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Abstract—This study proposes an adaptive experimental design
framework for a channel-simulation-based base station (BS)
design that supports the joint optimization of transmission power
and placement. We consider a system in which multiple transmit-
ters provide wireless services over a shared frequency band. Our
objective is to maximize the average throughput within an area
of interest. System operators can design the system configura-
tions prior to deployment by iterating them through channel
simulations and updating the parameters. However, accurate
channel simulations are computationally expensive; therefore, it
is preferable to configure the system using a limited number
of simulation iterations. We develop a solver for the problem
based on Bayesian optimization (BO), a black-box optimization
method. The numerical results demonstrate that our proposed
framework can achieve 18-22% higher throughput performance
than conventional placement and power optimization strategies.

Index Terms—Channel simulation, adaptive experimental de-
sign, Bayesian optimization, log-normal shadowing

I. INTRODUCTION

Designing wireless systems before deployment is a typical,
but essential task for efficient spectrum utilization. For ex-
ample, in a sixth-generation (6G) network [1], operators must
configure the parameters for dense base stations (BSs), such as
BS placement and transmission power values, to provide stable
wireless service in an area of interest under limited frequency
resources. Furthermore, public Wi-Fi [2] and smart stadiums
[3] are examples of such systems.

If the wireless channel is influenced solely by path loss,
then BS placement can be optimized using lightweight channel
simulations based on empirical path loss models. However,
in practice, shadowing effects often degrade the system per-
formance. The shadowing effect, which is a stochastic pro-
cess, can only be quantified after determining the positions
of the transmitters through channel simulations or actual
measurements, rendering white-box optimization frameworks
impractical. To proactively incorporate shadowing effects into
the system design, it is necessary to iterate through parameter
selection, channel simulation, and performance evaluation.
However, high-precision channel simulations (e.g., ray tracing)
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are computationally intensive and often require several hours
to days per evaluation, thereby limiting the feasibility of con-
ducting numerous simulations. This challenge herein motivates
us to explore how to find the optimal BS configurations with
as few channel simulations as possible.

Recently, adaptive experimental design has gained traction
across various fields, including robotics, neuroscience, and
materials discovery [4]. This data-driven framework designs
experiments by iteratively sampling parameters, evaluating the
performance, and predicting the performance for unknown
inputs based on data-driven models. By employing a Gaussian
process (GP)-based black-box optimization method known
as Bayesian optimization (BO), optimal parameters can be
identified with a limited number of simulations, greatly re-
ducing design costs; BO will enable high-performance BS
configurations with reduced simulation costs.

In this letter, we propose an adaptive experimental design
framework for a simulation-based BS design that supports
the joint optimization of placement and transmission power.
Some recent studies have shown the benefits of BO in wireless
systems (e.g., task offloading in mobile edge computing [5]
and wireless resource allocation [6]). These studies suggest
that BO-based optimizers can enhance system performance
with fixed BS placements over time-varying wireless channels,
even when performance metrics are treated as black boxes. In
contrast to these studies, our approach focuses on exploring
BS placements and transmission power settings to achieve high
throughput over spatially-varying channels before system de-
ployment. The objective is to maximize the average throughput
in an area of interest, modeled as a black-box function due to
shadowing. We propose an optimizer based on a nested BO
architecture, and numerical simulations demonstrate that our
framework achieves superior average throughput per unit area
with fewer channel simulations.

II. SYSTEM MODEL

We consider a scenario in which multiple BSs provide wire-
less communication services in a two-dimensional area. Their
operator tunes the BS placements and transmission power
values before system deployment through several channel
simulation trials to ensure that the average throughput within
the area of interest is maximized, as shown in Fig. 1.

We define the set of BSs as B = {B𝑖 | 𝑖 = 1, 2, · · · , 𝑁Tx}.
where B𝑖 denotes the 𝑖-th BS and 𝑁Tx is the number of BSs.
We also express the region of interest as A =

⋃𝑁Tx
𝑖=1 A𝑖 , where
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Fig. 1. System model.

A𝑖 (∈ R2) is the possible coordinate of the 𝑖-th BS. Assuming
that the channel follows path loss and shadowing, the received
signal power from the 𝑖-th coordinate xTx,𝑖 (∈ A𝑖) to the
coordinate x(∈ A) can be modeled as

𝑃Rx,𝑖 (x) = 𝑃Tx,𝑖𝑑
−𝜂

𝑖
𝑤(x,xTx,𝑖) [mW], (1)

where 𝑑𝑖 = | |xTx,𝑖 − x| | [m] is the communication distance
(| | · | | is the Euclidean distance), 𝜂 is the path loss index,
and 𝑃Tx,𝑖 [mW] is the transmission power of the 𝑖-th BS.
Furthermore, 𝑤(x,xTx,𝑖) represents the shadowing, indicating
a spatial correlation between peer-to-peer wireless links [7].

When all BSs transmit signals simultaneously over a shared
frequency band, the channel capacity of the 𝑖-th BS at x is
given by

𝐶𝑖 (x) = 𝐵 log2

(
1 +

𝑃Rx,𝑖 (x)∑
B\B𝑖

𝑃Rx, 𝑗 (x) + 𝐵𝑁0

)
[bps] (2)

where 𝐵 [Hz] is the bandwidth and 𝑁0 [mW/Hz] is the additive
white Gaussian noise (AWGN). Herein, we define a set of
input parameters as 𝜙 = {XTx,PTx} where

XTx =
{
xTx,𝑖 | 𝑖 = 1, 2, · · · 𝑁Tx

}
, (3)

PTx =
{
𝑃Tx,𝑖 | 𝑖 = 1, 2, · · · 𝑁Tx

}
. (4)

The objective is to maximize the average throughput per
unit area

[
bps/m2] in the region of interest A; i.e.,

maximize
𝜙

[
𝑓 (𝜙) :=

1
|A|

𝑁Tx∑︁
𝑖=1

∫
A
𝐶𝑖 (x)𝑑x

]
(5a)

subject to 0 ≤ 𝑃Tx,𝑖 ≤ 𝑃max, ∀𝑖, (5b)
xTx,𝑖 ∈ A𝑖 ,∀𝑖, (5c)

where 𝑃max [mW] is the maximum transmission power.
Note that if the system can utilize multiple channels, the ob-

jective function can be extended to 𝑓 ′ (𝜙) = ∑𝑛 𝑓

𝑙=1 𝑓𝑙 (𝜙) because
of the orthogonality between channels, where 𝑛 𝑓 denotes the
number of channels and 𝑓𝑙 is the average throughput per unit
area in the 𝑙-th channel. Based on the additive decomposition
of the objective function [8], the proposed method can support
this by optimizing the placement and transmission powers
for each 𝑓𝑖 by using the proposed framework. Since this
extension is straightforward, this study focuses on improving
the efficiency of a single channel.

Furthermore, the proposed method can be extended to a
3D environment without modification by redefining the 2D
vector xTx,𝑖 as a 3D vector. However, this extension increases
the number of parameters that must be tuned, which may
slightly degrade the convergence performance with respect to
the number of simulations.

III. ADAPTIVE EXPERIMENTAL DESIGN VIA BO
Before introducing the proposed framework, this section

summarizes the BO. To present the BO separately from prob-
lem (5), we denote the set of input parameters to be optimized
and the objective function as 𝜓 and ℎ(𝜓), respectively. The
objective in the BO can be given by

𝜓opt = argmax
𝜓∈ΨFR

ℎ(𝜓), (6)

where ΨFR denotes the feasible region for the input parameters.
The method can be divided into three steps: (i) initialization,
(ii) Gaussian process regression (GPR), and (iii) parameter
update based on acquisition function. We detail these steps as
follows. This algorithm is summarized in Alg. 1.

1) Initialization: Initially, several simulation trials are per-
formed to develop an initial dataset

D (0) =
{[
𝜓 (𝑡 ) , 𝑦 (𝑡 )

] ��� 𝑡 = 1, 2, · · · , 𝑁init
}
, (7)

where 𝑁init indicates the number of initial trials and 𝜓 (𝑡 ) indi-
cates the 𝑡-th initial input randomly selected from the feasible
region. In addition, 𝑦 (𝑡 ) = ℎ

(
𝜓 (𝑡 ) ) + 𝜖 is the observation value

and 𝜖 is the observation noise.
2) GPR: This step estimates the distribution of the ob-

servation 𝑝
(
𝑦
�� D (𝑡 ) ) based on GPR, a kernel-based non-

parametric regression method that assumes a GP for the target
function. To this end, we first tune a set of hyperparameters
𝜃 = {ω, 𝜎𝜖 }, where ω represents the hyperparameter vector
for a kernel function 𝑘 . Note that 𝑘 measures the similarity
between data points in a multi-dimensional space (e.g., the
radial basis function (RBF)) The tuning of 𝜃 can be achieved
by maximizing the following log-marginal likelihood:

log 𝑝 (y | X , 𝜃) = − 1
2
(y −m)T

(
K + 𝜎2

𝜖 I
)−1

(y −m)

− 1
2

log det
(
K + 𝜎2

𝜖 I
)
− |D|

2
log 2𝜋, (8)

where I is the |D| × |D| identity matrix and K ∈ R |D |× |D |

is the kernel matrix, where its element is 𝐾𝑖 𝑗 = 𝑘 (𝜓 (𝑖) , 𝜓 ( 𝑗 ) ).
Further, m is a vector with (𝑡 + 𝑁init) elements, where its 𝑖-th
element 𝑚

(
𝜓 (𝑖) ) represents the prior mean at 𝜓 (𝑖) ; it can be

estimated as 𝑚
(
𝜓 (𝑖) ) = 1

|D |
∑ |D |

𝑡=1 𝑦
(𝑡 ) ,∀𝑖.

After the maximum likelihood estimation (MLE), the GPR
predicts the distribution of the output for unknown inputs Ψ∗ ={
𝜓∗,𝑖

�� 𝑖 = 1, 2, · · · , 𝑁test
}
, where 𝑁test indicates the number of

unknown inputs that must be interpolated. For an unknown
input 𝜓∗, the output mean and variance can be expressed by
the following equations:

𝜇(𝜓∗) = 𝑚(𝜓∗) + kT (Ψ, 𝜓∗)
(
K + 𝜎2

𝜖 I
)−1

(y −m) (9)

𝜎2 (𝜓∗) = 𝑘 (𝜓∗, 𝜓∗) − kT (Ψ, 𝜓∗)
(
K + 𝜎2

𝜖 I
)−1

k(Ψ, 𝜓∗),
(10)

where Ψ = {𝜓𝑖 | 𝑖 = 1, 2, · · · , 𝑡 + 𝑁init}, and

k(Ψ, 𝜓∗) = [𝑘 (𝜓1, 𝜓∗), · · · , 𝑘 (𝑡 + 𝑁init, 𝜓∗)]T . (11)

Finally, we can predict the observation distribution at 𝜓∗ as
the normal distribution with mean 𝜇(𝜓∗) and variance 𝜎2 (𝜓∗).
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Algorithm 1 BO for adaptive experimental design

Require: D (0) =
{[
𝜓 (𝑡 ) , 𝑦 (𝑡 )

] �� 𝑡 = 1, 2, · · · , 𝑁init
}

1: for 𝑡 = 1, 2, · · · , 𝑇 do
2: Kernel tuning with MLE and D (𝑡 )

3: Randomly sample a set Ψ∗
4: Calculate 𝜇 and 𝜎2 for 𝜓∗,𝑖 ∈ Ψ∗ by Eqs. (9)(10)
5: Calculate 𝛼 for 𝜓∗,𝑖 ∈ Ψ∗ by Eq. (12)
6: Select 𝜓 (𝑡+1) by Eq. (13).
7: Observe 𝑦 (𝑡+1) = ℎ

(
𝜓 (𝑡+1) ) + 𝜖

8: Update the dataset as D (𝑡+1) =D (𝑡 ) ∪
{[
𝜓 (𝑡+1) , 𝑦 (𝑡+1) ]}

9: end for
10: return 𝜓opt calculated by Eq. (14)

3) Parameter Update: Subsequently, this step estimates the
acquisition function, which is a criterion for evaluating the
goodness of the input parameters. We employed expected im-
provement (EI), which quantifies the anticipated performance
gain from sampling a specific point by considering both the
potential for discovering a better solution and the uncertainty
in the model’s predictions; i.e.,

𝛼(𝜓) = E
[
max

(
𝑦 − 𝑦+, 0

) ]
, (12)

where 𝑦+ denotes the maximum value of the dataset. Finally,
the next input can be determined by

𝜓 (𝑡+1) = argmax
𝜓∈Ψ∗

𝛼(𝜓). (13)

Steps 2 and 3 are repeated 𝑇 times; the optimized input 𝜓opt
is 𝜓 (𝑡 ) ∈ D (𝑇 ) which maximizes 𝑦 (𝑡 ) ; that is,

𝜓opt = 𝜓
(𝑡best ) , 𝑡best = argmax

𝑡∈{1,2, · · · , |D (𝑇 ) | }
𝑦 (𝑡 ) . (14)

IV. APPLYING BO TO WIRELESS SYSTEM DESIGN

BO models the set of observation values as a GP and
interpolates the values at unobserved regions to identify better
inputs. In practice, 𝑃Rx,𝑖 follows the GP over the dBm domain
spatially [7], suggesting that 𝐶𝑖 can be approximated as GP
at high signal-to-interference-plus-noise ratio (SINR). Consid-
ering this background, we apply the BO algorithm to solve
problem (5).

Although Alg. 1 can simultaneously search for both XTx and
PTx, this straightforward implementation would suffer from
the curse of dimensionality as 𝑁Tx increases. To avoid this
problem, our framework introduces a nested BO architecture
that separates the input parameters into two sets (Fig. 2). This
approach focuses on the fact that the transmission power val-
ues PTx can be optimized using a one-channel simulation for a
given XTx, which can improve the throughput performance in
the BO without increasing the number of channel simulations.

As with pure BO, our framework is divided into three steps,
as outlined below. This algorithm is summarized in Alg. 2.

1) Initialization: At the beginning of the 𝑡-th step, this
method randomly samples a set of transmitter placements X (𝑡 )

Tx
and evaluates throughput performance. It then optimizes the
transmission power values such that

P (𝑡 )
Tx,opt = argmax

PTx

𝑓

(
PTx

��� X (𝑡 )
Tx

)
. (15)

Input 
Sampling Performance Evaluation

Acquisition Function 
Computation w/ GPR

(a) Alg. 1.

Placement 
Sampling

Acquisition Function 
Computation w/ GPR

Channel 
Simulation

Throughput Evaluation

Power Optimization for 
the Fixed Placement

(b) BO for problem (5).

Fig. 2. Workflows in the pure BO and proposed framework.

This result can be obtained by Alg. 1 assuming that X (𝑡 )
Tx is

fixed.
In this framework, throughput performance 𝑦 (𝑡 ) can be

obtained from a channel simulation. Assuming that the channel
simulation result for the 𝑖-th transmitter can express the
average channel gain at a pair of transmitter and receiver co-
ordinates, its logarithmic form can be expressed as a function

𝑔
(𝑡 )
𝑖

(x) = −10𝜂log10

������x(𝑡 )
Tx,i − x

������ + 10log10𝑤
(
x,x(𝑡 )

Tx,i

)
+ 𝜖M

(16)
where 𝜖M is the simulation error and x ∈ A; after the simu-
lation is performed for all possible transmitters. Accordingly,
a set of channel simulation results can be constructed as

G (𝑡 ) =
{
𝑔
(𝑡 )
𝑖

(x)
��� 𝑖 = 1, 2, · · · , 𝑁Tx

}
. (17)

Then, we obtain throughput 𝑦 (𝑡 ) using P (𝑡 )
Tx,opt and G (𝑡 ) , and

Eq. (5a). Once 𝑦 (𝑡 ) is observed, the dataset is updated as

D (𝑡 ) = D (𝑡−1)
⋃{

𝜙 (𝑡 ) , 𝑦 (𝑡 )
}
, (18)

where 𝜙 (𝑡 ) =

{
X (𝑡 )

Tx ,P
(𝑡 )
Tx,opt

}
. These steps are repeated 𝑁init

times for the initial dataset.
2) GPR: To tune the set of placements, this step performs

(a) MLE with D (𝑡 ) as with simultaneous BO, and (b) GPR
over the set of placements XTx. The GPR is performed for
a set of unknown inputs X∗ =

{
X∗,𝑖

�� 𝑖 = 1, 2, · · · , 𝑁test
}
, and

𝑝
(
𝑦
�� D (𝑡 ) ) is modeled for XTx ∈ X∗. As with Eqs. (9)(10),

the mean and variance of the output at X∗,𝑖 can be given by

𝜇(X∗,𝑖) = 𝑚(X∗,𝑖) + kT
∗,𝑖

(
K + 𝜎2

𝜖 I
)−1

(y −m) (19)

𝜎2 (X∗,𝑖) = 𝑘 (X∗,𝑖 ,X∗,𝑖) − kT
∗,𝑖

(
K + 𝜎2

𝜖 I
)−1

k∗,𝑖 , (20)

where k∗,𝑖 = 𝑘 (𝜉,X∗,𝑖), and

𝜉 =

{
X (𝑖)

Tx

��� 𝑖 = 1, 2, · · · , 𝑡 + 𝑁init

}
. (21)

3) Placement Update and Power Optimization: This step
calculates the acquisition function 𝛼(XTx) for XTx ∈ X∗ based
on EI. The next set of placements can be then selected by

X (𝑡+1)
Tx = argmax

XTx∈X∗

𝛼(XTx). (22)

After the channel information G (𝑡+1) is simulated, based on
Alg. 1, we optimize the transmission power values such that

P (𝑡+1)
Tx,opt = argmax

PTx

𝑓

(
PTx

��� X (𝑡+1)
Tx ,G (𝑡+1)

)
. (23)
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Algorithm 2 BO for channel simulation-based BS design

Require: D (0) = ∅
1: for 𝑡 = 1, 2, · · · , 𝑁init do
2: Randomly select the set of placements X (𝑡 )

Tx
3: Construct G (𝑡 ) by channel simulation.
4: Find P (𝑡 )

Tx,opt by Eq. (15) and Alg. 1

5: Set 𝜙 (𝑡 ) =
{
X (𝑡 )

Tx ,P
(𝑡 )
Tx,opt

}
6: Observe throughput 𝑦 (𝑡 ) by P (𝑡 )

Tx,opt and G (𝑡 ) .
7: Update D (𝑡−1) to D (𝑡 ) by Eq. (18)
8: end for
9: for 𝑡 = 1, 2, · · · , 𝑇 do

10: Kernel tuning with MLE and D (𝑡 )

11: Sample X∗ =
{
X∗,𝑖

�� 𝑖 = 1, 2, · · · , 𝑁test
}

12: Calculate 𝜇 and 𝜎2 for X∗,𝑖 ∈ X∗ by Eqs. (19)(20)
13: Calculate 𝛼 for X∗,𝑖 ∈ X∗ by Eq. (12)
14: Select X (𝑡+1)

Tx by Eq. (22)
15: Simulate G (𝑡+1) for X (𝑡+1)

Tx
16: Find P (𝑡+1)

Tx,opt by Eq. (23) and Alg. 1

17: Observe throughput 𝑦 (𝑡+1) by P (𝑡+1)
Tx,opt and G (𝑡+1) .

18: Update D (𝑡 ) to D (𝑡+1) by Eq. (24)
19: end for
20: return 𝜙opt calculated by Eq. (25)

Then, the dataset is updated to

D (𝑡+1) = D (𝑡 )
⋃{

𝜙 (𝑡+1) , 𝑦 (𝑡+1)} . (24)

Steps 2 and 3 are repeated 𝑇 times. Finally, the optimized
input 𝜙opt is 𝜙 (𝑡 ) ∈ D (𝑇 ) that maximizes 𝑦 (𝑡 ) : this operation
can be given by,

𝜙opt = 𝜙
(𝑡best ) , 𝑡best = argmax

𝑡∈{1,2, · · · , |D (𝑇 ) | }
𝑦 (𝑡 ) . (25)

V. PERFORMANCE EVALUATION

The proposed framework was implemented using Optuna
3.2.0 [9], BoTorch 0.9.2 [10], and Python 3.10.6. Furthermore,
the performance of the proposed framework (Alg. 2) was
compared with that of the following three baseline methods.

• Placement Optimization: Assuming the maximum trans-
mission power, this method optimizes XTx via Alg. 1.

• Regular Placement with Power Optimization: This
method determines XTx as a regular hexagonal grid. It
then optimizes PTx based on Alg. 1.

• Pure BO: This method simultaneously searches for XTx
and PTx based on Alg. 1 only.

• Random Search: This method samples the parameters in
𝜙 based on the uniform distribution.

The simulation parameters are listed in Table I. We simu-
lated wireless channels based on Eq. (1). Shadowing exhibits
spatial correlations that depend on the extent of change in the
coordinates of the transmitter and receiver [7]. To consider
this effect, we assume that shadowing has a spatial correlation
with the standard deviation 𝜎S [dB]. Note that although it
can be simulated by a multivariate log-normal distribution,
generating it using a pure multivariate log-normal distribution

TABLE I
SIMULATION PARAMETERS.

Parameter Detail
Kernel function 𝑘 RBF kernel without scaling factor
Optimizer for MLE L-BFGS-B [11]
𝑁init and 𝑁test 8 and 256
Size of A 1000 [m] × 1000 [m]
Range of A𝑖 [0, 1000] (𝑥 axis),

[
1000
𝑁Tx

𝑖, 1000
𝑁Tx

(𝑖 + 1)
]

(𝑦 axis)
Grid size 20 [m] × 20 [m]
𝜂 4.0
𝑑cor 200 [m]
𝜎S 6.0 [dB]
𝑃max 10 [mW]
𝑁0 -174 [dBm/Hz]
𝐵 20 [MHz]
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(a) 𝑁Tx = 7.
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(b) 𝑁Tx = 19.

Fig. 3. Effects of the number of iterations.

in our simulation environment is computationally expensive.
Thus, we generated the shadowing based on the following: (i)
allocating 𝑁s points on A based on the Poisson point process
(PPP), (ii) assigning i.i.d. log-normal random variables to the
allocated points, and (iii) interpolating shadowing values on
the missing coordinates based on the nearest neighborhood
search. The point density in PPP is designed such that the
nearest neighbor distance 𝑟 satisfies E[𝑟] = E[𝑑cor]. Note that
we define the distance between a pair of wireless links as
𝑑𝑖 𝑗 ≜

√︁
| |xTx,𝑖 − xTx, 𝑗 | |2 + ||xRx,𝑖 − xRx, 𝑗 | |2.

Fig. 3 shows the effects of 𝑇 on the average throughput
performance. Assuming the errorless channel simulation, we
iterated the independent simulations 100 times and calcu-
lated the average throughput for each condition. The number
of transmitters was set to 𝑁Tx = 7 (Fig. 3(a)) and 𝑁Tx =

19 (Fig. 3(b)). For 𝑁Tx = 7, the average throughput in the regu-
lar placement was 87.4 Mbps/m2. The other methods improved
the throughput values as the number of iterations increased. At
𝑇 = 50, each method achieves the following throughput values:
93.2 Mbps/m2 (placement optimization), 90.4 Mbps/m2 (pure
BO), 103.5 Mbps/m2 (proposed method), and 72.1 Mbps/m2

(random search). Furthermore, placement optimization and
pure BO outperformed the regular placement method at 𝑇 ≥ 21
and 𝑇 ≥ 39, respectively. The proposed framework resulted
in a higher throughput than these methods. It outperformed
regular placement, even with fewer iterations, and an 18.4%
improvement was confirmed at 𝑇 = 50. Moreover, the random
search method is inferior to the other methods.

Similar to the case of 𝑁Tx = 7, an improvement in
throughput with an increasing number of iterations was also
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(a) 𝑁Tx = 7.
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(b) 𝑁Tx = 19.

Fig. 4. Effects of channel simulation error at 𝑇 = 50.

observed for 𝑁Tx = 19. In contrast to the case of 𝑁Tx = 7,
the performance of the placement optimization was inferior to
that of the regular placement method and random search for
𝑁Tx = 19. For 𝑁Tx = 7, the number of transmitters was small
relative to the area size; a higher transmission power tends to
improve the throughput performance in this case. However,
as 𝑁Tx increases, the interference between the transmitters
becomes more significant, and the throughput deteriorates.
Pure BO and the proposed framework outperformed the other
methods. Specifically, our framework improved throughput by
22.8% compared to the regular placement method at 𝑇 = 50.

Overall, for both 𝑁Tx = 7 and 19, the proposed methods
achieved a higher throughput performance with a limited
number of simulations compared with the baseline methods.

We then evaluated the effects of the observation error on
the average throughput performance to discuss more practical
performance1. We model the error factor 𝜖M in Eq. (16) as a
random variable following the normal distribution N(0, 𝜎2

𝜖 ),
where 𝜎𝜖 [dB] is the standard deviation. Fig. 4 shows the
effects of the standard deviation 𝜎𝜖 on the average throughput
performance where 𝑁Tx = 7 (Fig. 4(a)) and 19 (Fig. 4(b)). We
changed 𝜎𝜖 from zero (noiseless) to 10 and evaluated the
average throughput at 𝑇 = 50. Furthermore, to confirm effects
of kernel function, we also evaluated the proposed method
with Matérn 5/2 kernel and scaled RBF kernel.

The throughput of all methods decreases as the noise
standard deviation increases. For the proposed method (with
the RBF kernel), the throughput decreased by 5.4% at 𝑁Tx = 7
and by 6.0% at 𝑁Tx = 19 compared to the noiseless case
when 𝜎𝜖 = 10. However, the proposed framework achieves
better throughput than the baseline methods, as in the noiseless
case. For example, for 𝑁Tx = 7, the throughput was approx-
imately 18.8 % higher than that of the regular placement
at 𝜎𝜖 = 10. By modeling the observation with noise (i.e.,
𝑦 (𝑡 ) = 𝑓

(
𝜙 (𝑡 ) ) + 𝜖) and performing black-box optimization

while considering the uncertainties, BO facilitates error-robust
transmission power and placement designs.

Focusing on the impact of the kernel in the proposed
method, similar trends were observed for all types of kernels.

1For example, based on [12], the RMSE of the ray-tracing simulation in
sub-6 GHz outdoor scenarios was approximately 4-13 dB. Furthermore, it is
necessary to average the samples that are within a half-wavelength radius
around a certain reception point to mitigate the effects of multipath fading;
however, this can cause several errors in shadowing estimation.

In particular, at 𝜎𝜖 = 10, the RBF without scaling exhibited
the best performance, achieving 103.5 Mbps/m2 at 𝑁Tx = 7
and 99.1 Mbps/m2 at 𝑁Tx = 19. This kernel has fewer trainable
parameters compared to other kernel functions. When the rela-
tionship between samples can be sufficiently modeled with this
kernel alone, it tends to exhibit better convergence properties
in comparison to more complex kernels. Therefore, the RBF
without scaling is a reasonable choice for this problem.

VI. CONCLUSION

We proposed a BO framework for channel simulation-based
joint placement and transmission power design. The results
demonstrate that our proposed framework can achieve 18-
22% higher throughput performance compared to conventional
strategies at 𝑇 = 50; further, it works even though the chan-
nel simulation includes the computation error. The proposed
approach can help system operators design system parameters
before deployment, for example, cell planning in 6G networks
or access point deployment in public Wi-Fi.

Note that the proposed framework utilizes the spatial cor-
relation of throughput performances to search for optimal BS
settings. It depends on the spatial correlation of shadowing;
thus, its performance improvement is limited under short
correlation distance environments, including indoor scenarios
with super-high-frequency (SHF) systems. Furthermore, this
study assumed isotropic antennas and static transmission po-
sitions for the BSs. Introducing other adjustable parameters,
such as beamformer and path planning in unmanned aerial
vehicle (UAV)-based BSs, will allow further throughput; how-
ever, it increases the input dimensionality in the BO. The BO
design for more parameters remains a topic for future work.
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