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Communication
An Accelerated Method of a Generalized Transition Matrix Model Using

Characteristic Basis Functions for Large-Scale Open-Ended Cavities
Inhwan Kim , Hyeong-Rae Im , Ic-Pyo Hong , Hyunsoo Lee , and Jong-Gwan Yook

Abstract— This communication proposes a novel method for
electrically large-scale open-ended cavities, using the generalized
transition matrix (GTM) model and accelerating it by implementing the
characteristic basis function method (CBFM). The approach involves
the representation of electric surface currents on both the exterior and
interior walls of a cavity using characteristic basis functions (CBFs),
effectively reducing the number of unknowns in the problem. The
proposed method can efficiently enhance the computational complexity
of the GTM model construction as well as the system matrix formulation.
Consequently, the system matrix is reduced compared with the original
matrix system, resulting in the reduction of the matrix-solving times. The
detailed formulation processes are introduced in this communication.
Furthermore, the proposed method is verified using examples of
open-ended cavities and evaluates the computational efficiency compared
with the original method through the numerical results.

Index Terms— Characteristic basis function methods (CBFMs), gener-
alized transition matrix (GTM), method of moments (MoMs), open-ended
cavity.

I. INTRODUCTION

Open-ended cavities are common structures in both industrial and
mechanical applications, serving as essential components in antennas,
radar systems, or microwave circuits. In addition, these cavities are
also employed for mechanical purposes such as engine inlets, intakes,
and air-flow ducts for aerial vehicles. It is important to analyze
and understand their electromagnetic phenomena and characteristics,
including antenna patterns, gains, and radar cross section (RCS) of
the structure [1], [2], [3], [4]. These analyses are complicated by the
multiple reflections and complex interactions between the sources and
internal structures.

To accurately analyze the electromagnetic characteristics of these
cavities, conventional numerical methods can be used, such as the
method of moments (MoMs) [5] and the finite-element method
(FEM) [6]. While these methods provide precise solutions, they
are less efficient for handling large-scale problems due to their
computational complexity. Consequently, various alternative methods
have been developed, including iterative physical optics (IPOs) in
high-frequency approximations [7], [8], [9], hybrid methods [10],
[11], [12], [13], and the domain decomposition method (DDM) [14].

In [7], [8], and [9], IPO was introduced to solve the problems
for open-ended cavities, in which the electric currents are updated
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using the magnetic field integral equation to consider the multiple
reflections within the cavity structure. Accordingly, several hybrid
methods have been developed: [10] combined finite-element (FE)-
boundary integral (BI) (FE-BI) with the multilevel fast multipole
method (MLFMM), and [11] combined FE-BI with DDM. Recently,
researches that divided cavities into interior and exterior regions while
simultaneously considering the coupling between them [15] and [16].
Herein, we focus on the generalized transition matrix (GTM)
model [15] which is an efficient method that simultaneously considers
the interaction between the interior and exterior regions through
an equivalent source on the apertures of the cavities and the field
transmission matrix [17], [18]. However, although it is suitable for
solving the open-ended cavity problem, the computational complexity
increases as the physical dimensions or the target frequency increases.

The characteristic basis function method (CBFM) [19], [20], [21],
[22] is a representative of numerical methods for solving electrically
large-scale problems, which are based on the direct solver. The meth-
ods based on the direct solver do not suffer the convergence problem
depending on the physical structures of problems. Additionally, they
do not have computational degradations when solving multiple-
excitation problems. Therefore, CBFM is particularly advantageous
for monostatic RCS analysis. In this study, we employ CBFM to
efficiently solve the electrically large-scale problems of open-ended
cavities while continuing our previous work [23]. By leveraging char-
acteristic basis functions (CBFs) to reduce the number of unknowns,
large-scale problems with open-ended cavities can be efficiently
solved. The derivation using CBFs is introduced, and the performance
of the proposed method is demonstrated through the results of a
numerical experiment.

The remainder of this communication is organized as follows.
Section II provides a detailed discussion of the theories related to the
GTM model and the CBFM. Section III introduces the formulation of
the GTM model with CBFs and describes the reduced system matrix.
In Section IV presents the numerical results of some open-ended
cavities are discussed, followed by the conclusion in Section V.

II. THEORETICAL REVIEW OF GTM MODEL

The open-ended cavity can be separated into the interior and
exterior regions, as shown in Fig. 1. The boundary between the
interior and exterior regions is defined by a reference surface on
which auxiliary sources are considered in accordance with Huygens’s
principle. Notably, this reference surface is a fictitious boundary that
does not exist. In addition, the cavity consists of only perfect electric
conductors, not any other materials. Therefore, only electric sources
are considered on the surface of the cavity. However, it should be
noted that both electric and magnetic sources exist on the reference
surface. All sources which have to be considered are illustrated
in Fig. 1.

The whole geometry is partitioned into the exterior and interior
regions by defining the reference surface, where the junction serves
as the connection between the two regions. It should be noted that the
original junction current (Jq ) is decomposed into the outer and inner
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Fig. 1. Geometry and source distribution of the problem of the open-ended
cavity problem. The space is divided into the exterior and interior regions
by the reference surface located at the aperture of the cavity. The cavity
considered in this communication consists of a perfectly electric conductor.
The electric surface currents exist on the exterior, interior wall, and the
junction, while both electric and magnetic surface currents exist on the
reference surface.

junction, Jt and Jp , respectively. The inner and outer junctions are
defined by sharing the identical domain, reference surface, on which
the direction of the current is opposite to each other. Therefore, the
continuities can be satisfied on both the auxiliary reference surface
and original perfect electrical conductor (PEC) body [15]. The
current on the outer junction is regarded as a source of the exterior
fields, while the current on the inner junction is regarded as a source
of the interior fields.

Note that the derivation procedure in this section follows the
approach outlined in [15].

A. Construction of the GTM Model

Assuming that the cavity is lying in free space with no internal
sources, the electric field E⃗ex (r⃗) and the magnetic field H⃗ex (r⃗) in
the exterior region can be represented using the Huygens principle
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and J⃗ ex
R and M⃗ex

R represent the fictitious sources on the reference
surface in the exterior region, while J⃗ ex

W correspond to the electric
surface current on the exterior wall, E⃗ inc(r⃗) and H⃗ inc(r⃗) denote the
incident fields originating from an excitation source. Accordingly,
the electric field E⃗ in(r⃗) and the magnetic field H⃗ in(r⃗) in the interior
region can be expressed as
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where J⃗ in
R and M⃗ in

R represent the fictitious sources on the reference
surface in the interior region, J⃗ in

W corresponds to the electric surface

current on the interior wall, and J⃗p corresponds to the electric surface
current on the inner junction. First, the tangential components of
both fields should be continuous on the reference surface under the
following boundary conditions:

E⃗ex (r⃗)
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where r⃗ ∈ SR . In addition, since both electric and magnetic sources
should be eliminated on the reference surface, the current sources
in the interior and exterior regions have opposite signs: J⃗ ex

R =

− J⃗ in
R and M⃗ex

R = −M⃗ in
R . Using the Rao–Wilton–Glisson (RWG)

basis functions, (4) can be converted into a matrix equation using
Galerkin’s testing procedure [24]

ZR · XR + A · Jin
W + A′

· Jp = FR (5)

where ZR is the matrix calculated by testing the electromagnetic
field on the reference surface from itself, A is the matrix calculated
by testing the electromagnetic field on the reference surface from
the electric current on the interior wall, and A′ is the matrix a
matrix calculated by testing the electromagnetic field on the reference
surface from the electric current on the inner junction. XR is a vector
consisting of the expansion coefficients of J⃗R and M⃗R , Jin

W and Jp are
the expansion coefficients of J in

W and Jp , respectively. Notably, FR is
a vector containing the expansion coefficients for not only E⃗ inc and
H⃗ inc but also for all incoming incident fields to the interior region
from the exterior region through the reference surface.

Second, to satisfy the PEC boundary condition, the tangential
electric field on the interior wall should be eliminated

E⃗ in (r⃗)

∣∣∣
tan

= 0 where r⃗ ∈ Sin . (6)

Similarly, another matrix equation is obtained through Galerkin’s
testing procedure from (6)

B · Jin
W + B′

· Jp + C · XR = 0 (7)

where B is the matrix calculated by testing the electric field from
the current on the interior wall, B′ is the matrix calculated by testing
the electric field from the current on the inner junction, and C is the
matrix calculated by testing the electric field from the current on the
reference surface [15]. By combining (5) and (7), and eliminating
the term Jin

W , the GTM model can be constructed as

XR = T · FR + Mt · Jt (8)

where T = (ZR − AB−1C)−1, Mt = (ZR − AB−1C)−1(AB−1B′
−

A′), and the vector for the electric current on the inner junction
(Jp) is replaced by one for the outer junction (Jt ) [15]. It is noted
that the fictitious sources can be reconstructed without simultaneous
consideration of the interior region by using the GTM model.

Assuming that only one reference surface is considered, the
incident fields on the surface can be represented as

FR = Finc
R + DR0 · J0 + DRt · Jt (9)

where 0 denotes the exterior wall, DR0 is the field transmission matrix
from the exterior wall to the reference surface, and DRt is the field
transmission matrix from the junction to the reference surface, which
is represented as a summation of all interactions.
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B. Matrix System Formulation With the GTM Model

To construct a linear system for the problem, the PEC boundary
condition has to be enforced on the exterior wall and outer junction
of the cavity. Using Galerkin’s testing procedure, a linear system can
be constructed using the GTM model

Z0 · J0 = Einc
0 + D0R · XR + D0t · Jt (11)

Zt · Jt = Einc
t + Dt R · XR + Dt0 · J0 (12)

where Z0 and Zt are the impedance matrices calculated by testing
the exterior wall and outer junctions, respectively, using the PEC
boundary conditions. The matrices, D with subscripts, are defined as
the field transmission matrices which can be calculated by testing the
scattered fields on the observation surface from their sources [18].
The subscript 0 denotes the exterior wall, R denotes the reference
surface, and t denotes the outer junction. Therefore, D0R implies the
field transmission from the reference surface to the exterior wall, and
this same principle applies to the other matrices as well. The right-
hand side vectors consist of fields transmitted from other sources.
The first term represents the illuminated incident fields from the
natural excitation, the second term denotes the fields transmitted from
the GTM model, and the third term indicates the field transmitted
from the outer junctions in (11) and from the exterior wall in (12).
A solution to the problem can be obtained by solving (8), (9), (11),
and (12).

III. ACCELERATION OF THE GTM MODEL

METHOD USING CBFS

A. Characteristic Basis Function

The CBFM is a representative of numerical methods for solving
electrically large-scale problems. In CBFM, the entire geometry is
partitioned into multiple blocks, and CBFs are computed within
each block [19] as shown in Fig. 2. The CBFs are calculated by
solving the linear system of the blocks. The right-hand-side vectors in
the equation comprise a combination of omnidirectional plane wave
excitations

Zi
C B · Ji

C B = Vi
C B (13)

where Zi
C B is the impedance matrix of the ith block and Vi

C B
consists of columns that represent plane wave excitations. When
calculating the CBFs, the blocks are extended by some portion to
ensure continuity between adjacent blocks [19] as shown in Fig. 2.
After the CBFs have been calculated for every block, the original
solution vector can be expressed as a linear combination of the CBFs

J =

M∑
i=1

Ji
C B · αi (14)

where M is the number of blocks and Ji
C B are the CBFs of the ith

block. The dimensions of Ji
C B and αi are N i

C B × N i and N i
× 1,

respectively, where N i
C B is the number of CBFs and N i is the number

of RWG basis functions in the ith block.

B. GTM Model Construction With Reduced Form of Matrices
Using CBFs

The interior and exterior walls of the cavity are divided into
subblocks, and the CBFs in each block are precalculated. The electric
current on the interior and exterior walls of the cavity can be replaced
by CBFs. As the number of CBFs is smaller than the number of
the original RWG basis functions, the size of the matrices in the
derivation can be reduced. The matrix A can be reduced as follows:

Ã =



A1 · J1
C B

...

Ai · Ji
C B

...

AN · JN
C B



T

(15)

where Ai is the submatrix of A and Ji
C B is the CBF of the ith

block of the interior wall. N is the number of interior wall blocks.
Therefore, the number of columns is reduced to the number of CBFs
on the interior wall. Similarly, the size of the matrices B′ and C can
also be reduced.

Since the matrix, B, is calculated by testing the surface current
on the interior wall itself, the dimension of both columns and rows
can be reduced as (10), shown at the bottom of the page, where
Ai j is the submatrix of A, which is an interaction impedance matrix
from the jth block to ith block. Furthermore, Ji

C B is the CBF of
the ith block of the interior wall. The dimensions of the rows and
columns are changed by the number of CBFs on the interior wall.
Also, note that interaction impedance matrices are calculated by
using the adaptive-cross approximation (ACA) algorithm for further
acceleration [25].

Consequently, the GTM can be constructed using the reduced
forms of the matrices

T =
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(16a)
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where the matrices, Ã, Ã′, B̃, B̃′, and C̃, are the reduced form of
A, A′, B, B′, and C. Since the equations of the GTM model involve
the matrix inversion, which increases computational complexity, the
reduced forms of the matrices can provide computational efficiency
for constructing the model.

C. System Matrix Formulation With GTM Model Using CBFs

Accordingly, the original linear system of the cavity with the GTM
can be reduced using the reduced form of the matrices. Similarly, the
matrices (Z0, D0R , D0t ) in (11) can be reduced using the CBFs of
the electric current on the exterior wall. The reduced linear system
can be represented as

Z̃0 · J̃0 = Ẽinc
0 + D̃0R · XR + D̃0t · Jt (17)

B̃ =



(
J1

C B

)T
· A11 · J1

C B · · ·

(
J1

C B

)T
· A1 j · J j

C B · · ·

(
J1

C B

)T
· A1N · JN

C B
...

. . .
...

. . .
...(

Ji
C B

)T
· Ai1 · J1

C B · · ·

(
Ji

C B

)T
· Ai j · J j

C B · · ·

(
Ji

C B

)T
· Ai N · JN

C B
...

. . .
...

. . .
...(

JN
C B

)T
· AN1 · J1

C B · · ·

(
JN

C B

)T
· AN j · J j

C B · · ·

(
JN

C B

)T
· AN N · JN

C B


(10)



6816 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 8, AUGUST 2024

Fig. 2. Block generation of the open-ended cavity. The exterior and interior walls are divided into separate blocks. The CBFs are calculated by solving the
linear equation in every block.

Fig. 3. Geometry and simulation configuration of (a) rectangular open-ended cavity and (b) S-shaped duct. The detailed dimension of the structures is
described in the figure. The surface of the rectangular open-ended cavity is discretized by 77 780 triangular patches, generating 111 972 RWG basis functions.
Moreover, the surface of the S-shaped duct is discretized by 74 346 triangular patches, generating 111 519 RWG basis functions. The reference surfaces of
both examples consist of 4624 and 2519 RWG basis functions, respectively. The incident angle for excitation is swept azimuthally.

Fig. 4. Condition number versus frequency. The solid black line represents
the data for the rectangular open-ended cavity, while the marked blue line
represents the data for the S-shaped duct. Triangular meshes in both structures
are generated at the highest frequency of 1.0 GHz and are identically used at
lower frequencies.

where J̃0 represents the CBFs of the exterior wall and Ẽinc
0 is

the reduced excitation vector [19]. A solution to the problem can
be obtained by solving (8), (9), (12), and (17). Consequently, the
dimensions of the linear system are reduced compared to those
of the original linear system, resulting in the reduction of the
matrix-solving time.

IV. NUMERICAL SIMULATION RESULTS

In this section, we analyze two types of open-ended cavity struc-
tures. The first one is a rectangular cavity, and the second one is

Fig. 5. Backscattered RCS results with respect to the frequency. (a) and
(b) RCS results for HH- and VV-polarization of the rectangular open-ended
cavity, respectively. (c) and (d) RCS results for HH- and VV-polarization of
the S-shaped duct, respectively. The backscattered RCS is calculated in the
facing direction perpendicular to the aperture plane.

an S-shaped duct, as shown in Fig. 3. The results obtained from the
simulation were compared with those obtained using Altair FEKO,
the commercial software based on the MoMs. All simulations were
performed using a workstation that operates with an Intel Xeon Gold
6444Y CPU @3.60 GHz.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 8, AUGUST 2024 6817

Fig. 6. Comparison of the monostatic RCS results of (a) rectangular open-ended cavity and (b) S-shaped duct at VV-polarization.

TABLE I
COMPARISON OF UNKNOWN INFORMATION AND COMPUTING TIME BETWEEN THE CONVENTIONAL AND PROPOSED METHODS

A. Numerical Stability

Numerical stability is a critical metric in numerical analysis
algorithms. Poor numerical stability can lead to reduced convergence
or accuracy of solutions. One method of evaluating numerical stability
is by computing the condition number of matrices. Generally, in prob-
lems where numerical stability is poor, known as ill-conditioned
problems, the condition number can be calculated to be a very
large number. In our paper, we combine (8), (9), (12), (17) into
a single matrix equation to obtain solutions, and we compute the
distribution of condition numbers for the matrices obtained by scaling
frequencies, as shown in Fig. 4. Due to the computational burden,
the surfaces of the structures are discretized at a relatively lower
frequency than the practical operating frequency. The triangular
meshes in the rectangular open-ended cavity are generated at the
highest frequency of 1.0 GHz and are identically used at lower
frequencies, with the geometry divided into 0.5λ-sized blocks for
CBFM at each frequency. Similarly, the triangular meshes in the
S-shaped duct are generated at the highest frequency of 1.0 GHz
and are identically used at lower frequencies, with the geometry also
divided into 0.5λ-sized blocks. Mostly all of the values are below 106,
indicating that the matrices are well-conditioned. To evaluate the
accuracy of the solution, we calculated the backscattered RCS with
respect to the frequency, as shown in Fig. 5. The backscattered RCS is
calculated in the facing direction perpendicular to the aperture plane.
According to the results, all RCS values have excellent agreement
with FEKO. Therefore, it can be concluded that the convergence and
accuracy of solutions are ensured.

B. Rectangular Open-Ended Cavity

The width, length, and height of the rectangular open-ended cavity
are 7.0λ, as depicted in Fig. 3(a). The aperture size is 4.67λ by 4.67λ,

which serves as the reference surface. The simulation is performed at
a frequency of 1.4 GHz. The interior and exterior walls are divided
into 988 and 1097 blocks, respectively, with each block having a size
of 0.5λ. We used the result from [26] to decide the appropriate size
of blocks for dividing the whole geometry

Lopt
B ≈ 0.05 × (NRW G)

6
29 (18)

where NRW G is the number of RWGs in the geometry. When
NRW G = 110 000, then Lopt

B ≈ 0.55. We choose the block size
as (1/2)λ, or 0.5λ, for simplicity. The value of the block size is
also used for the other example. The blocks are extended by 0.1λ

when calculating the CBF. The total numbers of generated CBFs are
28 867 and 25 113 on the exterior and interior walls, respectively.
More detailed information for unknown variables is presented in
Table I. The monostatic RCS results are compared in Fig. 6(a).
The RCS results obtained from the commercial full-wave software,
FEKO, are used as the reference data for validation, and all results
exhibited excellent agreement. The computation times are tabulated
and compared in Table I. As shown in the table, the proposed
method significantly reduces the computational time. As expected, the
computing time for GTM model construction is reduced by 40.3%,
and the total computing time is reduced by 49.4%. Additionally, the
simulation time using FEKO was recorded as 2774 s, indicating the
superior computational performance of the proposed method.

C. S-Shaped Duct

The size of the S-shaped duct is 4.0λ×3.34λ×5.34λ, as shown in
Fig. 3(b). The aperture dimensions are 1.33λ × 3.34λ, and it served
as the reference surface. The simulation is carried out at a frequency
of 2.0 GHz. The exterior and interior walls are divided into 1212 and
1041 blocks, respectively. The size of each block is 0.5λ. As in the
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previous example, the blocks are extended by 0.1λ when calculating
the CBF. The total numbers of generated CBFs are 31 492 and 25 500
on the exterior and interior walls, respectively. Detailed information
for the unknown variables is presented in Table I. The comparison
of monostatic RCS is depicted in Fig. 6(b), revealing almost perfect
agreement. As presented in the table, the computation time is signif-
icantly reduced. The computing time for GTM model construction
is reduced by 66.5%, and the total computing time is reduced by
65.9%. Additionally, the simulation time using FEKO was recorded
as 2846 s, indicating the superior computational performance of the
proposed method.

V. CONCLUSION

This study proposes a novel method for accelerating the perfor-
mance of the GTM model for scattering problems of electrically
large-scale open-ended cavities. The original unknowns for the elec-
trical surface current on both the interior and exterior walls are
represented by the lower number of CBFs. Various matrices in the
GTM formulation are replaced with the reduced form using CBFs,
which reduces the construction time for the GTM model. In addition,
the linear system with the GTM model can be represented by the
reduced form by using the CBFs, resulting in the reductions of both
matrix formulation and solving time. To validate the effectiveness of
our proposed method, we conducted numerical simulations on various
open-ended cavity structures. We compared the results obtained
from the proposed method with those from the original method and
the commercial simulation software (FEKO). The monostatic RCS
results have excellent agreement with other methods. Notably, the
computation time is significantly reduced compared with the original
method.
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