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Abstract— Inverse source strategies have proven to be quite
relevant for several applications in advanced electromagnetics.
These schemes are based on the solution of ill-posed problems in
which current or near-field distributions are reconstructed from
far-field (or from less informative field) information. Standard
strategies, that can include physical constraints such as Love
conditions, often rely on standard pseudoinverse definitions and
yield solutions that are, at times, far from the physical ones. This
work proposes a different approach focusing on defining and
analyzing a new family of pseudoinverses that takes advantage
of small-in-dimension subspaces containing a priori information.
The new solutions returned by the new pseudoinverses will be a
suitable average between a solution living entirely in the vector
space containing the a priori information and a solution obtained
via norm-minimizing approaches. The contribution presents both
theoretical analyses and numerical experiments showing the
practical effectiveness of the novel mathematical tool.

Index Terms— A priori information, evanescent modes, inte-
gral equations, inverse source problem, Moore–Penrose (MP)
pseudoinverse, vector spherical harmonics (VSH).

I. INTRODUCTION

THE electromagnetic inverse source problem, present in
a variety of applications such as antenna diagnostics or

antenna characterization [1], [2], requires solving an ill-posed
problem [3], [4]. This ill-posedness is primarily due to the
existence of nonradiating sources that can be traced back to
the nontrivial solutions of the homogeneous integral equation
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that describes the radiation [5], [6]. This null-space, rooted in
the physical and mathematical nature of the problem, is present
independently of the choice of discretization; in fact, inverse
approaches based either on the multipole expansion of the
fields [7], [8] or on a nonorthogonal basis [9], [10], [11] all
have to select a specific solution to the ill-posed problem.
Several approaches have been adopted in the literature for
selecting the appropriate solution. They include the choice
of a specific solution norm (e.g., the popular Moore–Penrose
(MP) pseudoinverse approaches, see [12] and references
therein), criteria embedded in an iterative procedure [13], [14],
or approaches leveraging on explicit conditions such as the
Love conditions [15], [16], [17] and related [18], [19].

Moreover, the dimension of the (numerical) nullspace of
the radiation matrix is further increased by the exponentially
decaying contribution of the evanescent modes on the total
field, when observed at far-field distances from the source.
Because only a finite number of electromagnetic modes actu-
ally propagate [20], even if the presence of the null space
and the consequent rank deficient matrix can be tackled via
pseudoinversion, the loss of information associated with the
evanescent modes is irreversible, degrades the accuracy of
the solution [21], [22], and can only be handled through
the injection of a priori information into the mathematical
problem. This strategy has been used widely in the past to
reduce the required number of samples below the Nyquist limit
or, equivalently, to improve field reconstruction given a fixed
number of samples (see [23], [24] and references therein).
In [23], the number of samples and their position are found
iteratively through the use of an orthonormal basis constructed
by the simulation of the antenna under test with different
design parameters. A similar construction of an overcomplete
basis is presented in [24] and a given set of real samples is used
to guide an iterative algorithm in the selection of the optimal
subbasis. Historically, the task of finding a set of bases on
which to project and approximate a given datum has also been
accomplished by the compressive sampling community [25]
covering a wide range of applications and integrating signal
processing strategies [26].

The above-mentioned approaches are effective when the
amount of information to inject is abundant enough to delin-
eate an optimal basis to describe the observation space.
Our approach will instead deal with a different scenario in
which the information available is not sufficient to completely
eliminate the ill-posedness of the problem, a pseudoinversion
is still required, and the question of how the information at
hand can be used to choose a better pseudoinversion definition
with respect to a standard, a priori-information agnostic choice
remains.
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The purpose of this work is to propose, define, and analyze
a new family of pseudoinverses that will be able to take
advantage of a small-in-dimension subspace containing a priori
information. The new operators can be seen as a properly
chosen average between a solution living entirely in the
vector space containing the a priori information and a solution
obtained via a norm minimizing approach. This average is
built so that the operator remains a pseudoinverse, although
not of MP type. Theoretical developments are alternated with
numerical studies to show the effectiveness and practical
relevance of our approach when applied to real case scenarios.

The article is organized as follows. The notation and the
relevant background on the inverse source problem are set
in Section II. In Section III, we present a novel analysis of
the radiation operator via vector spherical harmonics (VSH)
basis in which the effects of the nonradiating sources and the
evanescent fields on the conditioning is highlighted. The new
constrained pseudoinverse is presented in Section IV while
the numerical results are delineated in Section V. Finally,
Section VI presents our conclusions and venues for future
investigations. Very preliminary results of this article have
been presented as a conference contribution [27].

II. BACKGROUND AND NOTATION

Let Ω− be a closed domain in R3 with boundary Γ and
complement Ω+

= R3
\Ω−. Consider a source located in

Ω− which radiates in R3 the electric and magnetic fields E
and H . According to the equivalence theorem, the electro-
magnetic problem in Ω− can be changed (medium, fields,
and sources [28]) by placing on Γ equivalent magnetic and
electric current densities M, J that radiate E, H in Ω+ and
arbitrary new fields E′, H ′ in Ω−. These currents must satisfy
the Maxwellian conditions at the interface

M = n̂ ×
(
E′−

− E+
)

(1)

J = n̂ ×
(
H+

− H ′−
)

(2)

where n̂ is the surface-normal unit vector in r directed from
Ω− to Ω+, E+ and H+ are the original electric and magnetic
fields evaluated in r ∈ Ω+, and E′− and H ′− are the new fields
in r ∈ Ω−. In (1) and (2), the external and internal fields
are evaluated in the limit r → r ∈ Γ taken from Ω+ and
Ω−, respectively. The e−iωt time dependence of the physical
quantities is assumed throughout the article. The inverse source
problem finds M, J given field observations on a surface
Γm in Ω+. In this context, the electric field integral opera-
tor (EFIO) and the magnetic field integral operator (MFIO)
applied to a vector function, e.g., J , are defined respectively
as

(Tr J)(r) = n̂ × Sr J = n̂ × (Ss,r J − Sh,r J) (3)

(Kr J)(r) = n̂ × Cr J (4)

where(
Ss,r J

)
(r) = ik

∫
Γ

g(∥r − r ′
∥)J(r ′) dS(r ′) (5)(

Sh,r J
)
(r) =

1
ik

∇

∫
Γ

g(∥r − r ′
∥)∇s · J(r ′) dS(r ′) (6)

(Cr J)(r) = n̂ × p.v.

∫
Γ

∇g(∥r − r ′
∥) × J(r ′) dS(r ′) (7)

r ∈ Γm is the observation point, k is the wavenumber, and
g(∥r − r ′

∥) = (eik∥r−r ′
∥/(4π∥r − r ′

∥)). If r ∈ Γ , then
Tr and Kr are denoted by T and K, respectively. These
integral operators are involved in a variety of surface and
radiation electromagnetic problems. Among them, the electric
field integral equation (EFIE)

ηT J = −n̂ × Ei (8)

relates the electric current J on the surface Γ of a perfect
electric conductor (PEC) to an incident electric field Ei . The
electromagnetic field generated by a given source in Ω− can
be evaluated in r ∈ Γm , by means of equivalent currents as

R
[
−M
η J

]
=

[
Cr Sr

−Sr Cr

][
−M
η J

]
=

[
E+

ηH+

]
(9)

where η =
√

µ/ϵ is the wave impedance of the considered
homogeneous medium, chosen to be the same in Ω− and Ω+.
Finally, n̂ × E+ and n̂ × ηH+ are obtained as

Rt

[
−M
η J

]
=

[
Kr Tr
−Tr Kr

][
−M
η J

]
=

[
n̂ × E+

n̂ × ηH+

]
. (10)

In the following, we will consider three different discretiza-
tions of these continuous problems that are described in the
three following paragraphs.

As first discretization scheme, the equivalent currents J and
M are approximated with div-conforming Rao-Wilton–Glisson
(RWG) basis functions { f n}n [29] defined on a triangular mesh
of Γ , so that M ≈

∑N
n=1 [m]n f n and η J ≈

∑N
n=1 [j ]n f n .

It is then possible to describe the fields they radiate in a
homogeneous medium through

R
[
−m
j

]
=

[
Cr,δ Sr,δ
−Sr,δ Cr,δ

][
−m
j

]
=

[
eδ
hδ

]
(11)

where R is the discretization of the continuous operator R
in (9) and the elements of Cr,δ , Sr,δ are obtained, in a point-
matching fashion, as [Cr,δ]3(m−1)+c n = ⟨ûcδ(r − rm), Cr f n⟩

and [Sr,δ]3(m−1)+c n = ⟨ûcδ(r − rm), Sr f n⟩, respectively, c ∈

{1, 2, 3}, ûc being the Cartesian unit vector with û1 = ûx ,
û2 = ûy , û3 = ûz, δ(r − rm) is the Dirac delta function
centered in rm with ⟨ûcδ, f ⟩ =

∫
R3 ûcδ · f dV ; finally, 1 ≤

m ≤ M with M being the number of observation points. The
linear system (11) samples the electric and the magnetic field
in r with eδ and hδ containing the Cartesian coordinates of the
vectors ⟨δ(r − rm), E+

⟩ and ⟨δ(r − rm), H+
⟩, respectively.

An alternative to (11) can be obtained by using
curl-conforming rotated RWG functions {n̂ × f n}n in place
of the Dirac delta functions as test functions. The discretized
boundary problem (8) then reads

Tj i = −e i (12)

with [T]mn = ⟨n̂ × f m, T f n⟩, [e i
]m = ⟨n̂ × f m, n̂ × Ei

⟩.
Finally, the tangential fields in (10) are approximated with

Rt

[
−m
j

]
=

[
Kr Tr

−Tr Kr

][
−m
j

]
=

[
e
h

]
(13)

where [Kr ]mn = ⟨n̂ × f m, Kr f n⟩, [Tr ]mn = ⟨n̂ × f m, Tr f n⟩,
[e]m = ⟨n̂ × f m, n̂ × E+

⟩ and [h]m = ⟨n̂ × f m, n̂ × ηH+
⟩,

with ⟨ f , g⟩ =
∫
Γ

f · g dS.
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Finally, a third discretization scheme uses div-conforming
Buffa–Christiansen (BC) dual basis functions {gn}n , defined
on the dual mesh obtained through barycentric refinement of
the original mesh [30] in place of the RWG basis function.
In particular, the BC-discretized radiation operators Sr,δ , Cr,δ ,
are defined with [Sr,δ]mn = ⟨δ(r − rm), Sr gn⟩ and [Cr,δ]mn =

⟨δ(r − rm), Cr gn⟩. The RWG- and BC-based discretization
schemes are linked through the well-conditioned change of
basis matrix Gmix, with [Gmix]mn = ⟨n̂ × f m, gn⟩.

In the following, the different discretization strategies delin-
eated above will be combined to form mappings between
equivalent surfaces and measurement surfaces that take into
account the mapping properties of the operators and the
constraints in chaining the different bases.

III. SPECTRAL ANALYSIS

We present here a VSH analysis that highlights the sources
of ill-posedness of (10) that describes the radiation. Consider
the VSH basis [31]

X lm(r̂) =
|r|

i
√

l(l + 1)
r̂ × ∇Ylm(r̂) (14)

U lm(r̂) = r̂ × X lm (15)

Y lm(r̂) = r̂Ylm(r̂) (16)

with

Ylm(r̂(θ, φ)) =

√
(2l + 1)(l − m)!

4π(l + m)!
Plm(cos θ)eimφ (17)

where Plm are the associated Legendre polynomials and the
integers l and m are such that 0 ≤ l and −l ≤ m ≤ l.
Applying (3) and (4) to a vector function expanded with (14)
and (15) yields

Tr X lm = −
a
r

Jl(ka)H(1)
l (kr)U lm (18)

Tr U lm =
a
r

J′

l(ka)H(1)′
l (kr)X lm (19)

Kr X lm = −i
a
r

Jl(ka)H(1)′
l (kr)X lm (20)

Kr U lm = i
a
r

J′

l(ka)H(1)
l (kr)U lm (21)

where a is the radius of Γ , r = ∥r∥, and Jl , H(1)
l are the

Riccati–Bessel and the first-kind Riccati–Hankel functions,
respectively. Expressions (18) to (21) are used in (10) and
Rt is discretized with the VSH basis, truncated to l ≤ L , as

Rt,ϕ =

[
Kr,ϕ Tr,ϕ

−Tr,ϕ Kr,ϕ

]
(22)

where the subscript ϕ is used to distinguish the VSH and RWG
discretizations. Then,

Kr,ϕ =

[
KX X

r,ϕ KXU
r,ϕ

KU X
r,ϕ KUU

r,ϕ

]
, Tr,ϕ =

[
TX X

r,ϕ TXU
r,ϕ

TU X
r,ϕ TUU

r,ϕ

]
. (23)

In (23), the superscripts X X , XU , U X , and UU denote the test
and source functions couples used to discretize the associated
block; for example,

KU X
r,ϕ =

⟨U1-1, Kr X1-1⟩ϕ . . . ⟨U1-1, Kr X L L⟩ϕ

...
. . .

...

⟨U L L , Kr X1-1⟩ϕ . . . ⟨U L L , Kr X L L⟩ϕ

 (24)

Fig. 1. Singular values of the radiation operator Rt,ϕ discretized with the
VSH basis, evaluated at different distances; the σi are ordered with the SVD
index.

where the subscripts on X lm , U lm span l ≤ L , −l ≤ m ≤ l,
and ⟨a, b⟩ϕ = 1/r2

∫
Γm

a · b dS, for which ⟨X lm, X l ′m ′⟩ϕ =

δll ′δmm ′ , ⟨U lm, U l ′m ′⟩ϕ = δll ′δmm ′ . Since neither Rt,ϕ nor
RH

t,ϕRt,ϕ are diagonal, their singular values cannot be obtained
by direct inspection. Instead, a singular value decomposition
(SVD) is computed and the singular values of Rt,ϕ are shown
in Fig. 1 (a = 1 cm, k ≈ 105 m−1, L = 25, −l ≤ m ≤ l).
The second half of the singular values (i.e., i > 1350) belongs
to the nullspace of the operator, while the singular values of
the first half decay more rapidly as the observation distance
increases [20], [21]. These singular values are associated with
the evanescent fields and extend the numerical nullspace of
the operator. For this reason, in practical applications, the
condition number has to be limited by truncation of the
singular values lower than the measurement noise floor (NF),
causing an overall loss of near-field information [22].

In this work, an operator tailored for the inverse source
problem uses a pseudoinverse which acts on a small subspace
of a priori solutions and is able, if built properly, to recover
more accurately the weakly radiating part of the solution,
starting from far-field samples.

IV. NEW CONSTRAINED PSEUDOINVERSE

A. Insights and Derivation of the Proposed Pseudoinverse

First, we recall that a generic pseudoinverse A† of A ∈

CM×N satisfies any of the properties

AA†A = A i) A†AA†
= A† ii)

(AA†)H
= AA† iii) (A†A)H

= A†A iv)

and the well-known MP pseudoinverse A+ of A is the unique
operator which satisfies i), ii), iii), and iv). If one is only
interested in finding one solution x0 (potentially among many)
of the linear system Ax = b, one can choose x0 = A(1)b,
where A(1) is a generic pseudoinverse satisfying i) since [32]

Ax0 = AA(1)b = AA(1)Ax = Ax = b. (25)

When A(1) varies in the set of all pseudoinverses satisfying
i), denoted by A{1}, x0 = A(1)b can be shown to deliver all
possible solutions of the linear system. Since in many practical
cases, there are solutions of rank-deficient matrices that have
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little to no physical meaning, the condition i) alone does not
ensure that the pseudoinverse and the corresponding solution
have any link with the physical problem.

If we start from the opposite standpoint, we could build
a pseudoinverse from existing (physical) solutions of the
problem xi , i = 1, . . . , P and the corresponding right-hand-
sides bi = Axi . By defining the matrices X ∈ CN×P as
X j,i = [xi ] j and B ∈ CM×P as B j,i = [bi ] j , we could now
choose as pseudoinverse of A the matrix XB†, which is a
pseudoinverse of type ii) if the pseudoinverse B† of B is of
type ii). This pseudoinverse provides a vector x0 = XB†b
which is always a linear combination of solutions of the system
for selected RHSs and, if those are properly chosen, such a
linear combination will exhibit physical properties. However,
XB† /∈ A{1} unless BB†

= I, i.e., this choice of pseudoinverse
does not provide in general an exact solution satisfying (25).
In this work, we propose a pseudoinverse that would somehow
be in between the above described approaches. In particular,
the pseudoinverse we propose to adopt reads

A‡
= A(1)(I − BB†) + XB† (26)

which is combining the previously defined approaches. Dif-
ferently from XB†, A‡ provides solutions which satisfy (25)
since A‡

∈ A{1}:

AA‡A = AA(1)(I − BB†)A + AXB†A (27)

= A − AA(1)AXB†A + AXB†A (28)
= A (29)

with B = AX. If B†B = I, the proposed pseudoinverse yields
an exact reconstruction if the RHS is entirely described by a
linear combination of the columns of B, i.e., there exists v
such that b = Bv . In this case, we have

A‡b = A(1)(Bv − BB†Bv ) + XB†Bv (30)

= A(1)(Bv − Bv ) + Xv = Xv (31)

where Xv is the exact solution associated with b = Bv =

AXv .

B. On a Possible Strategy in Selecting Parameters for the
Proposed Pseudoinverse

In the context of the inverse source problem—corresponding
to A = R—the proposed pseudoinverse (26) may enhance
the solution of (11) with near-field information encoded in X.
The constrained pseudoinverse (26) is flexible and can be used
in different inversion contexts and applications. In particular,
different inversion scenarios may lead to selecting different
pseudoinverse types for B† and R(1) [the latter can be of other
types additionally to i)] and to different choices for the coupled
matrices X and B = RX. In the following, we will consider
the MP pseudoinverses B+ and R+ as particular choices for
B† and R(1), respectively.

The columns of X can be filled with solutions found either
in real or simulated environments. In the following, we will opt
for the latter. The choice of the vectors xi is heavily dependent
on the scenario. In general, however, two distinct sources that
belong to the same design space up to a given perturbation of
one or more of the design parameters (position and shape) will

Fig. 2. Reconstruction error on a square box of side length 2.2λ centered
in the origin. (a) MP reconstruction. (b) Proposed pseudoinverse ∆α = π/2.
The real sources are represented with red diamonds, the constraining dipoles
with white dots; the background shows ϵ(E+).

generate the same field up to a given precision. Thus, the space
of a priori solutions xi can be generated by solving several
radiation problems in which these unknown parameters differ.
In the following, we will provide initial application examples
that will help fixing ideas.

V. NUMERICAL RESULTS

The proposed pseudoinverse is first numerically tested in a
customary inverse source problem: the electric and magnetic
fields generated by three electric dipoles, E+ and H+, are
sampled on a finite number of points and reconstructed at
arbitrary positions. The dipoles, oscillating at 5 GHz, are
placed in a sphere of radius a = 4 cm (≈0.67λ) and sur-
face Γ discretized with triangular elements of average edge
length h = λ/10, where λ is the free-space wavelength. The
reference magnetic and electric equivalent currents on Γ are
approximated with RWG functions whose coefficients m and j
are m = −G−1ẽ, j = ηG−1h̃ with [G]mn = ⟨ f m, f n⟩, [ẽ]m =

⟨ f m, n̂ × E+
⟩, and [h̃]m = ⟨ f m, n̂ × H+

⟩. The observation
points on which field samples are evaluated with (11) are
located on a spherical surface Γm , concentric to Γ , and are
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Fig. 3. Reconstruction error evaluated on spherical surfaces concentric to Γ

starting from samples generated 1λ away from Γ . The MP and the proposed
pseudoinverse are compared, and the latter is tested when varying the number
of a priori sources (with ∆α) and their distance from the original source (with
d). A white NF of −50 dB is applied to the far-field observations.

distributed on uniform polar and azimuthal angle grids. The
field observations are perturbed with white Gaussian noise,
generating a NF of −50 dB; Γm is set 1λ away from Γ along
its outward radial direction, and thus in a far-field region with
respect to the dipole source. The injected white noise limits
the reconstruction accuracy throughout all of the spatial band
of radiation, in particular of the weakly radiating modes [22].
As benchmark of (26), A(1)—here chosen to be A(1)

= R+ as
a particular case—is regularized using a truncated-SVD. The
truncation index is chosen to minimize the reconstruction error
at Γm for the specific NF and right-hand-side under considera-
tion. Then, a set of a priori solutions forming the columns of X
is obtained by evaluating the equivalent currents coefficients of
additional electric dipoles displaced inside Γ . These additional
dipoles [the white dots in Fig. 2(b)] are displaced on spheres
centered on the real sources [red diamonds in Fig. 2(b)];
the electric moment of all dipoles is identical. This test was
designed to account for uncertainty in the knowledge of the
position of the electromagnetic source. The goal is then to
better reconstruct the fields everywhere with such a priori
knowledge. The effectiveness of the choices of X, B in (26) is
investigated when varying the angular resolution ∆α, which
controls the distance between the constraining sources (and
therefore their number). Once the solution of (26) is obtained,
the fields are radiated on spherical surfaces concentric to Γ ,
and the relative error ϵ is evaluated on each sphere as

ϵ(v ) = log10
∥vref − v∥2

∥vref∥2
(32)

where v and vref are the reconstructed and reference vectors,
respectively. The reconstruction errors of the new pseudoin-
verse (26) and of the MP pseudoinverse are shown in Fig. 3,
the latter regularized through the same optimum criterion of
R+ in (26) while keeping the same observation points; as
expected, reducing ∆α lowers the reconstruction error, since
the dimension of the column space of X is increased in
a meaningful way (auxiliary sources clustering around the
source dipoles). We also note that at a distance of 1λ (on Γm),
where the reconstruction points coincide with the observation
points, the fields are not perfectly reconstructed and differ

Fig. 4. Reconstruction error evaluated on concentric spherical surfaces: the
MP and the proposed pseudoinverse are compared, the latter uses Γ̂ 1 and
Γ̂ 2 to generate a priori vectors while the mesh of the scatterer is Γ̂ (the
colors of the geometries only highlight the deformations). On the x-axis, the
distance 0λ coincides with the sphere of radius 8 cm enclosing Γ ; the distance
1λ denotes the observation surface on which the electric field is sampled and
corrupted with a Gaussian white NF of −60 dB.

slightly between the different reconstruction methods. These
effects can in part be explained by numerical error propagation
through ill-conditioned matrices and by the usage of different
pseudoinverses. Finally, and to better appreciate the displace-
ment of the a priori sources and the near-field reconstruction
improvement, in Fig. 2, the error (32) is evaluated on a
square box with edge length 2.2a, centered at the origin: the
reconstruction error for the proposed method is lower than that
obtained via the MP pseudoinverse, everywhere on the sides
of the box and, in particular, in the near-field regions around
their centers.

The constrained pseudoinverse is now tested on a more
complex scenario in which a deformed and scaled-down PEC
shuttle model is illuminated by a plane wave propagating
in the direction r̂ = [1, 0, 1] and oscillating at 5 GHz. The
reference scattered field is sampled in the far-field region,
and (26) is used to reconstruct more accurate scattered near-
fields. The test could be representative of the case where the
scatterer geometry is only approximately known and a priori
assumptions can be made on the structure rather than on its
displacement. First, the EFIE (12) is solved on Γ̂ , a triangular
mesh of the shuttle illustrated in Fig. 4, and the resulting
electric current is denoted by j i . Then, the equivalent magnetic
and electric currents are obtained on an equivalent surface Γ

wrapping the scatterer following the appropriate discretization
scheme as m = −G−1

mixe, j = ηG−1
mixh, with e = Tr j

i , h =

−Kr j
i . These currents are the reference solution used to scatter

the reference electric field in Ω+, being E+
= −Cr,δm+Sr,δj .

The constraining space of the proposed pseudoinverse makes
use of two differently deformed shuttle meshes, denoted by
Γ̂ 1 and Γ̂ 2 in Fig. 4. To obtain the matrix X of a priori solu-
tions, the additional scatterers are illuminated with the same
plane-wave applied to the reference Γ̂ , the corresponding EFIE
are solved, and the equivalent currents are found on Γ . Thus,
X and B = RX are composed of two columns only. Finally, the
reconstruction is made on concentric spheres, the smallest just
big enough to enclose Γ , starting from far-field measurements
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Fig. 5. Near-field reconstruction error. (a) MP reconstruction. (b) Proposed
pseudoinverse given the a priori meshes of Fig. 4. The scatterer surface Γ̂

is in red, the equivalent surface Γ in black and ϵ(E+) is evaluated in the
near-field of Γ (distance ≈ 0.1λ).

(1λ from a sphere of 8 cm radius containing Γ ) corrupted
with NF of −60 dB. The reconstruction error is shown in
Fig. 4, where the MP pseudoinverse is compared with the con-
strained pseudoinverse through ϵ(E+), and there is clearly an
improvement at near-field distances. Finally, in Fig. 5, ϵ(E+) is
evaluated on a cut of a surface wrapping Γ at distance ≈0.1λ;
the constrained pseudoinverse yields a lower reconstruction
error everywhere on the surface under consideration.

VI. CONCLUSION

This work has presented a new constrained pseudoinverse
which exploits a priori information in its definition to guide the
selection of a specific solution of the ill-posed inverse source
problem. By its very definition, the proposed pseudoinverse
should be used when a priori information is available about
the source under investigation. Once this preliminary condition
has been assessed, the a priori vectors can be accommodated
according to a variety of strategies. We proposed and analyzed
two lines of investigation: the first uses a priori information
in the form of spatial knowledge of the source; the second
uses a priori geometrical assumptions. In both scenarios, the

proposed constrained pseudoinverse performed better than the
MP pseudoinverse in reconstructing the near-fields, at the cost
of generating the a priori solutions.
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