodings for 

qe
i ve

i ke
i ei ▷ qe

i ve
i ke

i
ei

2: , ,  =  Linear  ( );  , ,  denote  the  linear
　encodings for 

bi, j ei, j3:  = Linear ( );

ai, j

ws√
c

qs
i (ks

j)
T we√

c
qe

i (ke
j)

T
wbbi, j ▷ws, we

wb

4:  = softmax (  +  +  ); ,
　 and  denote weights assigned to each item

os
i = Σ jai, jvs

j ▷ os
i5: ;   denotes output of single representation

oe
i = Σ jai, jve

j ▷ oe
i6: ;   denotes output of intensity representation

op
i = Σ jai, jzi, j ▷ op

i7: ;   denotes output of position representation

oi os
i oe

i op
i ▷ oi8:  = Linear (contact ( , , ));   denotes output after

　 concatenating
si oi9:  += Linear ( );
ei si10:  += Linear ( );

{si} {ei}11: return  and 
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ei = ln (Ii, t) Ii, t

output intensities are negative, we change the target of
predicting intensities to predict the natural logarithm of
fragment  ion  intensities,  i.e.,  (where  is
the fragment ion intensity). In the first stacked intensity
prediction  module,  the  given  current  fragment  ion
intensities are all set to 0.

2.2　Statistics

The  network  is  trained  end-to-end,  with  gradients
coming  from  the  similarity  loss  of  the  theoretical
spectrum and experimental spectrum. Here, we employ
cosine  similarity  to  measure  the  similarity  between
theoretical spectra and experimental spectra, which was
calculated  by  torch.nn.functional.cosine_similarity.
Since  the  cosine  similarity  values  typically  fall  within
the  range  of −1  to  1,  we  normalize  this  range  to  be
between  0  and  1  through  mathematical  operations.
Subsequently,  we  employ  this  scaled  cosine  similarity
as our training loss, and its expression is as follows:
 

L = 1
2

(1− A ·B
||A||2 · ||B||2

) (1)

where A and B are  the  predicted  and  experimental
spectras, respectively.

We utilize PCC and Spectral Angle (SA) to evaluate
the  similarity  between A and B.  The  definition  is  as
follows:
 

PCC (S a,S b) =
MD (S a)×MD (S b)

||MD (S a)||2× ||MD (S b)||2
(2)

S a S b

MD (S )
S

where  is  predicted  mass  spectrum,  is  the
experimental  mass  spectrum,  and  is  the  mean
deviation of . The MD (S) of a tensor S with length n
is defined as
 

MD (S ) = S − 1
n

n∑
i=1

S i (3)

|| S ||2 S is the 2-norm of ,
 

||S ||2 =
√

n∑
i=1

S 2
i (4)

Spectral contrast angle SA[35] is defined as
 

SA (S a,S b) = 1−
2cos−1(

S a

||S a|| 2
· S b

||S b||2
)

π
(5)

2.3　Model training

We employ the Adam optimizer[36] with a batch size of
32, and train for 64 epochs using the entire dataset. The
initial  learning rate is set  to 0.001, and a cosine decay
strategy is utilized to adjust the learning rate. The latent

variables  have  a  dimension  of  256,  and  there  are  8
attention heads. The training is performed on 4 Nvidia
RTX  2080Ti/11G  GPUs,  with  Pytorch  1.10.0  and
Python 3.8 as dependencies.

2.4　Competing methods

For  the  pDeep2  method,  we  download  its  code  from
https://github.com/pFindStudio/pDeep/tree/master/
pDeep2 and  use  the  trained  model  mixed-180 322-
multi_ce_Layer.ckpt  to  predict  the  intensities  of
fragment ions.  For the Prosit  method,  we organize the
sequence  and  collision  energy  information  of  the  test
set into a .hdf5 file and submit it to the server of Prosit
(https://www.proteomicsdb.org/prosit), and then utilize
Prosit_2020_intensity_hcd  model  to  calculate  the
predicted results.

3　Result

3.1　Dataset

For  our  evaluation,  we  choose  the  ProteomeTools
dataset[37],  which  consists  of  high-quality  synthetic
peptides.  This  dataset  is  created  using  a  Lumos
instrument  and  utilizes  Higher-energy  Collisional
Dissociation  (HCD)  fragmentation[38].  The
fragmentation  process  involves  six  commonly  used
NCEs: 20, 23, 25, 28, 30, and 35.

We  acquire  data  from https://figshare.com/projects/
prosit/35582,  which  are  divided  into  three  sets:  a
training set, a validation set to prevent overfitting, and
a  testing  set  to  accurately  estimate  performance,  in  a
7: 2: 1 ratio, and convert the .hdf5 format to .pkl format
for evaluation. The training, validation, and testing sets
each  consists  of 8 230 360, 2 342 856,  and 1 169 429
PSMs, respectively. The length of peptides falls within
the  range  of  7  to  30.  Refer  to Table  1 for  more
information on the data distribution. Additionally, there
is  a  pre-divided  retention  time  dataset  available,  also
obtained  from  the  link  above,  consisting  of  distinct
peptide  sequences  across  the  training,  validation,  and
testing  datasets,  with  sizes  of 921 296, 263 226,  and
109 133, respectively.

We download Bekker-Jensen et al.[39] dataset, which
is  obtained  from  Q-Exactive  HF  instrument,  and  the
PRIDE repository with the identifier  PXD004452.  We
expect  to  achieve  optimal  results  through  fine-tuning
using a relatively small amount of data. Therefore, we
randomly  partition  the  dataset  illustrated  in Table  2,
ensuring  that  there  is  no  overlap  between  peptide
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sequences in the training and testing sets.

3.2　Performance  of  DMSS  in  predicting  b/y
intensities

In  our  study,  separate  models  are  developed  for
precursor charges of 1, 2, 3, and 4. Each model predicts
fragmentation spectra for six NCEs: 20, 23, 25, 28, 30,
and  35.  We  evaluate  the  predictive  capabilities  of
DMSS  in  determining  b/y  peak  intensities,  and
compare  it  with  Prosit  and  pDeep2.  Our  results,
presented in Fig. 2, demonstrates that DMSS possesses
exceptional  abilities  that  set  it  apart  from  other
methods.  To  establish  a  benchmark,  we  use  the  PCC
and  SA  between  experimental  spectra  of  the  same
sequence  in  the  test  set. Figure  2 presents  the
distributions of PCC and SA between the predicted and
experimental  b/y  intensities  for  DMSS,  pDeep2,  and
Prosit  with  precursor  ion  charges  of  1,  2,  3,  and  4.

From Fig. 2, it is evident that among the three methods,
DMSS exhibits  a  higher  value  of  PCC and  SA values
in the high similarity range compared to the other two
methods, reflecting its superior accuracy.

The  results  of  DMSS  are  presented  in Tables  3−6,
including the mean (SAmean) and median (SAmedian)
of  SA,  the  proportions  of  results  with  SA  are  greater
than  0.70  (SA70),  0.90  (SA90),  and  0.95  (SA95),  as
well  as  the  same  for  PCC.  The  median  SA values  for
precursor  charges  of  1,  2,  3,  and  4  are  0.896,  0.925,
0.900, and 0.840, respectively. The median PCC values
for the same precursor charges are 0.981, 0.990, 0.985,
and  0.965,  respectively.  DMSS  has  demonstrated
superior  performance  in  predicting  fragment  ion
intensities,  especially  for  doubly  charged  precursors,
where its predictions closely approach the upper limits
for  both  PCC  and  SA  compared  to  experimental  b/y
peak intensities. In addition, DMSS outperforms Prosit
and pDeep2 significantly for singly charged precursors,
with  an  improvement  of  around  8% in  SA  median
compared  to  Prosit  and  22% compared  to  pDeep2,  as
shown in Table 3.

In Tables  3−6,  DMSS  demonstrates  significant
improvements  in  metrics  measuring  the  proportion  of
high-quality  predicted  spectra  (SA90,  SA95,  PCC90,
and  PCC95)  compared  to  Prosit  and  pDeep2  for  each
precursor  charge.  These  results  underscore  the
impressive capability of DMSS in accurately predicting
high-quality  mass  spectra. Figure  3 displays  the  box
plots  of  SA and  PCC for  each  precursor  charge  at  six

 

Table 1    Dataset information.

Dataset
Precursor charge

Total
1+ 2+ 3+ 4+

Training 378 844 4 736 942 2 554 873 559 701 8 230 360
Validation 106 347 1 339 767 733 446 163 296 2 342 856

Testing 55 566 669 350 364 519 79 994 1 169 429
 

Table 2    Bekker-Jensen et al.[39] dataset information.

Dataset
Precursor charge

Total
1+ 2+ 3+ 4+

Training 4867 19 787 21 858 22 820 69 332
Testing 30 369 1 389 091 1 093 665 431 764 2 944 889
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Fig. 2    Peptide MS/MS spectrum prediction.
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NCEs. It is evident that DMSS surpasses the other two
methods in all  scenarios.  It  also highlights that  DMSS
exhibits  a  more  concentrated  distribution  of  PCC  and
SA for  each  precursor  ion  charge  state  and  across  the

six  NCEs.  Upon  calculation,  DMSS  shows  lower
variances  in  both  PCC  and  SA,  with  values  of  0.004
and  0.007,  respectively,  compared  to  pDeep2  (0.017,
0.019)  and  Prosit  (0.006,  0.010).  These  findings

 

Table 3    Performance metrics for SA and PCC of singly charged precursors.

Method
Index

SAmedian SAmean SA70 SA90 SA95 PCCmedian PCCmean PCC70 PCC90 PCC95
pDeep2 0.674 0.662 0.448 0.048 0.003 0.810 0.737 0.636 0.338 0.200
Prosit 0.814 0.801 0.832 0.206 0.044 0.940 0.905 0.949 0.658 0.450
DMSS 0.896 0.871 0.952 0.474 0.103 0.981 0.953 0.977 0.899 0.776

 

Table 4    Performance metrics for SA and PCC of doubly charged precursors.

Method
Index

SAmedian SAmean SA70 SA90 SA95 PCCmedian PCCmean PCC70 PCC90 PCC95
pDeep2 0.883 0.859 0.933 0.409 0.112 0.975 0.946 0.977 0.852 0.697
Prosit 0.899 0.879 0.967 0.493 0.112 0.981 0.961 0.988 0.916 0.786
DMSS 0.925 0.907 0.980 0.687 0.251 0.990 0.974 0.992 0.957 0.891

 

Table 5    Performance metrics for SA and PCC of triply charged precursors.

Method
Index

SAmedian SAmean SA70 SA90 SA95 PCCmedian PCCmean PCC70 PCC90 PCC95
pDeep2 0.852 0.804 0.822 0.299 0.070 0.968 0.912 0.928 0.774 0.619
Prosit 0.860 0.835 0.901 0.293 0.051 0.972 0.945 0.983 0.850 0.674
DMSS 0.900 0.880 0.965 0.498 0.120 0.985 0.969 0.992 0.945 0.855

 

Table 6    Performance metrics for SA and PCC of quadruply charged precursors.

Method
Index

SAmedian SAmean SA70 SA90 SA95 PCCmedian PCCmean PCC70 PCC90 PCC95
pDeep2 0.800 0.761 0.740 0.117 0.010 0.944 0.893 0.921 0.677 0.463
Prosit 0.803 0.782 0.811 0.103 0.012 0.947 0.920 0.972 0.747 0.480
DMSS 0.840 0.819 0.904 0.161 0.015 0.965 0.943 0.983 0.864 0.650
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Fig. 3    Boxplots of peptide MS/MS spectrum prediction.
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demonstrate  the  stability  of  our  method’s  prediction
performance.

Despite  the  increase  in  model  complexity,  our
execution  time  remains  relatively  fast.  Employing  our
proposed method for inference on a single 2080Ti/11G
GPU,  the  prediction  time  for 10 000 spectra  is
approximately 13.8 seconds. Considering the relatively
affordable  cost  of  the  2080  Ti  GPU,  it  is  a  viable
option for most researchers and practitioners.

3.3　Performance on Other Datasets

To  assess  the  generalization  capability  of  our  model,
we  conduct  experiments  using  the  Bekker-Jensen
et  al.’s[39] dataset  acquired  from  the  Q-Exactive  HF
instrument. Specifically, we perform fine-tuning on the
train set while keeping the Embedding and pepFormer
modules  unchanged,  and  solely  focus  on  fine-tuning
the  IntensityPredictor  module.  The  experimental
results,  as  presented  in Table  7,  reveal  that  both  the
median and mean values of PCC are above 0.9 and of
SA  are  above  0.8,  indicating  the  effectiveness  of  our
proposed  approach.  Furthermore,  we  conduct  a
comparative analysis with the QE mode of pDeep2 and
the  Prosit  model.  Notably,  our  approach  exhibits
superior performance compared to both of others.

3.4　Performance of DMSS in predicting iRT

To  assess  the  predictive  capability  of  our  model  for

∆ 95%

∆ 95%

iRT, we train it using a dataset of 921 296 peptides, and
then  evaluate  it  on  an  independent  test  set  of 109 133
peptides. The results, as shown in Fig. 4, reveal a PCC
of  0.993,  indicating  a  strong  agreement  between  the
predicted  and  experimental  iRT  values.  The iRT
is  calculated  to  be  4.52,  which  is  the  difference
between the predicted iRT values and the experimental
iRT  values  within  a  95% confidence  interval.  This
small iRT  suggests  that  the majority of  predicted
iRT  values  are  very  close  to  the  experimental  values,
demonstrating  that  the  model’s  predictions  are  highly
accurate  and  reliable.  These  findings  demonstrate  that
the trained model has a strong predictive capability for
iRT, being able to accurately predict the retention times
of  peptides  based  on  their  characteristics  and
properties.  This  information  is  beneficial  in  various
applications,  such  as  peptide  identification  in
proteomics  research  or  optimizing  chromatography
conditions in analytical chemistry.

3.5　Distinguish  extremely  similar  peptides  by
DMSS

The  identification  of  peptides  in  existing  proteomics
search  engines  heavily  relies  on  mass  information
alone.  However,  accurately  identifying  peptides
becomes  problematic  when  amino  acids  with  similar
masses are present, such as ‘I’ and ‘L’, ‘GG’ and ‘N’,
or ‘AG’ and ‘Q’. In order to address this challenge, we
propose incorporating intensity information to improve
the  matching  outcomes.  To  evaluate  the  effectiveness
of  our  proposed  approach  in  distinguishing  these
ambiguous cases, we conduct a series of experiments.

In  our  experiments,  we  select  peptides  from test  set
that  contains  the  aforementioned  ambiguous  amino
acid pairs (‘AG’, ‘GG’, and ‘I’), which are considered
true  peptides.  We  then  alter  these  amino  acid  pairs  to
generate fake peptides, replacing ‘AG’ with ‘Q’, ‘GG’
with ‘N’, and ‘I’ with ‘L’. We use Prosit, pDeep2, and
DMSS  to  predict  both  the  true  peptides  and  the  fake
peptides.  The  differences  between  the  true  peptides
(PCCtrue and SAtrue) and the fake peptides (PCCfake and
SAfake)  are  analyzed  and  visualized  in Fig.  5.  The
results  obtained  by  swapping  true  peptides  and  fake
peptides are illustrated in Fig. 6.

true > 0.9 true > 0.9

Figures 5 and 6 depict the count of cases in which the
difference  between  the  metrics  of  true  peptides  and
fake  peptides,  for  PCC  and  SA ,  is
greater than zero for the three methods. Figures 5 and 6
also illustrate  the number of  peptides for  each method

 

Table 7    Performance on Bekker-Jensen dataset[39].

Method
Index

SAmedian SAmean PCCmedian PCCmean
pDeep2 0.738 0.639 0.887 0.731
Prosit 0.685 0.576 0.837 0.661
DMSS 0.857 0.806 0.968 0.910
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Fig. 4    Peptide iRT prediction.
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true truewhen  PCC  and  SA  are  greater  than  0.9,  as  well
as the proportion of this number to the total number of
test  data.  It  is  evident  that  under  conditions  where  the
metrics  exceed  0.9,  signifying  high  confidence  in  the
predicted  spectra,  DMSS  demonstrates  superior
capability  in  distinguishing  similar  peptides  compared
to the other two methods.

These findings demonstrate the robust discriminatory
capabilities  of  DMSS compared  to  Prosit  and  pDeep2
when  confronted  with  ambiguous  amino  acids.  The

superior ability of DMSS to distinguish between ‘AG’
and ‘Q’, ‘GG’ and ‘N’,  and ‘I’ and ‘L’ highlights  the
potential  application  of  incorporating  our  predicted
intensity  information  into  mass  spectrometry  search
engines to enhance peptide identification accuracy. The
outstanding  discrimination  of  these  ambiguous  amino
acids  by  DMSS suggests  that  leveraging the  predicted
intensity information can provide valuable insights for
improving  the  accuracy  and  reliability  of  peptide
identification in proteomic studies.
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Fig. 5    Distinguish similar peptides when replacing ‘AG’ with ‘Q’, ‘GG’ with ‘N’, and ‘I’ with ‘L’.
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Fig. 6    Distinguish similar peptides when replacing ‘Q’ with ‘AG, ‘N’ with ‘GG’ and ‘L’ with ‘I’.
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4　Conclusion

In  this  study,  we  introduce  DMSS,  a  novel  approach
for  accurately  predicting  iRT  and  fragment  ion
intensities in proteomics analysis. The results obtained
from  our  experiments  yield  valuable  insights  into  the
effectiveness  of  DMSS,  and  the  remarkable
performance  for  predicting  iRT  and  fragment  ion
intensities  also shed light  on the potential  applications
and  prospects  of  DMSS  in  advancing  peptide
identification and spectral library generation.

Additionally, we investigate the capability of DMSS
to distinguish  extremely similar  peptides.  Specifically,
we  examine  the  discrimination  between ‘I’ and ‘L’,
‘GG’ and ‘N’,  and ‘AG’ and ‘Q’ cases.  The  results
show  that  DMSS  achieves  superior  performance  in
distinguishing  these  similar  peptides  compared  to
existing  methods,  which  demonstrates  potential
application  of  incorporating  our  predicted  intensity
information  into  mass  spectrometry  search  engines  to
enhance peptide identification accuracy.

While our study has yielded promising results,  there
are several avenues for future research. Firstly, further
investigations  could  focus  on  expanding  the  scope  of
similar  peptide  discrimination  to  other  ambiguous
amino  acid  cases.  Additionally,  the  performance  of
DMSS  on  larger  and  more  diverse  datasets  could  be
explored  to  evaluate  its  scalability  and  generalization
capability.  Furthermore,  the  potential  application  of
DMSS in other aspects of proteomics analysis, such as
post-translational  modification  identification,  warrants
further exploration.

In  conclusion,  our  study  demonstrates  the
effectiveness of DMSS in predicting iRT and fragment
ion intensities  from peptide  sequences.  These  findings
contribute  to  the  advancement  of  proteomics  analysis
and highlight the potential of DMSS as a valuable tool
in  the  field.  Further  research  in  this  direction  has  the
potential  to  enhance  the  accuracy  and  reliability  of
proteomics data analysis,  facilitating new insights  into
biological systems and disease mechanisms.
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