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Abstract: Permanent magnet synchronous motors (PMSMs) are widely used in high-power-density and flexible control methods. 

Generally, the inductance changes significantly in real-time machine operations because of magnetic saturation and coupling effects. 

Therefore, the identification of inductance is crucial for PMSM control. Existing inductance identification methods are primarily 

based on the voltage source inverter (VSI), making inverter nonlinearity one of the main error sources in inductance identification. To 

improve the accuracy of inductance identification, it is necessary to compensate for the inverter nonlinearity effect. In this study, an 

overview of the PMSM inductance identification and the related inverter nonlinearity self-learning methods are presented. 
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1  Introduction1 

Permanent magnet synchronous motors (PMSMs) are 
widely used in the industrial field because of their high 
torque and power density 

[1-2]. The high-performance 
control methods of PMSM primarily rely on accurate 
parameters, among which the inductance generally 
changes significantly during motor operation owing to 
magnetic saturation and coupling saturation effects [3]. 
Hence, inductance identification is crucial for PMSM 
control such as sensorless control [4-5], deadbeat 
control [6-7], and model predictive control (MPC) [8-9]. 
The inductance can also be applied to the status 
detection and fault diagnosis of PMSM. 

In traditional motor-control strategies, the 
inductance is usually assumed to be constant. However, 
in actual PMSM control, the stator current changes 
under different operating conditions, causing magnetic 
saturation and cross-saturation effects, and further 
changing the inductance [10]. PMSM control methods 
with high accuracy and performance have attracted 
increasing attention because inductance identification 
strategies are required [11]. In early research, 
inductance identification was performed using 

                                                        
Manuscript received July 29, 2023; revised October 9, 2023; accepted October 
23, 2023. Date of publication June 30, 2024; date of current version November 
10, 2023. 
* Corresponding Author, E-mail: WGL818@hit.edu.cn 
* Supported by the National Natural Science Foundation of China (52307048) 

and the Postdoctoral General Foundation of Heilongjiang (LBH-Z23022). 
Digital Object Identifier: 10.23919/CJEE.2023.000046 

detection devices, which increased the cost and 
reduced generality. Simultaneously, the detection 
devices can only be used offline. The effects of 
magnetic saturation on the inductance cannot be 
considered. To solve these problems, the identification 
achieved by the controller has been investigated over 
the past decade. 

Currently, VSI-based controllers are commonly 
used in PMSM control systems, making the inductance 
identification method more realizable and practical 
under various operation conditions [12]. However, 
because a VSI-based controller is not an ideal device, 
inverter nonlinearity causes voltage errors in the motor 
control, which also has an adverse impact on 
inductance identification [12-13]. The inverter 
nonlinearity effect contains many error factors such as 
the dead time effect, parasitic capacitance effect, and 
voltage drop of the switching device [14]. In recent 
years, studies on inverter nonlinearity estimation and 
compensation have been conducted to further improve 
inductance identification accuracy. 

This paper presents a comprehensive discussion of 
the existing research on PMSM inductance 
identification and related inverter nonlinearity 
compensation. This paper is organized as follows. In 
Section 2, the characteristics of the inductance and 
inverter nonlinearity under VSI-based drives are 
introduced. PMSM inductance identification 
technologies are presented in Section 3. The inverter 
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nonlinearity self-learning and compensation methods 
are presented in Section 4. Section 5 discusses future 
trends and concludes the paper. 

2  Inductance and inverter nonlinearity 
models in VSI-based PMSM drive 

In this section, the saturation characteristics of the 
inductance are analyzed under different operating 
conditions along with the rank deficiency in the 
identification process. Furthermore, the inverter 
nonlinearity effect in the inductance identification is 
introduced. 

2.1  Saturation effect of inductance 

Owing to the saturation characteristics of the magnetic 
material of the yokes, a magnetic saturation effect 
occurs during actual motor operation [10]. According to 
the magnetization curve of ferromagnetic materials, 
with an increase in the magnetic field, the flux linkage 
simultaneously increases, which reduces the magnetic 
permeability and inductance [2]. The simulation results 
for the magnetic saturation effects of the PMSM are 
shown in Fig. 1, wherein in represents the rated value 
of the current. 

 

Fig. 1  Simulation results of magnetic saturation of PMSM in 

different working conditions 

The density of magnetic lines represents the degree of 
saturation. As shown in Figs. 1a-1b, the magnetization 
and demagnetization currents in the PMSM increase and 
weaken the degree of magnetic saturation, respectively, 
which is defined as the magnetic saturation effect. As 
shown in Fig. 1c, a common magnetic path exists between 
dq-axis magnetic circuits, causing a cross-saturation effect, 
where the inductance is affected by both dq-axis currents. 

2.2  Inductance identification models 

As the dq-axis model is generally applied to PMSM 
control, dq-axis inductances are the identification 

targets. The dq-axis voltage equations are the most 
commonly used identification models and are 
expressed as follows 
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where ud,q denote the dq-axis voltages, id,q denote the 
dq-axis currents, Rs denotes the stator resistance, and 
ωe signifies the rotational speed. Ld,q_inc and Ld,q_app 
denote the incremental and apparent inductances in 
dq-axes, respectively [15]. Considering the magnetic 
and cross-saturation effects, Ld,q_inc and Ld,q_app are 
different. However, Ld,q_inc and Ld,q_app are 
mathematically equal, and their expressions are as 
follows 
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Among the existing inductance identification 
methods, the methods based on steady voltage models 
achieve Ld,q_app identification, while the methods based 
on transient voltage models achieve Ld,q_inc 
identification [16-17]. In conventional inductance 
identification methods, the number of unknown 
variables exceeds that of the model equations. Hence, 
a rank deficiency occurs during the inductance 
identification process, which is a core problem that 
must be solved. 

Except for the dq-axis voltage equations, some 
inductance identification strategies are based on other 
models, such as αβ-axis model [18]. These methods can 
be transformed into a dq-axis model based method via 
a coordination transformation. Furthermore, regardless 
of the applied model, the rank deficiency problem 
should always be considered. 

2.3  Inverter nonlinearity effects 

It is known that the VSI-based drive is not ideal, as the 
physical properties and drive strategies lead to inverter 
nonlinearity effects, including the parasitic capacitance 
effect [19], dead time effect [20], voltage drop, and 
switching delay of switching devices [21]. The overall 
effect of the inverter nonlinearity on the output voltage is 
shown in Fig. 2. The parasitic capacitance effect exists 
mainly in the relatively low current region, whereas the 
dead time effect exists in the full current region [22]. 
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Fig. 2  Diagram of inverter nonlinearity effects 

The inverter nonlinearity causes an error between 
the voltage command and output voltage, which 
reduces the control efficiency, especially under 
low-speed and light-load conditions [23-24]. The error 
between the reference voltage and the output voltage 
caused by inverter nonlinearity can be expressed as 
 ( ) ( )    , ,x x s x xinv xu i R i u i x a b c= + =      (3) 
where uabcinv is the nonlinear voltage of the inverter in 
the abc phases. The voltages are generally required in 
the inductance identification, which makes inverter 
nonlinearity a problem that must be addressed [13, 25]. 

Owing to the absence of a phase delay between the 
current and error voltage of the inverter nonlinearity, 
the inverter nonlinearity error can be regarded as an 
equivalent resistance [14, 26]. As illustrated in Fig. 3, in 
Region 1, the inverter nonlinearity error voltage is 
nonlinear in the low-current region, where the 
equivalent resistance is large. When the current 
exceeds a certain value, the inverter nonlinearity error 
voltage is constant, and the dead-time effect, switch 
device voltage drop, and turn-on/off delay are the 
major components of the inverter nonlinearity effect, 
as shown in Fig. 3, Region 2. In the absence of a 
parasitic capacitance effect, the inverter nonlinear 
error voltage acts as a sign function of the current. 

 

Fig. 3  abc-phase inverter nonlinear voltage error and 

equivalent resistance 

3  Inductance identification of PMSM 

This section reviews conventional inductance 
identification methods. The aforementioned methods 
are classified into different categories based on 
application conditions (offline and online), a 
comparison of which is presented in Tab. 1. In actual 
motor operation, the inductances of the PMSM change 
under different operating conditions, as illustrated in 
Fig. 4. 

Tab. 1  Comparison of offline and online inductance 

identification methods 

Contrastive 
items 

Offline identification 
methods 

Online identification 
methods 

Applicable 
state 

Offline condition with 
rotor standstill 

Different online operation 
conditions 

Identification 
purpose 

Auto-tuning for machine 
start up and machine control 

Self-commissioning; 
Health state detection; 
Fault diagnosis 

Signal 
injection type 

HF signal injection for 
signal excitation 

HF/offset signal injection for 
solving rank deficiency 

Signal 
injection 

effectiveness 

Don’t consume online 
control resources; 
Don’t affect online control 
process 

Consume online resources; 
Affect online control process 

Identification 
practicality 

Hard to simulate actual 
online machine states; 
Data storage requirement 

Identification under real-time 
machine states; 
No data storage requirement 

 

Fig. 4  Inductance surfaces for different id,q combinations 

3.1  Offline inductance identification 

As there is no current in the PMSM under offline 
conditions, offline inductance identification can be 
achieved using signal injection strategies. Based on the 
injected signals, conventional identification methods 
can be divided into square-wave and sine-wave 
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injection methods. 
3.1.1  Square wave injection based methods 
The square-wave-injection-based method is the most 
commonly used offline inductance identification 
strategy. The injected voltage and the induced current 
are first applied to achieve the flux linkage estimation, 
and then the dq-axis inductances are calculated by the 
differential operations of the flux linkage [27-29]. The 
corresponding mathematical equations and block 
diagrams are presented in Eq. (4) and Fig. 5. 

 

Fig. 5  Block diagram of offline inductance identification 

strategy based on square-wave signal injection 
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where ψd,q denote the dq-axis flux linkages. An 
inductance identification strategy based on dq-axis 
square wave injection was proposed in Ref. [28], 
where the amplitude and frequency of the injected 
voltages can be adjusted by hysteresis control. The 
linear least-squares algorithm was used to improve the 
identification accuracy. In Ref. [30], the square wave 
injection method was proposed with the rotor position 
closed-loop tracked so that the rotation of the rotor 
during the signal injection process could be obtained 
without the encoder, improving the stability of the 
proposed identification method. In Ref. [29], a flux 
saturation approximation function was introduced to 
simplify the inductance identification procedure with 
dq-axis square wave signal injection, where the 
identification accuracy was verified by the maximum 
torque per ampere algorithm. 

High-frequency (HF) square-wave voltage injection 
into a two-phase rotating coordinate system was 
proposed in Ref. [31]. The dq-axis inductances can be 
extracted from the HF (HF) response currents under 

both offline and online conditions, improving the 
universality of the algorithm. By increasing the 
injection frequency of the square wave, the injected 
signal becomes a pulse wave that can be used for 
inductance identification. An inductance identification 
method based on double-direction pulse signal 
injection under a rotating shaft system was presented, 
in which no additional auxiliary equipment was 
required [32]. 

The square-wave injection-based offline inductance 
identification method considers the saturation effects 
of the inductance by adjusting the injection amplitude. 
3.1.2  Sine wave injection based methods 
Recently, the offline inductance identification method 
based on sine-wave injection has drawn increasing 
attention; its diagram is shown in Fig. 6. The 
inductance can be calculated using the frequency and 
amplitude of the injected signals, as shown in Eq. (5). 
These methods can be further divided into several 
different categories based on signal injection 
strategies [33]. 

 

Fig. 6  Block diagram of offline inductance identification 

strategy based on sine wave injection 

The dq-axis sine wave signal injection method is 
first investigated. In Ref. [26], an injection method 
with dq-axis HF sinusoidal voltage injection was 
proposed, in which the inductance was estimated 
based on the information of the injected voltage and 
induced current. To prevent rotor rotation during the 
identification process, a d-axis current bias is applied 
to fix the rotor position. In Ref. [33], the DC square 
wave and AC sine wave combination signal injection 
method was applied with or without rotor locking, 
which realizes inductance estimation considering the 
magnetic saturation and cross-saturation effects. In 
Ref. [34], the DC and AC combination signal injection 
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method was further investigated, where the injection 
amplitude and frequency were selected to improve 
identification effectiveness. 

To deal with the inverter nonlinearity effect, the 
double-amplitude injection method [35] and the 
double-frequency double-amplitude injection 
method [12] based on HF injection have been proposed. 
In addition to the dq-axis signal injection methods, 
other signal injection strategies with different injection 
axes or mixed signal injection have also been proposed 
to satisfy different application conditions. In Ref. [36], 
an offline inductance identification strategy was 
proposed with sinusoidal voltage injection at different 
rotor positions. The dq-axis inductance can be 
obtained from a spatial inductance map. 

( )

=Re[ exp( ( ))]
=Re[ exp( ( ))]

    ,
Im sin
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where ud,qh and id,qh represent the injected d- and q-axis 
HF voltages and currents, respectively. Ud,qh and Id,qh 
denote the amplitudes of the injected dq-axis voltage 
and current, respectively. Re[] and Im[] represent the 
real and imaginary parts, respectively. θd,qu and θd,qi 
represent the initial phase angles of the HF voltage and 
current. ωd,qh denote the injected dq-axis angular 
frequencies. This type of method is immune to inverter 
nonlinearity by avoiding the influence of the 
equivalent resistance. 

To consider the saturation effects of inductance, 
different PMSM saturation conditions must be 
simulated offline [2]. To satisfy this requirement, the 
injected signals must be adjusted several times to 
create different dq-axis current conditions where the 
inductance is identified and sampled 
simultaneously [30]. In this case, the complexity of the 
data computation and storage is inevitably 
increased [26, 37]. To solve these problems, data fitting 
and interpolation strategies have been proposed [15, 38]. 
Considering the applied dq-axis signal injection, most 
conventional offline methods require an accurate 
dq-axis position. Hence, encoder or sensorless control 
is essential [33-34]. Furthermore, the injected signal may 
cause motor rotation, which affects the identification 
accuracy. To address this problem, motor stability 

during signal injection has been analyzed, and 
modified signal injection schemes have been 
proposed [28, 30]. 

When motor rotation is allowed, the inductance can 
also be identified under the free rotation state in the 
offline condition. In Ref. [39], by providing dq current 
reference values, the dq-axis flux linkage versus 
current curves could be identified under the PMSM 
free rotation state. The dq-axis inductances can be 
calculated using the dq-axis flux linkages. 

Existing offline inductance identification methods 
are based on PMSM voltage equations, where the 
output voltage is affected by the inverter nonlinearity 
effect. Hence, inverter nonlinearity should be 
compensated in the offline inductance identification 
process [40-42]. A comparison of widely used offline 
methods is presented in Tab. 2. 

Tab. 2  Comparison of widely applied offline inductance 

identification methods 

Contrastive 
items 

Method in
Ref. [30] 

Method in 
Ref. [33] 

Method in 
Ref. [34] 

Method in 
Ref. [38] 

Signal 
injection Square wave Sine wave Sine wave & 

DC current 
HF Sine wave 
& DC current

Inverter 
nonlinearity 

effect 

Affected by 
inverter error

Affected by 
inverter error 

Affected by 
inverter error 

Immune to 
inverter error

Allowable 
identification 

range

Limited id,q 
range 

Limited id,q 
range 

Full id,q range 
(with locked 

rotor) 

Full id,q range 
(with locked 

rotor) 

3.2  Online inductance identification 

Although offline methods have made significant 
progress in inductance identification, they cannot fully 
simulate the actual online PMSM saturation conditions. 
Online inductance identification methods have 
received increasing attention for further improving 
inductance identification technology. 
3.2.1  Steady-state voltage equation based methods 
The steady-state voltage equations are commonly used 
in the online inductance identification, which can be 
expressed in several forms, such as in dq-axes and 
αβ-axes. The inductance can be calculated using these 
equations under changing operating conditions [43-44]. 
However, rank deficiency is an essential problem that 
must be solved [45-46]. In addition, cross-coupling 
exists between the parameters. Considering the 
dq-axes voltage equation as an example, it can be 
expressed as 
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As the parameters are contained in multiple 
components, the working conditions restrict the 
application of these identification methods. Meanwhile, 
the identification error of one parameter affects the 
identification accuracy of the other parameters, owing 
to parameter coupling. Several schemes have been 
proposed to address this problem. 
3.2.1.1  Rank reduction strategy for identification method 
The most intuitive method for reducing the rank of the 
voltage equations is to fix several other parameters in 
the equations until a full rank is achieved. The most 
commonly applied strategy for full-rank inductance 
identification is to assume constant resistance and flux 
linkage [47]. An adaptive synchronization-based 
inductance identification method is proposed 
considering the torque equation, where the moment of 
inertia and flux linkage are assumed to be constant [48]. 
The resistance was obtained separately to deal with the 
rank deficiency, and the identification error was 
limited to within 0.14% [49]. A flux-linkage-free 
method was proposed to make the model full rank, the 
identification error of which was within 1% [50]. 
However, the parameters change with the operating 
conditions, which should be considered in inductance 
identification [51-53]. 

To address the above problems, an identification 
strategy based on two recursive least square (RLS) 
algorithm segments of the fast- and slow-changing 
parameters with the current [54-55]. The identification 
model can be of full rank, and the inductance 
identification error can be limited to within 2% [7]. To 
further improve the effectiveness of RLS-based 
inductance methods, optimization algorithms such as 
the averaged sliding window and extended Kalman 
filter have been applied to reduce the disturbance 
influence during the identification process [56-58]. 
However, the inaccuracy caused by rank deficiency 
cannot be solved thoroughly. 

The identification accuracy under rank deficiency 
can be improved to some extent by fixing or 
classifying the parameters based on fast or slow 
changing rates. However, these strategies cannot fully 
consider the inductance variation under different 

saturation conditions. Meanwhile, the rank deficiency 
amplifies the identification error, particularly under 
current disturbances caused by the pulsation error, 
system delay, and inverter nonlinearity effects. As a 
result, identification errors are also evident under 
transient operating conditions [59-60]. 
3.2.1.2  Full rank model using signal injection 
Unlike the rank reduction strategy, the increase in the 
voltage equations by signal injection is another 
method that deals with the rank deficiency [43-45], the 
diagram of which is shown in Fig. 7. An inductance 
identification algorithm based on the d-axis current 
offset injection was proposed to develop another set of 
voltage equations, so that the entire voltage 
equation-based model is considered full rank, where 
the inductance identification error is less than 
4% [44, 61-62]. In Ref. [63], a q-axis current injection 
was adopted, and the identification error was less than 
10%. In Ref. [64], an HF square-wave voltage 
injection was used and the identification error was 
limited to 9.8%. 

 

Fig. 7  Logic diagram of steady-state voltage-equation-based 

methods with signal injection 

Because the injected current bias affects the 
saturation condition, the amplitude of the injected 
current should be set to a small value to reduce the 
negative effects [57]. However, owing to changes in the 
temperature and saturation effects, the parameters are 
not constant, making the above algorithms inaccurate. 
To further analyze the effect of the injected signal on 
the inductance identification, a linear equation was 
employed to simulate the saturation effect during 
current injection, which can facilitate the estimation of 
inductance variations induced by magnetic 
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saturation [65]. However, the nonlinear characteristics 
of inductance cannot be fully considered. Hence, the 
effect of the injected signal on the inductance requires 
further research and consideration [19]. 
3.2.1.3  Artificial intelligence methods 
In recent years, artificial intelligence (AI) algorithms 
have been studied to optimize the efficiency of 
inductance identification methods [52]. AI algorithms 
can deal with a large amount of nonlinear data with 
autotuning functions and can also be trained to 
simulate unknown mathematical models under 
complex operating conditions. In Ref. [66], an 
artificial-neural-network-based high-performance 
speed control system for PMSM was proposed. In 
Ref. [67], an immune clonal selection differential 
evolution algorithm was applied for inductance 
identification. In Ref. [68], the genetic algorithm was 
studied for the parameter identification process of a 
PMSM under information interference conditions. 

In addition to inductance identification, AI-based 
algorithms can consider the PMSM states. In Ref. [69], 
a particle swarm optimization algorithm (PSO) was 
implemented to estimate the parameters, considering 
the effect of temperature on the PMSM parameters. To 
further improve the convergence speed of the proposed 
method under different operating conditions, AI-based 
algorithms can achieve good convergence of the 
inductance, considering its nonlinear characteristics. 
However, these algorithms are still based on voltage 
equations, which are inevitably affected by the 
aforementioned problems of voltage equation models. 
However, AI-based methods are generally complex 
and time-consuming, which limits their application. 
3.2.2  Transient-state voltage equation based methods 
Although steady-state voltage-equation-based methods 
have made great progress in inductance identification, 
several problems, such as rank deficiency and 
coupling between parameters, remain [10]. Hence, the 
identified inductance is affected by possible errors of 
other parameters, such as sampling and perturbation 
errors. In this case, steady-state voltage equation-based 
methods cannot guarantee identification accuracy 
under full operating conditions. 

Recently, inductance identification methods based 
on transient-state voltage equation have been 
investigated to address these issues [70]. A detailed 

comparison of the steady-and transient-state voltage 
equation-based methods is presented in Tab. 3. 

Tab. 3  Comparison of steady- and transient-state voltage 

equation based online inductance identification methods 

Contrastive 
items 

Steady-state voltage 
equation based method 

Transient-state voltage 
equation based method 

Physical 
model 

Fundamental frequency 
model 

HF equivalent impedance 
model 

Injected 
signal type 

Square wave/offset signal 
injection 

HF Sine wave signal 
injection 

Application 
limitation 

Inapplicable to specific 
conditions 

Applicable to all working 
conditions 

Application 
robustness 

Affected by parameter 
coupling error 

Not affected by the 
parameter coupling error 

In these methods, HF signal injection is necessary, 
and incremental inductance is obtained. As the 
frequency of the injected HF signal is generally much 
higher than the motor speed, the transient components 
are also larger than the steady components. To 
simplify the calculation, steady parts were ignored. 
The mathematical formulas and diagrams of the 
methods are presented in Eq. (7) and Fig. 8. 

 
_

_

d / d
    ,

sin( ) /
xh x inc x

x inc xh ux ix x xh

u L i t
x d q

L U Iθ θ ω

≈⎧⎪ =⎨ = −⎪⎩
  (7) 

 

Fig. 8  Diagram of PMSM transient model 

As shown in Fig. 9, an HF equivalent impedance 
model based on the transient-state voltage equation 
was proposed in Ref. [10], in which the inductance 
was calculated using sine signal injection. In Ref. [18], 
the HF sinusoidal voltages are imposed on the αβ-axis 
to identify the d- and q-axis inductances. In Ref. [63], 
the difference between the incremental inductance 
and apparent inductance was discussed in detail using 
the proposed HF model. In Ref. [64], an HF square 
injection-based identification method was proposed, 
where the inductance can be calculated by the 
amplitudes of different sequence components in the 
HF current obtained by a fast Fourier transform (FFT). 
Except for signal injection, the harmonics of the 
pulse-width modulation excitation or current ripples 
can be directly used for inductance 
identification [71-73]. 
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Fig. 9  Logic diagram of transient-state voltage-equation-based 

methods with signal injection 

Compared with steady-state voltage equation-based 
methods, transient-state voltage equation-based 
methods have advantages in solving the rank 
deficiency problem and coupling effect because the 
HF transient-state model is independent of the PMSM 
operation conditions. This method is immune to 
inverter nonlinearity by avoiding the influence of the 
equivalent resistance. In conclusion, the transient-state 
voltage-equation-based methods expand the 
application of parameter identification. Using the 
transient-state voltage equation-based method, the 
identification error can be limited to within 5% and 
6% for dq-axis inductance, respectively [10]. However, 
using steady-state voltage equation-based methods, the 
identification errors were 10% and 9.8% for Ref. [63] 
and Ref. [64], respectively. 

4  Inverter nonlinearity self-learning and 
compensation of VSI-based inverter 

Inverter nonlinearity is a crucial source of errors in 
inductance identification. This section reviews inverter 
nonlinearity compensation and self-learning methods. 

4.1  Inverter nonlinearity compensation 

The inverter nonlinearity consists of many parts, such 
as the dead-time effect, parasitic capacitance effect, 
and voltage drop of the switching devices. As the 
main part of inverter nonlinearity in the high-current 
region, the dead-time effect has been widely 
analyzed [74-75]. The dead-time effect can be easily 
compensated for by the sign function related to 

three-phase currents [40, 44, 65]. To improve the 
compensation accuracy, other inverter nonlinearity 
effects should also be compensated. The parameter 
function of the inverter nonlinearity is introduced, 
which can theoretically provide an accurate 
description of the inverter nonlinearity effects [76]. 
Hence, the parameter function can effectively improve 
the accuracy of the inverter nonlinearity 
compensation [77]. However, parameter-function-based 
compensated methods require inverter parameters, 
which reduces the universality of this method. 

0 0 0 0( ) ( )  ( )
( ) ( ) /

abcinv abc dq abc dq inv abc abc inv abc

abcinv abc abcinv abc s dc

u i C u i C u i
T i u i T U

αβ αβ→ →= =⎧
⎨ =⎩

  

  (8) 

where udq0inv and uαβ0inv denote the inverter 
nonlinearity of dq0-axes and αβ0-axes. Cdq0→abc 
denotes the coordinate transformation matrices 
between abc-phases and dq0-axes. Cαβ0→abc denotes 
the coordinate transformation matrix between 
αβ0-axes and dq-axes. Ts denotes the PWM period. 
Udc indicates the DC bus voltage. Tabcinv represents the 
equivalent dead time compensation. 

To further improve the accuracy of the inverter 
nonlinearity compensation, the parasitic capacitance 
effect should be carefully considered [21, 78]. The 
characteristics of the parasitic capacitance effects of 
power-switching devices have been analyzed [23, 79]. 
Moreover, it was proven that the parasitic capacitance 
mainly affected the three-phase current-switching 
process. The equivalent voltage error of the parasitic 
capacitance effect and its relationship with the 
dead-time effect were introduced using the 
corresponding mathematical relationship [78]. To 
address the parasitic capacitance in the inverter 
nonlinearity effect, a compensation method based on a 
trapezoidal voltage was proposed, which improves the 
compensation effect in a relatively small current 
range [80-81]. In this method, the nonlinear inverter 
voltage error is equivalent to the slope function in the 
low-current region, which can be described by 
minimizing the current harmonics through a fast 
Fourier transform [24]. 
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To better describe the parasitic capacitance effect in 
inductance identification in the low-current region, a 
two-stage inverter nonlinear voltage error fitting 
method based on the d-axis ramp current injection was 
proposed for inverter nonlinear compensation [41]. A 
method based on a detailed physical model of a power 
converter was introduced using a small set of 
parameters, based on which an identification 
self-commissioning procedure adopting multiple linear 
regression was proposed [21]. The application of the 
inverter nonlinearity compensation method is 
illustrated in Fig. 10. 

 

Fig. 10  Waveforms of several common inverter nonlinear 

compensation methods 

4.2  Inverter nonlinearity self-learning 

The sign function cannot describe the inverter 
nonlinearity characteristics in every aspect [2]. This 
parameter function is widely applicable to various 
controllers. Hence, in recent years, inverter 
nonlinearity self-learning methods have been studied. 
A self-learning scheme based on a double 
second-order generalized integrator frequency-locked 
loop was proposed to achieve adaptive compensation 
for the dead-zone effect and minimize current 
zero-crossing distortion [75]. An inverter output voltage 
error compensation method was introduced in which 
the harmonic component of the current in the 
synchronous rotating reference frame can be 
minimized [82]. An online inverter nonlinearity effect 
post-compensation scheme in a signal-injection-based 
sensor-less method was developed by utilizing the 
information of the positive-sequence carrier current 
distortion [76]. 

As illustrated in Fig. 11, the offline inverter 
nonlinearity self-learning method has been commonly 
applied [81, 83], in which the inverter nonlinearity 

characteristics under different currents should be 
considered. The inverter nonlinearity error can be 
measured directly by detecting the inverter 
nonlinearity voltage error [84]. Since the application of 
the test device increases the consumption, inverter 
nonlinearity self-learning methods based on signal 
injection have been investigated. In Ref. [41], a d-axis 
current-injection-based inverter nonlinearity 
self-learning method was investigated, and the inverter 
nonlinearity voltage error under different currents was 
obtained. In Ref. [85], the α-axis DC current injection 
based characterization algorithm was proposed for the 
inverter nonlinearity compensation, which realizes the 
self-commissioning of VSI-fed drives without 
numerical solutions. Meanwhile, an offline inverter 
nonlinearity self-learning method based on a- and 
b-phase current injection (c-phase disconnected) was 
studied [86]. In the offline self-learning process, a 
combination of the identified voltage error and current 
information was sampled and stored in a lookup table. 
The error voltage of the three-phase inverter can then 
be obtained through a coordinate transformation. 
Compensation can be achieved using real-time PMSM 
control [41]. 

 

Fig. 11  Diagram of the inverter nonlinearity self-learning 

process with signal injection 

However, existing methods can only be applied 
under specific rotor positions, which reduces the 
generality of the algorithm. To further improve its 
application and accuracy, an inverter nonlinear 
self-learning method that considers the zero-sequence 
voltage error was studied in Ref. [14], as shown in Fig. 
12. Through offline inverter nonlinear self-learning, 
the nonlinear characteristics of the inverter can be 
considered to improve its accuracy and versatility. 
Nonlinear inverter self-learning strategies have been 
used in applications such as three-level T-type 
inverters [87], multi-level inverters [88], and inverters 
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with faulty units [85]. 

 

Fig. 12  Zero-sequence inverter nonlinearity voltage error 

versus current and rotor positions 

5  Conclusions 

This paper presented a detailed overview of 
inductance identification methods for PMSM drives. 
The methods were classified based on their application 
models and algorithms for effective understanding of 
the readers. Furthermore, inverter nonlinearity 
self-learning methods, which are important error 
sources in inductance identification, were reviewed. 

However, significant progress has been made in the 
inductance identification techniques for PMSMs. To 
improve its effectiveness further, there are several 
aspects concerning future research trends in 
inductance identification. 

(1) Conventional identification methods mostly 
consider the dq-axis self-inductance. The identification 
of PMSM mutual inductance should be further 
investigated. 

(2) Since inductance identification methods still rely 
on signal injection, the effects of the injected signals 
on the identification and operation conditions need to 
be further studied. 

(3) In actual machine control, the values of the 
incremental inductance and apparent inductance are 
not equal, which should be considered in PMSM 
control. 

(4) An effective control algorithm upgrade based on 
the identified inductances and inverter nonlinearity 
information should be investigated. 
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