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Abstract— This article proposes a novel coupling-informed
data-driven algorithm tailored for the concurrent estimation
of frequency and angle within a uniform linear array (ULA),
while addressing the complicating influence of mutual coupling.
Leveraging the hybrid dynamic mode decomposition (DMD)
methodology, termed as averaged DMD, we incorporate moving
average techniques to achieve effective denoising. The averaged
DMD further decomposes the received signal into eigenvalues
and corresponding eigenvectors. The frequency information is
derived from the eigenvalues and the corresponding eigenvectors
represent the steering vectors of sources. Subsequently, mutual
coupling is informed into the calibration of the steering vector
for each source. Specifically, the calibration of corresponding
eigenvectors leverages the inverse of the mutual coupling matrix,
i.e., Toeplitz matrix, acquired through Schur decomposition.
Then, the calibrated steering vectors facilitate the estimation of
angles. The decomposition results of our proposed method reveal
a significant one-to-one correspondence between eigenvectors and
eigenvalues, enabling automatic pairing of estimated frequencies
and angles. Several numerical examples demonstrate the effec-
tiveness and robust anti-noise properties of the proposed method,
especially in scenarios where mutual coupling has a significant
impact. Hence, our work contributes to the advancement of signal
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processing techniques in ULA applications, offering a promising
avenue for enhanced performance in practical communication
and radar systems.

Index Terms— Automatic pairing, dynamic mode decompo-
sition (DMD), joint angle and frequency estimation, moving
average, mutual coupling, Schur decomposition.

I. INTRODUCTION

DIRECTION of arrival (DOA) estimation plays a pivotal
role in array signal processing applications [1], [2], [3],

such as radar [4], [5], sonar [6], [7], and wireless com-
munications [8], [9]. Precise knowledge of the angles from
which signals arrive is crucial for beamforming [10], [11],
source localization [12], [13], [14], and communication system
performance [15], [16], [17]. However, real-world scenarios
introduce challenges for DOA estimation, such as position
error, gain-phase error, and mutual coupling, with mutual
coupling emerging as a prominent concern in antenna array
configurations [15], [18], [19], [20]. Herein, mutual coupling
refers to undesired interaction among antenna elements, com-
plicating the accurate estimation of DOA [21]. In particular,
the presence of mutual coupling within antenna arrays can
give rise to a model mismatch in the process of estimating
the DOA [15]. This model mismatch, stemming from the
interantenna interactions induced by mutual coupling, has the
potential to significantly compromise the accuracy and reliabil-
ity of DOA estimation, resulting in a notable degradation in the
overall performance of the estimation process [18], [19], [20].

To address this issue, various methods have been pro-
posed to mitigate the mutual coupling side effect. Specifically,
electromagnetic models are used to describe the mutual cou-
pling effects in antenna arrays, such as method of moments
(MoM) [22], [23] and finite element method (FEM) [24],
which involve numerical solutions to evaluate the interac-
tions between antennas. However, this calculation necessitates
preexisting knowledge of the incoming signals, which adds
an additional layer of complexity to the DOA estimation
process. Another kind of approach is to use the mutual
coupling calibration methods. For instance, Ng and See [25]
proposed the maximum-likelihood (ML)-based method for
DOA estimation via calibration sources. Sellone and Serra [26]
developed an online mutual coupling calibration algorithm
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with an iterative procedure for the angle finding of uniform
linear array (ULA). Liao et al. [18] proposed three modified
subspace approaches for tracking the mutual coupling effect by
carefully designing based on covariance calibration of matrix
of the entire observations. There are also several other mutual
coupling calibration methods, but due to space limitations, they
will not be presented herein. Recently, with the rapid advance-
ment of artificial intelligence, an increasing array of machine
learning and data-driven methods has provided fresh insights
into addressing this classical problem. Several neural-network-
based approaches have been developed for DOA estimation
with mutual coupling present, such as artificial neural net-
work (ANN) [27], convolutional neural network (CNN) [28],
[29], and generative adversarial network (GAN) [30], [31].
However, these methods require labeled data for training,
which can be prohibitive, and often lack broad generalizability.
Moreover, noise constitutes a significant interference in DOA
estimation [32]. Effectively achieving DOA estimation with
mutual coupling present in high-noise environments poses
a challenge and remains a subject of ongoing research and
development [33]. The existing methodologies address mutual
coupling to varying extents, yet achieving simultaneous DOA
and frequency estimation under these conditions, alongside
automatic matching and robust noise resistance, remains an
unresolved research gap.

In this article, we present a novel coupling-informed
data-driven approach, i.e., Schur-averaged dynamic mode
decompositions (DMD), designed for simultaneous DOA and
frequency estimation using a ULA in scenarios characterized
by mutual coupling and high noise levels. By integrating
the moving average technique within the DMD framework,
referred to as averaged DMD, anti-noise capabilities are
enhanced. The proposed averaged DMD method directly
decomposes the observed data into DMD eigenvalues and
eigenvectors, where the eigenvalues convey frequency infor-
mation. The eigenvectors undergo calibration through the
Schur decomposition of the mutual coupling matrix. Subse-
quently, DOA estimation for each source is derived based
on the calibration of individual eigenvectors. Ultimately, con-
current frequency and DOA estimations are achieved. Our
contributions are succinctly summarized as follows.

1) We establish a novel coupling-informed data-driven
scheme, namely, Schur-averaged DMDs, for the joint
DOA and frequency estimation in ULA with mutual
coupling present. The significance of this novel scheme
lies in integrating coupling information into the data-
driven framework, acknowledging, and leveraging the
influence of mutual coupling in the estimation process.
This incorporation aims to enhance the accuracy and
robustness of joint DOA and frequency estimation in
realistic scenarios.

2) The integration of the moving averaging technology into
the DMD framework stands as a pivotal enhancement,
specifically devised to fortify the anti-noise capabilities
of the proposed data-driven method. This incorporation
is designed to augment the robustness of the DMD-based
approach in the presence of noise, thereby contributing
to an improved and more reliable frequency estimation

performance. The adaptive nature of the moving aver-
aging technology within the DMD framework allows
for effective noise mitigation, ensuring a more accurate
decomposition of underlying signal component and,
consequently, a heightened resistance to adverse noise
effects during the estimation process.

3) The inherent one-to-one correspondence between eigen-
values and eigenvectors within the DMD framework
benefits automatic pairing in the estimations. This
inherent characteristic streamlines the joint estimation
process by directly associating the estimated frequency
and DOA without necessitating supplementary matching
steps. The seamless relationship between eigenvalues
and eigenvectors contributes to the method’s efficiency,
offering a straightforward and automated means of
pairing essential parameters, thereby enhancing the sim-
plicity and accuracy of the overall estimation procedure.

4) The proposed method can adapt to scenarios where
the number of sources is unknown. This adaptability is
based on the analysis of the distribution of eigenvalues,
allowing for the determination of the actual number of
the source during the estimation process. This feature
enhances the versatility and practical applicability of the
proposed method in real-world scenarios where source
counts may be ambiguous or prior unknown.

The remainder of the article are outlined as follows.
Section II provides the mathematical formulations govern-
ing the research problem of interest. Section III delineates
the proposed methodology, elucidating the details of the
Schur-averaged DMD approach. Then, Section IV provides
several numerical examples to validate the proposed method.
The conclusion to this study is presented in Section V.

II. FORMULATION

A. Signal Model in ULA

Without loss of generality, an antenna array comprising
M omnidirectional antennas is considered, where the center
frequency of interest is denoted as fc. Assume the existence
of I uncorrelated narrowband sources {ri (t)} impinging on
the array, each exhibiting frequencies centered at fc + fi , with
i = 1, . . . , I . Herein, fc means the carrier’s frequency, and fi

refers to the baseband of the i th source. After downconversion
to baseband, i.e., fi , the observed signal at the i th antenna
element, represented as yi (t), can be expressed as a summation
over M sources, which is expressed as follows [34], [35]:

yi (t) =

I∑
i=1

am(θi )ri (t)e j2π fi t + nm(t), m = 1, . . . , M

(1)

where am = e− j2πφm (θi ) represents the antenna response to
the ray from direction θi , where φm(θi ) is influenced by the
geometric pattern of the antennas. For instance, in a ULA,
φm(θi ) = fcd(m −1) sin θi/c, where c is the wave propagation
speed, and d is the antenna spacing. The additive noise
term nm(t) adheres to spatial and temporal white Gaussian
characteristics with zero mean and variances σ 2

n . In the case of
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narrowband signals in a slow-fading environment, the signals
are block fading, implying that ri (t) remains constant within
a short period of the signal samples. Often, the number of the
sources (I ) is assumed to be known or has been estimated via
minimum description length principle or Akaike information
criterion [36].

Upon appending N time samples at the I receive antennas,
the kth block signal is formulated as [37]

Y(k) = AS(k)GH
+ N(k). (2)

Here, Y(k) = [y(tk), y(tk +1t), . . . , y(tk + (K − 1)1t)], with
tk being the sampling reference time of the kth block, 1t
refers to the sampling period, y(tk) = [y1(tk), . . . , xM(tm)]T ,
and Y(k) ∈ CM×K . A = [a(θ1), . . . , a(θI )] denotes the M × I
spatial steering matrix with the spatial steering vector a(θ) =

[e− j2πφ1(θ), e− j2πφ2(θ), . . . , e− j2πφM (θ)
]
T . S(k) = diag{s(tk)}

refers to the signal matrix, whose diagonal elements are
s(tk) = [s1(tk), . . . , sI (tk)]T . G = [g( f1), . . . , g( f I )] denotes
the K × I temporal signature matrix, in which the tempo-
ral signature vector g( fi ) = [1, e j2π fi / fs , . . . , e j2π fi (K−1)/ fs ]

T

with fs denoting the sampling rate. N(k) = [n(tk), n(tk +

1t), . . . , n(tk + (K − 1)1t)] means the noise matrix, whose
column is n(tk) = [n1(tk), . . . , nM(tk)]T .

B. Signal Model in ULA With Mutual Coupling Present

In case of ULA with M antenna, the mutual coupling effect
can be generally expressed as [38] and [39]

C =


C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N
...

...
. . .

...

CN ,1 CN ,2 · · · CN ,N

 (3)

where Ci, j represents the mutual coupling coefficient between
the i th and j th sensors of the ULA. Since the coupling
interaction between the i th and j th sensors is consistent,
the mutual coupling effect can be expressed as a symmetric
Toeplitz matrix as follows [40]:

C = Toeplitz {1, c1, . . . , cm, . . . , cM−1}. (4)

Often, the mutual coupling between two sensors is inversely
related to their distance, and thus it can be ignored when
these two sensors are separated by few wavelengths. There-
fore, for a ULA with M sensor elements, the MCM can be
sufficiently modeled as a banded symmetric Toeplitz matrix
as follows [41]:

C = Toeplitz
{
1, c1, . . . , cD−1, 01×(M−D)

}
. (5)

Clearly, when the distance between two sensors is more than
D intersensor spacing, the mutual coupling coefficients are
assumed to be zero.

Thus, following (2), the receiving signal via the ULA with
the mutual coupling present can be expressed as [40]

X(k) = CAS(k)GH
+ N(k) (6)

Fig. 1. Illustration of the simultaneous frequency and DOA estimation via
the ULA with the mutual coupling present.

where X(k) ∈ CM×K . Correspondingly, taking the mutual
coupling into account, the true steering vector should be
rewritten as

aMC(θi ) = Ca(θi ). (7)

Fig. 1 illustrates the envisaged scenario of interest, incor-
porating the presence of mutual coupling. In the following,
we present that our proposed method can extract the true
steering vector at each frequency and obtain the actual DOA
by introducing coupling information.

III. PROPOSED COUPLING-INFORMED DATA-DRIVEN
SCHEME

A. Frequency Estimation via DMD

DMD, as a purely data-driven method, has been applied
in various fields, such as hydrodynamics [42], [43], orbital
angular momentum demultiplexing [44], [45], sea clutter [46],
and electromagnetic radiation prediction [47]. Herein, the
DMD is applied for the analysis of direct data from the ULA.
Specifically, following the signal model in ULA with mutual
coupling present as shown in (6), the observed data at the kth
block can be represented as

X(k) = [x(tk), x(tk + 1t), . . . , x(tk + (K − 1)1t)]. (8)
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First, the DMD sorts this observed data matrix, i.e., X(k),
into two adjacent matrixes, which are given as [47]

X1 = [x(tk), x(tk + 1t), . . . , x(tk + (K − 2)1t)] (9)
X2 = [x(tk + 1t), x(tk + 21t), . . . , x(tk + (K − 1)1t)].

(10)

Based on linear mapping assumption, the relationship
between (9) and (10) can be linked by a mapping matrix as

X2 = BX1. (11)

Then, the DMD is to compute the eigenvalue and the
corresponding eigenvector of mapping matrix B. Herein, the
singular value decomposition (SVD)-based method is applied
for the calculation. The details can be found in Appendix.
Finally, DMD models the direct data from ULA with mutual
coupling present as

x(t) =

I∑
i=1

pi hi eωi t =

I∑
i=1

pi hi eωr
i t e jωi

i t . (12)

Herein, hi refers to the i th column of the matrix H, ωi =

ωr
i + jωi

i = ln(λk)/1t , and pi means the amplitude weight of
the i th dynamic mode.

Finally, comparing (12) with (1), we can see that the super-
posed incoming ray signals are decomposed into I modes.
ωi implies the frequency information of the i th incoming ray,
which can be estimated by

f̂ i =
ωi

2π
(13)

where ˆ(·) denotes the estimated values. Hence, the frequency
information can be obtained from the decomposed ωi . Notably,
pi hi implies the corresponding spatial distribution of the i th
incoming ray.

When the a prior knowledge of the source number I is
available, SVD step in DMD is executed with truncation at
I [refer to (27)]. In this specific case, the eigendecomposi-
tion of the mapping matrix in the low-dimensional system
directly yields the eigenvalues and eigenvectors corresponding
to the actual signal sources. However, in practical scenarios,
the true number of signals is often unknown beforehand,
introducing a new parameter requiring estimation. To tackle
this challenge, a threshold is introduced for truncating the
SVD, where the threshold exceeds the presumed number of
signals. Consequently, this approach yields more eigenvalues
in the DMD eigenvalues’ distribution than the number of
signals. The determination of the actual number of signals
is then contingent upon assessing whether the real part of the
eigenvalues is zero. Formally, the estimated source number Î
is defined as

Î =

N∑
i=1

1(real(ωi ) < ε0). (14)

Here, Î signifies the estimated number of sources, N refers to
the truncation order in the SVD operation, and ε0 represents
the error threshold, a small predetermined value. It is imper-
ative to note that the truncation order of the SVD N should
exceed the actual number of signal sources, ensuring accurate

estimation N > I . In practice, setting I to a sufficiently
large value guarantees the correct estimation of the source
count. In the following, we introduce that the DOA can be
estimated based on this corresponding spatial distribution after
the coupling-informed calibration.

B. Moving Average of Adjacent Snapshot Sequences

Incorporating the moving average approach into DMD
proves effective in mitigating the impact of disruptive noise
on the computation of the mapping matrix. The core of
the DMD-based method involves determining the principal
eigenvalues and eigenvectors of the mapping matrix denoted
as B in X2 = BX1 [refer to (11)]. This computation relies
on the assumption that two consecutive columns, labeled as
x(tk + k1t) and x(tk + (k + 1)1t), are linked through a
linear mapping function F. Specifically, x(tk + (k + 1)1t) =

Fx(tk + k1t).
To minimize noise impact on the mapping matrix, the

moving average approach is used. Specifically, the adjacent
η columns are summed and averaged, expressed as follows:

η∑
k=1

x(tk + k1t) =

η∑
k=1

x
s
(tk + k1t) +

η∑
k=1

x
n
(tk + k1t)

(15)

where (·) denotes states in the moving average process,
x

s
(tk + k1t) signifies the signal component, and x

n
(tk + k1t)

represents the noise component. Notably, controlling η is
crucial to ensuring that data from the 1st to ηth points are
spaced less than 1/4 of the period. Moreover, this approach
maintains signal space integrity by effectively attenuating the
noise component, given the zero mean of Gaussian noise

X2 = B X1. (16)

Clearly, states in the moving average process remain related
through the mapping matrix. Through DMD calculation, the
eigenvalues and eigenvectors, with noise suppressed, can be
determined.

C. Coupling-Informed Calibration of the Steering Vector

In the following, we analyze the spatial distribution obtained
from the decomposition, i.e., the product of dynamic modes
and amplitudes (pi hi ), for which we can estimate the DOA
associated with the i th incoming ray. Initially, we address
decoupling using the spatial distribution of the i th incoming
ray.

First, we use the known mutual coupling matrix, which is
Toeplitz, and apply Schur decomposition to find its inverse.
In particular, given the information that a Toeplitz matrix C
is used for the mutual coupling effect in ULA, it can be
decomposed into the product of two matrices Q and R, which
can be represented as [48] and [49]

C = QR (17)

where Q is the unitary matrix and matrix R is the upper
triangular matrix. To calculate the inverse of C, one can use
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Fig. 2. Flowchart of the proposed coupling-informed data-driven method for joint angle and frequency estimation in the ULA with mutual coupling present.

Fig. 3. Amplitude distribution. (a) Original distribution. (b) Mutual coupling
distribution.

the following relation:

C−1
= R−1Q∗. (18)

Herein, Q∗ denotes the conjugate transpose of Q. Then, we use
this decomposition of the inverse of C for the calibration of
the steering vector, which can be expressed as follows:

aDSV(θi ) = C−1 pi hi = R−1Q∗ pi hi (19)

where aDSV(θi ) refers to as the decoupled steering vector.
Compared with (7), mutual coupling effects are eliminated

Fig. 4. Comparison between the decomposed eigenvalues of augmented
DMD and the actual frequency in Fig. 3(b).

in each individual spatial distribution. That is to say, the
decoupled steering vector, i.e., aDSV(θi ), should theoretically
be the same as the array steering vector without coupling, i.e.,
a(θi ). Thus, we obtain the calibrated spatial distribution.

Then, the DOA is derived based on the calibrated spatial
distribution. Similarly, we use the i th calibrated spatial dis-
tribution, i.e., aDSV(θi ), as an example. Its elements can be
expressed as

aDSV(θi )
T

=
[
ai

1, ai
2, . . . , ai

m, . . . , ai
M

]
(20)

where the superscript indicates the index of the calibrated
spatial distribution, and the subscript indicates the index of the
antenna in the array. Then augmented DMD is used to model
this 1-D vector. Specifically, the original calibrated spatial
distribution is reshaped into the corresponding Hankel matrix
E which is constructed as follows:

E =


ai

1 ai
2 · · · ai

M−e+1
ai

2 ai
3 · · · ai

M−e+2
...

...
. . .

...

ai
e ai

e+1 · · · ai
M

 (21)

where e refers to the index delay of ULA. Then, the DMD
is performed based on the constructed Hankel matrix E.
Similarly, then, E is split into E1 and E2, which are given
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Fig. 5. Results of the steering vector. (a) First source. (b) Second source.

Fig. 6. Joint results of DOA and frequency via ULA with two incoming
raying (sources).

as

E1 =


ai

1 ai
2 · · · ai

M−e
ai

2 ai
3 · · · ai

M−e+1
...

...
. . .

...

ai
e ai

e+1 · · · ai
M−1

 (22)

E2 =


ai

2 ai
3 · · · ai

M−e+1
ai

3 ai
4 · · · ai

M−e+2
...

. . .
...

ai
e+1 ai

e+2 · · · ai
M

. (23)

Next, due to the linear mapping assumption, the relationship
between (22) and (23) can be written as

E2 = OE1. (24)

Similarly, based on the computation of eigenvalues and eigen-
vectors of O, the delay state ai can be modeled as

ai
=

Q∑
q=1

lqzqeξq m
=

Q∑
q=1

lqzqeξ r
pme jξ i

pm (25)

where lq , zq , and ξq , respectively, mean the qth amplitude,
delay dynamic mode, and eigenvalues. Since each calibrated

Fig. 7. Analysis result at 2.6 and 3.5 GHz. (a) Original amplitude distribution,
(b) mutual coupling amplitude distribution, (c) comparison between the
decomposed eigenvalues of augmented DMD and the actual frequency, and
(d) joint results of DOA and frequency via ULA with two sources.

spatial distribution solely corresponds to one incoming ray.
Hence, the rank of the eigendecomposition of O should be
equal to one, such that Q = 1. In addition, m denotes the
index of the antennas in the ULA.

Finally, comparing ξq with φm(θi ) = fcd(m − 1) sin θi/c,
the DOA can be obtained by

θ̂ i = arcsin

(
ξ i

pc

2π fcd

)
. (26)

Clearly, the DOA of the i th incoming ray is estimated. For
each spatial distribution, we conduct this augmented DMD
analysis, yielding the DOA for each incoming ray.

D. Automatic Pairing of Estimated Angle and Frequency

Due to the inherent one-to-one correspondence between
eigenvalues, i.e., ωi and eigenvectors, i.e., pi hi in the DMD
framework [see (12)], a noteworthy observation emerges.
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Fig. 8. Comparison results of DMD and averaged DMD of 500 Monte Carlo runs under different SNRs. (a) 0 dB, (b) 5 dB, (c) 10 dB, and (d) 15 dB.

Specifically, as the frequencies of each incoming ray are
derived from the eigenvalues, the associated eigenvectors serve
a pivotal role in the subsequent analysis for estimating the
DOA. This unique characteristic establishes an unambiguous
relationship between the obtained frequencies and their cor-
responding DOAs. As a result, upon deriving the outcomes,
the necessity for an auxiliary matching algorithm to align
the estimated frequencies with the DOAs becomes superflu-
ous. In essence, this methodology seamlessly integrates an
automatic matching capability into the estimation process,
contributing to the efficiency and reliability of the estimation
analysis within the DMD framework. Notably, as long as
the sampling frequency is within an appropriate range, our
proposed approach can be effectively used for joint DOA and
frequency estimation across various frequencies. Fig. 2 shows
plots of the flowchart of the proposed coupling-informed data-
driven method. Notably, our method is specifically applicable
to scenarios involving mutual coupling with the Toeplitz
matrix assumption.

IV. RESULTS

A. Joint Estimation for Two Sources

In the following, we conduct a comprehensive validation
of our proposed methodology using a ULA composed

of nine antennas. The primary objective is to assess the
effectiveness of our approach in mitigating the impact
of mutual coupling in antenna arrays. The mutual
coupling is described as the following matrix: C =

Toeplitz {1, 0.75e− j (π/3), 0.45e j (pi/3), 0.15e j (pi/10), 01×5
}.

To commence, Fig. 3 visualizes the amplitude of the field
distribution of the ULA with and without the mutual coupling,
which serves as the baseline for subsequent assessments.
Comparing Fig. 3(a), depicting the scenario without mutual
coupling, to Fig. 3(b), where spatial distribution is influenced
by mutual coupling, reveals notable changes. In the presence
of mutual coupling, the spatial distribution undergoes
alterations, manifesting as a decrease in reception amplitudes
for certain antennas and an increase for others. In other
words, the energy received becomes unevenly distributed
across the antennas due to the presence of coupling. This
underscores the necessity for calibration methods to achieve
the desired accuracy under such mutual coupling conditions.

Through the augmented DMD, the measured field data with
mutual coupling are decomposed into the dynamic modes
and the associated eigenvalues. These obtained eigenvalues
are crucial indicators of the source’s frequency information
[see (13)]. We compare these eigenvalues against the ground
truth, providing a quantitative measure of the accuracy of the
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Fig. 9. Visualization of DMD eigenvalues’ distribution with truncation orders. (a) 3, (b) 4, (c) 5, and (d) 6 in scenarios where the number of sources is
unknown.

augmented DMD-based analysis. Based on (13), the compari-
son between the eigenvalues of augmented DMD and the real
frequency is shown in Fig. 4. It is clear that the estimated
frequencies, i.e., 200 and 400 MHz, consist of the actual ones.
Hence, we can conclude that the extracted eigenvalues can
imply the frequency information. Notably, the corresponding
eigenvectors can be used for the estimation of the DOA. In the
following, we detail the estimation of DOA according to the
calibration of the steering vector based on these extracted
eigenvectors.

Due to the mutual coupling present, the calibration of the
steering vectors is needed. In this content, the eigenvectors
decomposed by the augmented DMD corresponds to the steer-
ing vector of each source. Leveraging Schur decomposition for
inversion, we realize the calibration of the each decomposed
eigenvector. Fig. 5(a) and (b) shows the side-by-side compar-
ison between the obtained eigenvector, calibrated eigenvector,
and the ground truth. The close agreement between the cali-
brated eigenvector and the actual ones validates the efficacy
of our calibration approach. We emphasize the significance of
this step in refining the accuracy of the estimation of DOA,
particularly in the presence of mutual coupling. Based on this
calibration, the DOA can be computed. Notably, each eigen-

value solely corresponds to one source, and each eigenvalue
solely corresponds to the eigenvector. So each eigenvector
implies one DOA information. Then, the DOA information
is obtained also corresponding to the frequency information.
Thus, the estimated DOA and frequency are automatic paired.
Fig. 6 shows the joint estimation results. It can be seen that
the estimated DOA and frequency agree well with the actual
one. Hence, we can conclude that the proposed method can
estimate the DOA and frequency with automatic pairing under
the mutual coupling conditions.

To further verification, we consider an example with 2.6 and
3.5 GHz, of which frequency bands are commonly used in 5G
networks. The other parameters, including DOA and mutual
coupling, are the same as those shown in Fig. 3. Fig. 7(a)
shows the original amplitude distribution, and Fig. 7(b) shows
plots of the mutual coupling amplitude distribution. Through
the proposed method, the decomposed eigenvalues of aug-
mented DMD are obtained, which are shown in Fig. 7(c). For
the comparison, the actual frequency is also plotted. It is clear
that the eigenvalues of augmented DMD imply the correct
frequency information, namely, 2.6 and 3.5 GHz. Besides,
Fig. 7(d) shows plots of the joint results of DOA and frequency
via ULA with two sources. It can be seen that the DOA and
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frequency are obtained and paired correctly. Therefore, we can
conclude that the proposed method can be used to jointly
estimate DOA and frequency with mutual coupling, and the
frequency range in which the proposed method is applicable
is arbitrary.

B. Denoising Performance of Averaged DMD

In the ensuing analysis, we use the example of two sources,
as shown in Fig. 3, to substantiate the efficacy of denoising
through the application of the averaged DMD. Specifically,
we undertake a comparison of the denoising performance
exhibited by the traditional DMD and its averaged counterpart
across 500 Monte Carlo runs, varying the signal-to-noise
ratio (SNR). The outcomes of this comparative assessment
are plotted in Fig. 8(a)–(d), corresponding to distinct SNR
conditions of 0, 5, 10, and 15 dB, respectively.

From the discernment of Fig. 8, it is evident that the denois-
ing outcomes achieved through averaged DMD surpass those
attained by DMD across all the considered SNR conditions.
This signifies that the results produced by averaged DMD
closely align with the actual values. Notably, as the SNR
diminishes, the performance of DMD exhibits a progressive
deterioration, whereas the error incurred by averaged DMD
remains within acceptable bounds. In addition, in the com-
parative evaluation of two distinct frequencies, it is observed
that the absolute error associated with a higher frequency
surpasses that of a lower frequency, which is an observation
consistent in both DMD and averaged DMD. The superiority
of averaged DMD in preserving signal fidelity under varying
SNR conditions underscores its robust denoising capabilities.
Hence, the presented results not only validate the enhanced
denoising proficiency of averaged DMD over the conventional
DMD but also contribute nuanced insights into the differential
impact of varying SNR levels on the performance of these
modalities across distinct frequency components. Herein, the
mutual coupling is modeled using a Toeplitz matrix, which is
a common approach in ULA processing for its simplicity [50].
However, we acknowledge that this might not fully capture the
complex coupling effects that can occur in practical scenarios.
To address this, we could explore the use of unknown mutual
coupling elements, which provide a more flexible, albeit
complex, model that adapts to the actual data. In addition,
using full-wave simulation could offer the most accurate
results, accounting for the detailed electromagnetic interac-
tions. The coupling-informed scheme could be designed and
modified based on these different mutual coupling models in
the future.

C. Estimation With Unknown Number of Sources

In the subsequent analysis, we address scenarios where
the number of sources is not predetermined. Using the same
simulation setup depicted in Fig. 3, initially designed for
a known source number of 2, we extend our investigation.
The DMD eigenvalues’ distribution under the assumption of
a known source number is portrayed in Fig. 4. We vary the
truncation orders, specifically, 3, 4, 5, and 6, all of which
exceed the actual source number. The resulting DMD spectrum

Fig. 10. Comparison of performance of frequency estimations for (a) source
1 and (b) source 2 obtained by the ESPRITR and proposed method at different
SNRs with M = 9 and M = 11 in ULA.

is illustrated in Fig. 9. Notably, only eigenvalues with a real
part equal to zero correspond to the authentic source signal,
enabling the identification of two distinctive modes.

As shown in Fig. 4, it becomes evident that the proposed
method facilitates accurate DOA information extraction even
when the source number is unknown. This underscores the ver-
satility of the proposed coupled-informed data-driven method
for both known and unknown source number scenarios, estab-
lishing its utility in frequency and DOA estimation analyses.

D. Performance Analysis and Computational Complexity

For further validation, we executed a comparative analy-
sis on the efficacy of frequency estimation for two distinct
sources, as exhibited in Fig. 3(b), using a variety of esti-
mation methodologies across an array of SNRs. Specifically,
Fig. 10(a) and (b) presents the performance metrics for
source 1 and source 2, respectively. The data are depicted
as the root mean square error (RMSE) in gigahertz (GHz)
plotted on a logarithmic scale versus the SNR in decibels
(dB) on a linear scale. The comparative assessment includes
the estimation of signal parameters via rotational invariance
techniques (ESPRITs) and DMD, alongside the proposed
avgDMD method, evaluated at two distinct parameter settings



9126 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 12, DECEMBER 2024

(M = 9 and M = 11), representing the number of sensors
within a ULA.

Distinct markers and colors within the plots denote each
method, with the plots demonstrating a downward trend,
indicating that an increase in SNR correlates with a reduction
in RMSE across all the methods. This trend aligns with
the theoretical prediction that superior SNR levels should
result in enhanced frequency estimation accuracy. Further-
more, a higher count of antennas, represented by the parameter
settings, is shown to reduce RMSE for each method. Cru-
cially, the avgDMD method consistently achieved the lowest
RMSE across the spectrum of SNRs tested, suggesting that
the proposed avgDMD method surpasses the other methods
in comparison. Consequently, we infer that the proposed
avgDMD method exhibits robust performance and is suitably
equipped for application in noisy operational environments.
Notably, when the mutual coupling effects are consistent
across sources, our method effectively handles the spatial
distribution, as demonstrated by incorporating a Toeplitz
matrix into the spatial signal decomposition. However, when
mutual coupling effects vary between sources, the array man-
ifold changes, complicating the decomposition process. This
variability in the array response matrix poses challenges in
effectively integrating the mutual coupling matrix. In cases
where the coupling matrix is entirely random, the signal
estimation problem may become underdetermined, raising
concerns about the convergence of our method.

V. CONCLUSION

In conclusion, we develop a novel coupling-informed data-
driven approach, Schur-averaged DMD, for concurrent DOA
and frequency estimation in a ULA under the influence of
mutual coupling and high noise levels. The significance of our
contribution lies in seamlessly integrating coupling informa-
tion into the data-driven framework, enhancing the accuracy
and robustness of joint DOA and frequency estimation in
realistic scenarios. The incorporation of moving averaging
technology within the DMD framework fortifies anti-noise
capabilities, ensuring a more accurate decomposition of signal
components in the presence of noise. The inherent one-to-
one correspondence between eigenvalues and eigenvectors
streamlines the joint estimation process, automating the pairing
of frequency and DOA without additional matching steps.
Notably, our method exhibits adaptability to scenarios with an
unknown number of sources, determined through the analysis
of eigenvalue distribution. This feature enhances the practical
applicability of our approach in real-world scenarios where
source numbers may be previously unknown. Hence, our work
advances the state-of-the-art in DOA and frequency estimation,
offering a versatile and robust solution for complex scenarios.

APPENDIX
IMPLEMENTATION OF DMD

The SVD is first computed for X1 which can be written as

X1 = U6V∗ (27)

where ∗ means the conjugate transpose. Substituting (27)
into (11) and through simple calculation, the mapping matrix
can be derived as

B = X2V6−1U∗. (28)

Then, based on the following transform: X̃1 = U∗X1,
X̃2 = U∗X2, and B̃ = U∗BU, the efficient low-rank mapping
relationships is obtained as X̃2 = B̃X̃1. The eigendecomposi-
tion of B̃ can capture the actual dynamics, which is obtained
as

B̃F = F3 (29)

where F denotes a square matrix of order I , in which the
columns refer to the eigenvectors. 3 refers to an diago-
nal matrix containing the corresponding eigenvalues λi , i =

1, 2, . . . , I . Notably, considering there are only I actual
incoming ray, the order I could be set to be the same as
the number of actual incoming ray and then determined by
truncated SVD in (27). Next, the dynamic modes in the
original signal model in ULA are defined as

H = X2V6−1E. (30)
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