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Partial Near-Field Antenna Characterization
Amedeo Capozzoli , Member, IEEE, Claudio Curcio , Member, IEEE, and Angelo Liseno

Abstract— In some applications, the whole characterization
(WC) of the antenna far-field pattern (FFP) by means of
a near-field (NF) data, is not strictly required, but, on the
contrary, just the partial knowledge of the FFP, along some cuts,
is of interest. A new approach for the partial reconstruction
is here presented: assigned the specifications on the partial
characterization (PC) in terms of FFP cuts to be evaluated and
tolerable characterization error, the proposed general strategy
determines, in a rigorous mathematical framework, the optimal
distribution of the measurement points in the NF, reduced
in number with the respect to the WC, which shortens the
acquisition time. The approach has been validated through a
wide numerical and experimental analysis.

Index Terms— Antenna measurements, fast characterization,
near-field (NF), partial characterization (PC).

NOMENCLATURE

Dap Radiating aperture resembling the AUT (see
Fig. 1).

aap, bap Length of the aperture Dap along x, y (see
Fig. 1).

D Rectangular Measurement domain (see Fig. 1).
a, b Length of the measurement domain D along

x,y (see Fig. 1).
d Measurement distance: location of D along z

(see Fig. 1).
Ea Aperture field (scalar modeling).
Ed Field measured over D (scalar modeling).
F Far field pattern (scalar modeling).
8i[w, cw] i th 1D PSWFs with “space-bandwidth prod-

uct” cw.
β Wavenumber.
anm Coefficients expanding the aperture field Ea .
a Vector containing the anm .
u, v Cosine directors related to the observation

direction.
ξ, χ Values between 0 and 1 defining the size of the

observation region along u and v, respectively.
λ Wavelength.
N, M Number of PSWFs along x, y.
P P = N∗M.
Q Number of sampling points.
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r i Vector containing the coordinates of the i th
sampling point.

T Near field radiation operator.
b Vector containing the measured voltages.
A subspace of the expansion coefficients vec-

tors.
B B = T (A) subspace of the measured volt-

ages vectors.
R Far field radiation operator.
L Number of the observation directions.
(ui , vi ) i th observation direction.
T Matrix representing T .
R Matrix representing R .
U

R
, 6

R
, V

R
Matrices used in the SVD of R [see (4)].

P1 Number of the relevant singular values of R,
size of the subspace A1.

P2 = (P-P1) Size of the subspace A2.
A1, A2 Subspaces of A : A is the direct sum of A1

and A2.
a1, a2 Vectors related to a [see (6)].
a′

1, a′

2 Components of a1 and a2, [see (7)].
B1, B2 Subspaces images of A1 and A2, respectively,

through T .
b1, b2 Vectors related to b [see (8)], images of a1

and a2, respectively, through T .
T

1
, T

2
Matrices obtained from T [see (9)].

D1 Distribution of the NF points obtained by
applying the SVO to the problem in (10).

ϱ Ratio between the l2 norms of b1 and P
1
·b2.

U1 and U2 Matrices containing the relevant LSVs of T1
and T2, respectively.

P
1

Matrix representing the orthogonal projector
onto B1.

U Matrix defined after (11).
D2 Distribution of NF points added to D1.
2 Minimum principal angle between B1 and

B2.
R†

1
The pseudoinverse of R

1
= R · V

R1
.

S
1

S
1

= T
1
· R†

1
is the matrix linking the FFP

to the data.
εmax Bound for the relative error on the FFP.
ε̄max Bound for the relative error on the normal-

ized FFP.
κS1 The condition number of the matrix S

1
.

ϵamp Relative error on the pattern amplitude.
ϵ̄amp Relative error on the normalized pattern

amplitude.
ϵDmax Relative error on the maximum directivity.
ϵ3db Relative error on the 3 dB beamwidth.
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ϵSL L Relative error on the first sidelobe.
Tx and Ty Factors defining the amplitude tapering

of the aperture field along x and y,
respectively.

Sx and Sy Factor defining the quadratic defocus-
ing of the aperture field phase along x
and y, respectively.

Txy Factors defining a circular amplitude
tapering of the aperture field.

ϵbp Relative error on the beampointing
direction.

I. INTRODUCTION

THE reduction of the measurement time is a key-point in
the framework of near-field (NF) antenna measurements.

Indeed, depending on the particular antenna under test (AUT),
the characterization time can become quite long. Among the
others, this is the case of antennas with several ports, working
on different frequency bands or in different working configu-
rations (for instance, beam switching), as base station antennas
or phased arrays, whose whole characterization (WC) can be
very time-consuming [1]. Obviously, long-lasting characteri-
zations lead to high costs in the design and manufacturing
process.

Fast NF characterization techniques have been developed
through the years, aimed at reducing the number of collected
NF samples and/or the scanning path length [2], [3], [4].
Anyway, for the mentioned cases, the measurements can
remain long-lasting or useless if the whole far-field pattern
(FFP) is not of interest.

Indeed, all the standard as well as optimized characterization
approaches are, generally speaking, aimed to reconstruct the
whole FFP, and so they will be referred, in the following,
as WC techniques. Nevertheless, in several cases, the knowl-
edge of the whole FFP is not strictly required, but the real
interest is in the behavior along the cuts, thus realizing a
partial characterization (PC). The proposed PC method is of
interest as long as a NF test range is available instead of an
adequate far-field test range or a compact test range. On the
other hand, PC can be of interest in in-series characterizations
of antennas on a manufacturing line: in this case, a simplified
NF setup could be used which profits of the reduced number of
the optimized distribution of the samples. Accordingly, driven
by fast characterization requirements, the following questions
arise.

1) Are all the NF data used in the WC really needed for a
PC, that is, to reconstruct the FFP just along some cuts?

2) Alternatively, depending on the particular AUT, is it
possible to define a strategy determining the minimum
number of samples and their spatial distribution to get
a goal less ambitious than the whole antenna character-
ization?

Some interesting PC methods have been proposed in the
recent years [5], [6]. Both the approaches refer to a spherical
NF scanning. The approach in [5] is suited for linear antennas
or apertures and arrays with separable excitations, and is based
on the measurement of the NF along two cuts to retrieve

the FFP along the principal cuts. In [6], single FFP cuts
are obtained from spherical NF rings, and, unlike [5], probe
compensation is allowed: the approach provides reconstruction
errors, depending on the cuts of interest and the measuring
distance. Both the methods allow better results when separable
sources are considered. The approach in [5] has been also
extended to the phaseless case [7].

The aim of this article is to present a general strategy to
determine the distribution of the measurement points needed to
perform the required PC, shortening the measurement process
with respect to WC. The strategy exploits a priori information
about the antenna to select only those measurement locations
which are strictly required to get a prediction of the FFP along
the cut of interest.

To define the sampling points distribution, the proposed
PC approach [8], [9] exploits the singular value optimization
(SVO) concept [2], [3], which is based on the following points.

1) The NF characterization is formulated as a linear inverse
problem aiming to retrieve the (visible) aperture field
(AF), starting from the measured NF data.

2) The SVO determines the optimal number and distri-
bution of the NF samples as the ones optimizing the
behavior of the singular values (SVs) of the relevant
operator.

The SVO has been fruitfully applied, in the case of WC,
to different kinds of antennas and scanning geometries [2], [3].
It determines a drastic reduction of the measurement time with
respect to standard as well as nonconventional approaches,
by reducing the number of samples and the scanning path
length.

Here we refer to aperture antennas and NF planar scanning
systems. Nevertheless, the hypothesis of aperture modeling is
not mandatory: the approach allows optimal results as long
as an effective mathematical description of the radiation is
available.

The idea of the proposed PC technique has been briefly
presented in [8] and [9]. Here, a deep detailed discussion is
reported. A wide numerical analysis shows the performance
of the method that has been also experimentally validated.

The article is organized as follows. Section II is devoted
to recall the relevant aspects of the previous works: the NF
characterization is formulated as a linear inverse problem,
and the SVO is briefly summarized. In Section III the NF
characterization is reformulated under the PC point of view,
and a strategy is presented for the determination of the optimal
distribution of NF samples. The method has been validated
numerically (Section IV) and experimentally (Section V).
Conclusion is drawn in Section VI.

II. NF CHARACTERIZATION AS A LINEAR INVERSE
PROBLEM: THE SVO IDEA

Let us consider a rectangular aperture Dap, of size 2aap
× 2bap, resembling the AUT centered in the Oxyz reference
system (Fig. 1), and let us assume the radiated field measured
on a rectangular measurement domain D, 2a × 2b sized,
located in the plane z = d .

To simplify the discussion, a scalar case is considered, with
a linearly polarized AF, say Ea = Ea îy, a measured field on
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Fig. 1. Geometry of the problem.

D linearly polarized along y, say Edîy , and a scalar FFP, say
F , representing the relevant Cartesian component.

The evaluation of the FFP from NF data amounts to
determine Ea from Ed , and then to calculate F using the
FF operator. Given the two FFP Cartesian components, the
spherical or the co-polar and cross-polar ones can be easily
calculated.

By exploiting the a priori information about the dimension
of Dap, Ea can be assumed as an element of a finite dimen-
sional subspace, say E . More in detail, Ea can be represented
by the visible prolate spheroidal wave functions (PSWFs),
which are the optimal choice [1], [2], [10]

Ea(x, y) =

N∑
n=1

M∑
m=1

anm8n[x, cx ]8m
[
y, cy

]
(1)

where 8i[w, cw] is the ith 1-D PSWFs with “space-bandwidth
product” cw,

1) u = sinθcosϕ and v = sinθsinϕv = sinθsinϕ, θ and
ϕ being the standard spherical coordinates in the Oxyz
system (see Fig. 1).

2) cx = aapβξ and cy = bapβχ , β being the wavenumber,
ξ and χ being real numbers in the range [0, 1] which
define the observation directions wherein F is required
(typically ξ = χ = 1).

3) N = Int[4aap/λ ] and M = Int[4bap/λ ], λ being the
wavelength and Int[·] denoting the integer part of its
argument.

The numerical evaluation of the PSWFs has been performed
following the approach in [11], bringing the problem back
to the inversion of a tridiagonal matrix. At variance with the
classical Bowkamp’s [12] approach exhibiting a computational
complexity growing as O(n2), where n is the number of
PSWFs to be computed, the approach here adopted uses a
purposely tailored Gaussian Quadrature to guarantee numer-
ical stability and shows a computational complexity growing
as O(n + c log c), c being the space-bandwidth product [13].

Accordingly, Ea , Ed , and F are assumed as belonging to
subspaces of dimension P = NM.

Let us denote with Q the number of sampling points on D,
and with r1, . . . , r Q their vector positions. The NF operator T
is represented by the matrix T linking the vector a ∈ A = CP ,
containing the P expansion coefficients in (1) to the vector b
∈ B = CQ , containing the field samples at r1, . . . , r Q

T · a = b. (2)

The expression of T can be evaluated following different
approaches [2], [3]: one option is the plane-waves expansion.
T depends on Q and the locations (r1, . . . , r Q) as parameters.
Accordingly, a family of matrices is at disposal, and the SVO
selects, among all of them, the most convenient one in terms
of conditioning. The SVO solves the sampling problem by
determining Q and the (r1, . . . , r Q) by optimizing, through an
iterative procedure, a functional measuring the SV behavior of
T , say 4 [2], [3], [14]. More in detail, at the beginning Q is
set equal to P , and the (r1, . . . , r Q) are found by maximizing
4. Then, Q is updated to Q + 1, and new optimization of 4

updates the positions (r1, . . . , r Q+1). The iterative process is
stopped when the curve describing the maximum value of 4

as function of Q saturates. The (r1, . . . , r Q) corresponding to
the saturation are assumed as the sampling points.

Once the optimal values of Q and (r1, . . . , r Q) are identi-
fied, T is known and Ea can be calculated after a regularized
inversion of (2) [2], [3]. As final remark it is noted that optimal
Q is related to the dimension P of the linear subspace to which
the unknown a belongs.

III. PC APPROACH

The basic idea of the proposed PC approach is based on
two key properties.

1) Only a subspace of E contributes to calculation of F
along the desired cut.

2) Typically, the dimension of this subspace is less then
dim(E) = P .

As a consequence, the number of the NF samples required
for the PC is expected to be smaller than that needed for the
WC, as long as it is possible to identify and measure only the
relevant NF, that is, that part of the NF which contributes to
F along the cut of interest.

Here, the strategy required to define the distribution of
the sampling points needed to catch the relevant NF as is
presented. As highlighted in the following, a priori information
about the source is needed to take advantage, at the best,
of the PC approach. In many cases, the antenna engineer has
an idea, possibly rough, of the FFP features. In some cases,
more detailed information is available as happens for in-series
characterizations of antennas on a manufacturing line, as well
as when simulations on the AUT are available.

Let us now introduce formally the FF operator represented
by the matrix R linking a to the vector f ∈ CL , containing
the values of F over the L observation directions of interest
(u1, v1), . . . , (uL , vL)

R · a = f . (3)
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Fig. 2. WC and PC observation sets for the PC case just two examples are
reported, the u-cut for v = 0 (red dots) and a generic v-cut (green dots).

The FF operator is strictly related to a 2-D spatial Fourier
Transform [15].

In the case of a WC, typically, the set of the observation
directions spans the whole visible domain (see Fig. 2) with
a large value of L . On the contrary, in the PC case, the
observation set is made up of a subset of directions in the
visible domain and the corresponding value of L can be much
smaller than that of the WC case. Sketches of the observation
sets, for the WC and the PC cases, are reported in Fig. 2. For
the PC case, two classical choices are depicted: a u-cut (red
dots) and a v-cut (green dots).

The PC approach is illustrated highlighting three key points.
1) Segmentation of A into two orthogonal subspaces, say

A1, and A2, and resulting segmentation of B into two
subspaces, say B1, and B2 as in Section III-A.

2) Segmentation of b into two contributions, b1 ∈ B1 and
b2 ∈ B2in as in Section III-B.

3) Extraction from b of the Relevant NF as in Section III-C.
A workflow summarizes the procedure in Section III-D.
In the following, for the sake of brevity, the PC will consider

only cuts of the visible domain such as a u-cut, that is, a cut
with v fixed, or a v-cut, that is, a cut with u fixed. Other
options are possible thanks to the generality of the approach.

A. Segmentation of A

By applying the SV decomposition, R can be written as [16]

R = U
R

· 6
R

· V H
R

(4)

where U
R

is the L × L matrix containing the left singular
vectors (LSV) of R, V

R
is the P × P matrix containing

the right singular vectors (RSV) of R, 6
R

is the L × P
diagonal matrix containing the SVs of R. The apex H stands
for Hermitian conjugate.

Let us denote with P1 the number of significant SVs
of R, that is, the number of SVs larger than a prefixed
threshold, specified according to the expected accuracy on the
reconstruction.

When WC is of interest, the large values for L make P1
close to P = NM, that is, to the number of basis function
expanding the visible AF. On the contrary, in the PC case,
the small values for L make P1 smaller than P . Once P1 has
been evaluated, A can be decomposed as the direct sum of
two orthogonal subspaces A1, having dimension P1, and A2,

Fig. 3. Decomposition a and b; a1 and b1 are highlighted in red.

having dimension P2 = (P − P1). More in detail, after writing
V

R
as

VR =

[
V

R1
V

R2

]
(5)

where V
R1

and V
R2

are submatrices with size P × P1

and P × P2, respectively, we can define A1 = span{V
R1

},
the subspace of A providing relevant contributions to F , and
A2 = span{V

R2
}, the subspace of A orthogonal to A1 which

does not provide appreciable contributions to F .
Accordingly, each vector a can be written as

a = a1 + a2 (6)

where a1 ∈ A1 and a2 ∈ A2 are uniquely identified. In Fig. 3,
the decomposition of A into two orthogonal subspaces is
schematically depicted by highlighting the decomposition of
a vector a, and the vector a1 in red.

It is noted that a1 and a2 are P-sized vectors, belonging,
respectively, to a P1-sized and a P2-sized subspace. Therefore,
it is convenient to introduce their P1-sized and a P2-sized
representations, a′

1 and a′

2, respectively{
a′

1 = V H
R1

a

a′

2 = V H
R2

a.
(7)

Given A1 and A2, the decomposition of B, which generally
is not orthogonal, follows immediately: B1 = T (A1) and B2 =

T (A2).

B. Segmentation of b

Following (6), b can be written as the sum of two contri-
butions

b = b1 + b2 = T · a1 + T · a2 (8)

where b1 is the Q-sized vector representing that part of b
useful to retrieve F , and b2 is the Q-sized vector representing
that part of b not contributing to F . Unlike a1 and a2, generally
b1 and b2 are not orthogonal as schematically depicted in
Fig. 3, since generally the mapping T does not preserve the
scalar product [17].

By using (7) and (8), b1 and b2 can be explicitly related to
a′

1 and a′

2

b = b1 + b2 = T
1
· a′

1 + T
2
· a′

2 (9)

where {
T

1
= T · V

R1
T

2
= T · V

R2

(10)
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and T
1

∈ CQ×P1 , T
2

∈ CQ×P2 .
If one were able to isolate b1, the NF contribution of

interest, that is, if one were able to extract b1 from b, a1
could be easily retrieved by solving the inverse problem for
T

1

T
1
· a′

1 = b1. (11)

Some remarks are in order.
The problem in (11) involves, at most, P1 SVs, so that

in principle, the number of measurements to reconstruct a1
can be quite smaller than that required by WC. A strategy to
determine the number and the distribution of the NF samples
needed to reconstruct a1 is required: the SVO is exploited
here. Finally, the SVO applied to (11) determines the NF
distribution of samples made of just one row or one column
of nonuniformly spaced points, or few rows or few columns
of nonuniformly spaced points, according to the requirements,
say D1. In the article, D1 will consider just one row or one
column of field samples, being the extension to more rows or
columns straightforward.

It is worth noting that it is difficult to understand, a priori,
if one row or one column, few rows or few columns are
sufficient for the PC. The approach answers to this question,
supported by a mathematical framework formally exploiting
a priori information about the AUT. If the answer is positive,
PC is possible from D1. If the answer is negative an additional
distribution of samples is added, say D2, allowing PC.

The above discussion shows that the reconstruction of F is
affordable if b1 can be calculated from b.

C. Extraction of b1 From b

After the measurement process, b is available. The calcula-
tion of b1 from b depends, clearly, on the relationship between
b2 and b1, which is dictated not only by the AUT features but
also by the peculiar NF samples distribution. Given the row
or the column of D1, the field samples distribution on D1
is determined by applying SVO to T

1
. Two procedures are

exploited to extract b1 from b depending on the values of the
parameter ϱ = ∥P

1
·b2∥/∥b1∥, where ∥·∥ denotes the l2 norm,

and P
1

is the matrix representing the orthogonal projector onto
B1

P
1

= U
1
· U H

1
(12)

where U
1

is the matrix containing the relevant LSVs of T
1
.

Case I: The first case correspond to “small” values of ϱ.
In this case b2 is neglected, and f is calculated after a

regularized inversion (here a Truncated SVD) of

S
1
· f = b1 (13)

being R
1

= R · V
R1

, S
1

= T
1
· R†

1
, and R†

1
the pseudoinverse

of R
1
.

Now, to find an estimate of the acceptable range of values
for ϱ, a bound to the error on f due to neglecting b2 is
provided. Actually, b2 in (13) can be seen as an additive
“noise” to b1, quantified by ϱ. Consequently, an additive error
δ f affects f . Equation (13) turns into

S
1
·

(
f + δ f

)
= b1 + P

1
· b2. (14)

By defining εmax as the relative error bound on f , we have∥∥∥δ f
∥∥∥∥∥∥ f
∥∥∥ ≤ cond

(
S

1

)∥∥∥P
1
· b2

∥∥∥∥∥b1

∥∥ = cond
(

S
1

)
ϱ = εmax . (15)1

Given ϱ and cond(S
1
), εmax is calculated. When the bound

εmax is coherent with the requirements, PC can be performed
using the distribution D1. Obviously, an estimate, even rough
of ϱ is a priori required. This information should be made
available at the design/simulation stage of the AUT, or at the
beginning of the in-series characterizations.

As a final remark it is noted that, if the experimental
characterization of the AUT requires as output the normalized
FFP, f̄ = ( f /∥ f ∥∞),2 the parameter ϱ̄ instead of ϱ is in order

ϱ̄ =

∥∥∥∥P
1
· b2 −

b1bH
1 ·b2

∥b1∥
2

∥∥∥∥∥∥b1

∥∥ (16)

since the error along b1, ((b1bH
1 · b2)/∥b1∥

2), is made irrel-
evant by normalization. In this case, the error bound ε̄max

becomes
ε̄max = cond

(
S

1

)
ϱ̄. (17)

In many cases f̄ is of practical interest instead of f ,
for example, when features as beamwidth, sidelobe level,
and beam-pointing angle are required, and, frequently, f̄ is
depicted as FFP in the literature.

Case II: When ϱ is not “small” as in Case I, leading to an
unacceptable εmax , or when the estimate of ϱ is unreliable, D1
in insufficient and a different strategy should be adopted for
PC. In this case b2 in not negligible and b1 has to be extracted
from b.

To this end a linear system of equations should be solved,
which could be affected by an ill conditioning deteriorating the
reliability of the solution. Accordingly, to improve reliability,
the new set of NF points D2 should be added to D1. D2 is
chosen as the one improving the minimum principal angle,
say 2, between B1 and B2 [16]. More in detail, starting from
D1 further sampling points are iteratively added to increase
2 above a prescribed threshold. Using the data collected
according to distribution D1 and D2, the two contributions
b1 and b2 can be reliably estimated; then, a′

1 can be retrieved
and f evaluated.

For a value of 2 above the threshold, b1 and b2 are
estimated after inverting the matrix U defined as

U =

[
U1 U2

]
(18)

where U2 is the matrix containing the relevant LSVs of T2.
It is noted that the conditioning number of U decreases with 2,
showing that increasing 2 increases reliability of the estimate
of b1.

As a final remark, it is stressed that the final distribution
of samples given by D1 and D2 does not allow a WC
reconstruction with an error comparable with that on PC.
In other words, the distribution of the NF sampling points
made of D1 and D2 has not been optimized to provide a

1cond(·) represents the conditioning number of the considered matrix.
2
∥x∥∞ := |xi |.
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reliable estimation of a′
2, since the behavior of the SVs of T

2
has not been subjected to any optimization.

D. Workflow of the PC Approach

Given the maximum tolerable error (MTE), the approach
provides an optimal distribution of the NF samples allowing
the FFP evaluation with an error below MTE. The samples
distribution is identified in two steps. In the first step, D1 is
determined after applying the SVO to operator in (11) and ϱ

and cond(S
1
) are evaluated. From ϱ and cond(S

1
), εmax and

ε̄max are calculated exploiting (14) and (16), respectively. If the
bound of interest is smaller than the given MTE and the value
of ϱ is assumed reliable, PC is possible by using D1 only.
On the contrary, an incremental distribution D2 should be
added to D1, which increases the minimum principal angle
between the two relevant subspaces, B1 and B2, until a reliable
estimate of b1 can be obtained.

IV. NUMERICAL RESULTS

In this section the performances of the method are high-
lighted by presenting test cases involving both continuous
aperture antennas and array antennas, with various features.
In particular, AUT’s are considered

1) With different sizes.
2) With separable and nonseparable AF.
3) Radiating shaped beams.
4) Radiating steered beams.
A scalar model is considered in all the cases involving arrays

as well as in the first three cases involving apertures, while
the fourth aperture case is a full-vector one.

Regarding the continuous apertures, four cases are exam-
ined. In the first cases, say AP1, the reconstructions along the
principal cuts u = 0 and v = 0 are considered. Two excitations
are considered, one separable and one nonseparable: in both
cases D1 is sufficient to evaluate the FFP. The first excitation
matches recommendations for PC given in the literature. The
second one shows that PCs are possible also for nonseparable
AFs, with benefits in terms of scanning path length and
samples distribution with respect to WC. In the second case,
say AP2, the distribution D1 gives an unacceptable error bound
and D2 becomes mandatory. In the third case, say AP3, the
reconstruction along the cut u = v is considered. Finally, for
the fourth case, say AP4, both the co-polar and cross-polar
components are considered, by referring to the cut v = 0.

Regarding the arrays, two test cases are reported. As first
test case, say Case AR1, an array radiating a shaped beam
has been considered, while in the second case, say Case AR2,
a steered beam is considered.

To evaluate the performance of the approach up to six error
figures are considered, depending on the case of interest.

1) Relative error on pattern amplitude ϵamp = ∥| f |
2

−

| f
r
|
2
∥/∥| f |

2
∥, where f

r
is the retrieved pattern.

2) Relative error on the normalized pattern amplitude
ϵ̄amp = ∥| f̄ |

2
−| f̄ r |

2
∥/∥| f̄ |

2
∥, where f̄ r is the retrieved

normalized pattern.
3) Relative error on the maximum directivity ϵDmax .

Fig. 4. Sampling point distribution D1 obtained for PC along the u-cut (blue
markers) and the v-cut (red markers)—aperture 3λ × 2.4λ sized, d = 10.8λ .
The (0, 0) sample belongs to both the distributions.

4) Relative error on the 3 dB beamwidth ϵ3d B .
5) Relative error on the first sidelobe ϵSL L .
6) Relative error on the beam-pointing angle ϵbp.
Since the quality parameters are independent of the antenna

efficiency they provide information about both directivity
and gain. Results are presented by referring to directivity,
evaluated after assuming that the known radiated power is
as estimated from the WC characterization. Analogous results
can be obtained for gain, but the additional WC is not required
since the input power for the antenna is needed for this case.

PC is affected by two sources of error. The first is due
to the reduced number of NF data. The second is due to the
noise on the data. To evaluate the performance of the proposed
PC method against noise on the data, some numerical test
cases have been worked out by adding an independent and
normally distributed random noise, with a signal-to-noise ratio
of 40 dB. A total of 200 different noise realizations have been
considered, and the error figures have been evaluated as mean
values across the noise realizations.

A. Case AP1

All AP1 cases involve a continuous radiating aperture with
aap = 1.5λ and bap = 1.2λ , represented with N = 6 and
M = 5 PSWFs, and d = 10.8λ (see Fig. 1). The dimensions
correspond to those of the standard gain horn Narda 640 work-
ing in the X-band which has been subject to the experimental
analysis.

Two PCs, along the u-cut for v = 0, and along the v-cut for
u = 0, have been considered. The approach gives D1’s involv-
ing samples along the x-axis and the y-axis, respectively: 15
NF samples are required along the x-axis for the first PC,
and 13 NF samples along the y-axis for the second PC. The D1
distributions of both cases are reported in Fig. 4, as blue and
red circles, respectively. In both cases, the minimum distance
between consecutive samples is about 0.45λ .

As first excitation, say Case AP1.1, a separable AF is
assumed in the form

Ea(x, y) = e−
Tx x ′2

N p e−
Ty y′2

N p e− j2π Sx x ′2
e− j2π Sy y′2

(19)
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TABLE I
ERROR FIGURES (IN PERCENTAGE) OF THE NUMERICAL CASES

where x ′
= x/aap, y′

= y/bap, and Np = 8.686 dB, and Tx

and Ty are in dB. Obviously, Tx and Ty control the amplitude
tapering of AF (in dB), while Sx and Sy control the quadratic
phase term of AF.

By setting Tx = 20 dB, Ty = 0.5 dB, Sx = 0.19 and Sy =

0.11, values of ϱ equal to about −30 and −20 dB are obtained
for the u-cut and the v-cut case, respectively, leading to a
satisfactory error bound. It is noted that the defocusing terms
have been selected to account for the real geometry of the
Narda 640 horn.

The directivity retrieved with the D1 (red line) is reported
for the u-cut and the v-cut in Fig. 5(a) and (b), respectively,
together with the numerical reference (blue crosses). As it can
be seen a good agreement is obtained. The error figures for
the u-cut and the v-cut are reported in the first and second
rows of Table I, respectively.

The second excitation, say Case AP1.2, involves a nonsep-
arable AF, in the form

Ea(x, y) = e
−

Txy
√

x2+y2

N p
√

a2
ap+b2

ap e− j2π Sx x ′2
e− j2π Sy y′2

(20)

where Txy is in dB.
For this case, for the sake of brevity, just the result for the

PC along the u-cut is presented. By setting Txy = 6 dB, Sx =

0.19, and Sy = 0.11, a value of ϱ equal to about −25 dB is
obtained.

The corresponding directivity patterns are shown in in
Fig. 5(c). Again, a good agreement is observed. The error
figures are given in the third row of Table I.

B. Case AP2

This case refers to a continuous radiating aperture, larger
than Case AP1, with aap = 3.2λ and bap = 1.8λ , represented

Fig. 5. Behavior of the reference directivity (blue crosses) and of the
one reconstructed with the D1 (red line) for an aperture 3λ × 2.4λ sized,
d = 10.8λ . (a) Case AP1-E1, reconstruction along the u-cut for v = 0.
(b) Case AP1.1, reconstruction along the v-cut for u = 0. (c) Case AP1.2,
reconstruction along the u-cut for v = 0.

Fig. 6. Sampling point distribution for an aperture 6.4λ × 3.6λ sized, d =

10.9λ – D1 (red crosses), D2 (blue circles). (a) PC along the u-cut for v =

0. (b) PC along the v-cut for u = 0.

with N = 14 and M = 9 PSWFs, and d = 10.9λ (see Fig. 1).
The dimensions correspond to those of the Schwarzbeck 9210d
working in the 1–18 GHz band which has been subject to the
next experimental analysis.

As before, two PCs, along the u-cut for v = 0, and along
the v-cut for u = 0, have been considered, with D1 involving
samples only along the x-axis and the y-axis, respectively.
More in detail, 25 NF samples are required along the x-axis
for the first PC, and 13 NF samples along the y-axis for the
second PC. The D1 distributions of the two cases are reported
in Fig. 6(a) and (b), respectively, as red circles. In both cases,
the minimum distance between consecutive samples is about
1λ , at least doubling the classical λ /2 sampling step.

The excitation is that in (19) with Tx = 2 dB, Ty =

3 dB, Sx = 0.4, and Sy = 2. In particular, the values for
the defocusing factors are larger than those in Case AP1 to
investigate larger values for ϱ. Indeed, ϱ = −5.6 dB and
ϱ = −2.8 dB are obtained for the u-cut and the v-cut case,
respectively. With these values, even a unitary cond(S

1
) would

lead to εmax ∼= 50%; therefore, in this case the distribution D2
is needed.
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Fig. 7. Behavior of 2 as function of µ— aperture 6.4λ × 3.6λ sized, d =

10.9λ , PC along the u-cut for v = 0.

As discussed in Section III, D2 has been obtained after
iteratively adding sampling points increasing 2, the angle
between B1 and B2. For D2 a nonuniform raster scan
grid has been considered, made of nonuniformly spaced
rows, with samples therein nonuniformly spaced. The result-
ing grid is made of µ rows and ν columns, where
ν = I nt[Nµ/M].

For the sake of brevity, the behavior of 2 as function of
µ is shown for the PC u-cut only (see Fig. 7). As it can
be observed, 2 jumps abruptly as soon as µ reaches M,
with cond(U ) ∼= 2, [see (18)]. Accordingly, reasonably small
errors on b provide reasonably small error on b1 (just slightly
increased). In particular, if the data are corrupted by a noise
with a signal-to-noise ratio of 40 dB, the error on b1 would
be equal to −34 dB.

A similar analysis has been performed for the PC v-cut.
Fig. 6(a) and (b) shows D2 for the two PCs as blue circles.

In both cases, D2 is made of 126 points, with a minimum
distance greater than 1λ , again at least doubling the classical
λ /2 sampling step.

The directivity retrieved by using D1 + D2 (red line) is
reported for the PCs u-cut and v-cut in Fig. 8(a) and (b),
respectively, together with the numerical reference (blue
crosses) and the directivity obtained by using D1 only (green
dash-dotted line). As it clearly appears, in this case D2 is
essential to guarantee a good characterization, as confirmed
by the error figures in Table I: rows four and six of refer to
the reconstruction obtained by using D1 + D2 along the u-cut
and the v-cut, respectively, while rows five and seven to the
case wherein only D1 is exploited. For the v-cut, only ϵamp and
ϵDmax have been reported since they are the only meaningful
error figures.

Finally, let us compare the number of NF samples required
by PCs and WC. PC for the u-cut requires 151 samples:
25 D1 samples and the further 126 D2 samples, arranged
on nine rows. For WC, the SVO [2] provides 476 samples
arranged on 17 rows. The measurement time is halved if we
assume, as mentioned, that a rough estimate for the time
saving is obtained by comparing the number of rows. If a
standard half-wavelength sampling over a 40λ × 40λ grid,
is adopted for WC, the PC measurement time would be,
at least, equal to 1/9 of that of WC. However, as cited in the
conclusions, in this case, the expected time saving is larger
since a smart controller can profit of the nonuniform samples
spacings [18], [19].

Fig. 8. Behavior of the reference directivity (blue crosses), of the one
reconstructed by using the D1 and the D2 (red line), and of the one
reconstructed by using only the D1 (green dash-dotted line) for an aperture
6.4λ × 3.6λ sized, d = 10.9λ . (a) Reconstruction along the u-cut for v = 0.
(b) Case reconstruction along the v-cut for u = 0.

Fig. 9. (a) Sampling point distribution for an aperture 3λ × 2.4λ sized,
d = 10.8λ—D1 (red crosses), D2 (blue circles), PC along the cut for
u = v. (b) Behavior of the reference directivity (blue crosses), of the
one reconstructed by using the D1 and the D2 (red line), and of the one
reconstructed by using only the D1 (green dash-dotted line).

C. Case AP3

The same aperture as case AP1 has been considered here,
while for the excitation the data adopted for case AP1.1 are
exploited.

The PC is performed along the cut for u = v. The approach
gives a D1 involving samples along the direction x = y: 21
NF samples are obtained, with a minimum distance between
consecutive samples greater than 0.5λ . D2 seems necessary
since εmax = 75%. In Fig. 9(a) D1 and D2 are presented,
by highlighting the D2 samples as blue circles, and the D1
ones as red crosses. D2 is made of 30 points, with a minimum
distance greater than 3λ .

In this case, even if the same aperture and excitation of case
AP1.1 are considered, a higher number of NF lines is needed
now. This is an obvious consequence of matching with the
selected FF cut orientations, the specific characteristics of the
radiating AF in one case instead of the other.

The directivity reconstructed by using D1 + D2 (red line)
is reported in Fig. 9(b) with the numerical reference (blue
crosses) and the directivity obtained by using D1 only (green
dash-dotted line).

The error figures in Table I confirm the usefulness of D2:
rows eight and nine of Table I refer to the reconstruction
obtained by using D1 + D2 and D1, respectively.

D. Case AP4

This case refers to a slotted waveguide array, simulated with
Altair FEKO, made of eight elements, working at 10 GHz,



7456 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 10, OCTOBER 2024

Fig. 10. (a) Sampling point distribution for an aperture 2.8 × 0.4λ sized,
d = 10λ , PC along the cut for v = 0. (b) Behavior of the reference directivity
for the co-polar (blue crosses) and the cross-polar (black crosses), and of the
one reconstructed for the copular (red line) and the cross-polar (green line).

with the slots (0.5λ × 0.05λ wide) directed along the x-axis,
with a center-to-center spacing of 0.7λ and 0.1λ along x and
y, respectively. The aperture parameters are aap = 2.8λ and
bap = 0.4λ , N = 13 and M = 3 PSWFs, d = 10λ (see Fig. 1).
The retrieved FFP has been compared to the one obtained after
a standard WC, exploiting the NF data simulated over a 40λ

× 40λ grid, with half-wavelength sampling.
The PC along u-cut for v = 0 has been considered, and

both the co-polar and the cross-polar components have been
calculated, using the Ludwig’s third definition. The approach
gives a D1 involving samples along the x-axis, exploited to
collect both the x and the y NF components, with 27 NF
samples. The D1 distribution is reported in Fig. 10(a), as blue
circles: the minimum distance between consecutive samples is
about 0.7λ . The obtained values for the relative error bound
are εmax = 10% and εmax = 15% for the y and x components,
respectively. The performance of the approach is evaluated
with noise free data, since we are interested here in verifying
the PC performance only, due to the low values of the cross-
polar components. Obviously, when noisy data are considered,
the error increases, as shown in the other cases, but without
undesired effects due to instability.

The retrieved co-polar (red line) and cross-polar (green
line) directivity are reported in Fig. 10(b), together with the
numerical reference, co-polar (blue crosses) and cross-polar
(black crosses). The agreement for both co-polar and cross-
polar is good. The error figures are reported in rows 10 and
11 of Table I, for the co-polar and the cross-polar, respectively.

E. Case AR1

A planar array of 25 × 17 elements with an interelement
spacing of 0.6λ in both directions has been considered.

The array excitations have been obtained by discretizing
the continuous AF provided by a power pattern synthesis
technique, wherein the complex AF is optimized following the
generalized projections approach [20]. The antenna has been
synthesized to radiate a shaped beam pattern with a flat-top
behavior along the u-cut, and a pencil beam behavior along
the v-cut. The synthesized directivity pattern is reported in
Fig. 11(a).

The PC approach along the u-cut for v = 0 has been con-
sidered with d = 10λ . The approach identifies a D1 involving
samples along the x-axis: 51 NF samples are obtained, with

Fig. 11. (a) Synthesized directivity for the 25 × 17 array, 0.6λ spacings.
(b) Behavior of the reference directivity (blue crosses), of the one recon-
structed by using the D1 and the D2 (red line), and of the one reconstructed
by using only the D1 (green dash-dotted line) for the synthesized array, d =

10λ . Reconstruction along the u-cut for v = 0.

Fig. 12. Sampling point distribution for an array of 25 × 17 elements, 0.6λ

spacings, d = 10λ—D1 (red crosses), D2 (blue circles), PC along the u-cut
for v = 0.

a minimum distance between consecutive samples equal to
about 0.45λ . D1 is shown in Fig. 10 as red crosses. D2 seems
necessary since ϱ = −19 dB and εmax = 22%.

In Fig. 12 D1 and D2 are presented by highlighting the D2
samples as blue circles. D2 is made of 425 points, arranged
on 17 rows, with a minimum distance greater than 0.7λ .

The directivity reconstructed by using D1 + D2 (red line)
is reported in Fig. 11(b), together with the numerical reference
(blue crosses) and the directivity obtained by using D1 only
(green dash-dotted line). Again, D2 has proved essential for
good performance, as confirmed by the error figures in Table I,
rows 12 and 13 refer to the case wherein D1 + D2 and
D1 only, respectively, are exploited.

As before let us compare the number of NF samples
required by PCs and WC. PC for the u-cut requires 476 sam-
ples: 51 D1 samples and the further 425 D2 samples, arranged
in 17 rows. For WC, the SVO [2] provides 1617 samples
arranged in 33 rows. The measurement time is halved if we
assume, as mentioned, that a rough estimate for the time saving
is obtained by comparing the number of rows. Finally, if a
standard half-wavelength sampling over a 40λ × 40λ grid is
adopted for WC, the PC measurement time would be, at least,
equal to 17/81 of that of WC.

F. Case AR2

A planar array of 25 × 25 elements with an interelement
spacing of 0.6λ in both directions has been considered,
synthesized to a radiated beam that steered along the direction
(ub = 0.3, vb = 0.2). The expansion coefficients, in amplitude,
have been obtained by discretizing the continuous AF in (19)
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Fig. 13. (a) Sampling point distribution D1. PC along the u-cut for v =

0.2. (b) Behavior of the reference directivity (blue crosses) and of the one
reconstructed with the D1 (red line). Reconstruction along the u-cut for
v = 0.2 – array of 25 × 25 elements, 0.6λ spacings, d = 10λ .

with Tx = 4 dB, Ty = 3 dB, Sx = 0, and Sy = 0, and by
adding linear phase terms to get the desired beam-pointing
angle.

The PC has been performed along the u-cut for v = 0.2,
with d = 10λ . The approach identifies a D1 involving samples
on the line y = 4.5λ : 51 NF samples are obtained, with
a minimum distance between consecutive samples of about
0.9λ . D1 is shown in Fig. 13(a) and ϱ = −22 dB is obtained.

In Fig. 13(b), the reconstructed directivity (red line) is
shown together with the numerical reference (blue crosses),
and a good agreement is observed. The error figures are
reported in row 14 of Table I.

V. EXPERIMENTAL RESULTS

Two antennas have been characterized in the Anecoich
Chamber of Laboratorio di Microonde ed Onde Millimetriche
at Università di Napoli Federico II: the standard gain horn
Narda 640 and the Schwarzbeck 9210d. These antennas have
been already considered in the numerical analysis. For both,
a standard half-wavelength NF acquisition has been performed
to evaluate the reference FFP along the cuts of interest.

Narda 640 has been characterized at 9.4 GHz. A picture of
the measurement setup is shown in Fig. 14(a). As for the case
AP1, two PCs, along the u-cut for v = 0, and along the v-cut
for u = 0, have been considered. The measurements have been
performed by using the two distributions D1 in Fig. 4 (Case
AP1). The FFP cut reconstructed with D1 (red line) is reported
for the u-cut along v = 0 and the v-cut for u = 0 in Fig. 14(b)
and (c), respectively, together with the reference (blue crosses).
As it can be observed a good agreement is obtained.

The meaningful error figures are
1) ϵamp = 3.2%, ϵ3d B = 0%, ϵbp = 0%.
2) ϵamp = 3.1%, ϵ3d B = 0%, ϵSL L = 2%, ϵbp = 0%.

for the u-cut and the v-cut, respectively, showing the good
performance of the reconstruction. Regarding the normalized
pattern, we have ϵ̄amp = 0.34% and ϵ̄amp = 0.72%, for the
u-cut and the v-cut, respectively.

Schwarzbeck 9210d has been characterized at 7.8 GHz.
A picture of the measurement setup is shown in Fig. 15(a).
For the sake of brevity, PC has been considered only along
the u-cut for v = 0. The measurements have been collected
by using the sampling points shown in Fig. 6(a) (Case AP2),
wherein both D1 and the D2 are shown. The FFP reconstructed

Fig. 14. (a) Photograph of the measurement setup for the Standard Gain Horn
Narda 640. (b) Behavior along the u-cut for v = 0 of the reference FFP (blue
crosses) and of the one reconstructed with the D1 (red line). (c) Behavior
along the v-cut for u = 0 of the reference FFP (blue crosses) and of the
one reconstructed with the D1 (red line)—Narda 640, 9.4 GHz, d = 10.8λ ,
experimental characterization.

Fig. 15. (a) Photograph of the measurement setup for the Schwarzbeck
9210d. (b) Behavior along the u-cut for v = 0 of the reference FFP
(blue crosses), of the one reconstructed by using the D1 and the D2
(red line), and of the one reconstructed by using only the D1 (green
dash-dotted line)—Schwarzbeck 9210d, 7.8 GHz, d = 10.9λ , experimental
characterization.

by using D1 + D2 (red line) is reported in Fig. 15(b), together
with the reference (blue crosses) and the directivity obtained
by using D1 only (green dash-dotted line). Again, D2 has
proved essential for good performance, as confirmed by the
meaningful error figures: ϵamp = 2%. By using the D1 only,
we have ϵamp = 7.5%.

Regarding the normalized pattern, we have ϵ̄amp = 7.5% for
the two measurement configurations (D1 + D2, or only D1).

VI. CONCLUSION

In the framework of the NF antenna measurements, in many
cases, the reconstruction of the whole FFP is not strictly
required, but just the partial knowledge of the FFP along some
cuts is needed. A method for PC has been proposed. The
approach provides a general framework for PC and defines the
optimal distribution of the NF samples required to reconstruct
the FFP along the cut of interest.

The obtained sample distribution allows to reduce the mea-
surement time with respect to WC. Indeed, as long as the
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data are located along rows or columns, as well as on rings,
the reduction of the number of rows/columns/rings involves
an obvious reduction of the measurement time. In this case,
the time reduction factor can be easily evaluated, and the time
reduction is achieved for both single probe and multiprobe
acquisitions.

Obviously, the probe movements impacts on the acquisition
time along a single line. The reduction of the number of
samples determines an obvious time reduction for acquisitions
based on stepped movements (stop-and-go). On the other hand,
even in the case of continuous probe movements, the reduction
of samples leads to a time reduction as long as a smart control
of the scanning system is adopted, profiting of the spatial
nonuniformity of the samples, as shown in [18] and [19].

Finally, at difference with other methods, the approach
presented here provides, in a rigorous mathematical frame-
work, a general strategy to determine the distribution of
the measurement points needed to perform a NF antenna
PC according to a prefixed threshold error. The technique
is able to determine if one or more NF cuts are needed,
to guarantee a given reconstruction error, and to determine
the optimal samples distribution minimizing the scanning
path length.
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