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Abstract—In this manuscript, we propose to use a variational
autoencoder-based framework for parameterizing a conditional
linear minimum mean squared error estimator. The variational
autoencoder models the underlying unknown data distribution as
conditionally Gaussian, yielding the conditional first and second
moments of the estimand, given a noisy observation. The derived
estimator is shown to approximate the minimum mean squared
error estimator by utilizing the variational autoencoder as a
generative prior for the estimation problem. We propose three
estimator variants that differ in their access to ground-truth data
during the training and estimation phases. The proposed estima-
tor variant trained solely on noisy observations is particularly
noteworthy as it does not require access to ground-truth data
during training or estimation. We conduct a rigorous analysis by
bounding the difference between the proposed and the minimum
mean squared error estimator, connecting the training objective
and the resulting estimation performance. Furthermore, the
resulting bound reveals that the proposed estimator entails a bias-
variance tradeoff, which is well-known in the estimation litera-
ture. As an example application, we portray channel estimation,
allowing for a structured covariance matrix parameterization
and low-complexity implementation. Nevertheless, the proposed
framework is not limited to channel estimation but can be applied
to a broad class of estimation problems. Extensive numerical
simulations first validate the theoretical analysis of the proposed
variational autoencoder-based estimators and then demonstrate
excellent estimation performance compared to related classical
and machine learning-based state-of-the-art estimators.

Index Terms—Parameter estimation, variational autoencoder,
conditional mean estimator, generative model, inverse problem.

I. INTRODUCTION

GENERATIVE models (GMs) are a class of machine learn-
ing (ML) techniques designed to learn data distributions

based on samples [1]. Instances of generative models are the
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Gaussian mixture model (GMM) [2, Ch. 9], variational autoen-
coder (VAE) [3], [4], generative adversarial network (GAN)
[5], and, more recently, the score-based model [6]. A trained
GM can generate unseen samples from the data distribution
and often enables likelihood evaluation by providing a so-called
generative prior. The generative prior is an approximation of the
true data distribution and can be leveraged to solve sophisticated
tasks such as inverse problems [7], dealing with recovering not
directly observable parameters based on their noisy observa-
tions. Exemplarily, [8] uses a GAN for image reconstruction
by adopting a compressed sensing (CS) framework and using
the GAN as a generator. The approach is further extended in
[9] to MRI images. Other image processing-related examples
solving inverse problems with GMs involve phase retrieval [10]
and blind image deconvolution [11]. In the context of wireless
communications, generative priors find application in channel
estimation (CE) [12], [13], [14], [15], [16], where the channel
is estimated based on a noisy pilot observation, representing
another instance of an inverse problem.

For the solution of an estimation task, a frequentist frame-
work assumes the data to be deterministic and commonly
constrains the estimator class to be unbiased in search for a
minimum variance unbiased estimator [17]. In opposition, if a
Bayesian approach is considered, it is well-known in estima-
tion theory that the conditional mean estimator (CME) delivers
minimum mean squared error (MMSE) estimates [18, Ch. 10].
Therefore, a (parameterized) Bayesian estimator’s goal should
be approximating the CME. Moreover, a fundamental aspect
of the Bayesian framework is modeling the data as a random
variable (RV), enabling the incorporation of a prior distribution
into the estimation process. The result is an excellent estimation
performance if the prior distribution accurately models the data,
e.g., in the form of a generative prior. Therefore, GMs and
Bayesian inference can be ideally combined to perform estima-
tion tasks due to the distribution modeling abilities of the GMs.

A well-known GM that can be used for directly approx-
imating the CME is the GMM [12]. However, connections
between the CME and other GMs are yet to be discovered in
the literature. Exemplarily, the GAN-based estimator from [13],
[14], [15] is used in a CS-fashioned way and the score-based
approach from [16] requires an iterative posterior sampling
process, causing a massive computational complexity. A closely
related GM to the GMM is the VAE. Both GMs maximize a
lower bound to the data log-likelihood and introduce an artificial
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latent space. Nevertheless, the GMM utilizes a discrete latent
space, which limits its expressiveness. On the contrary, a VAE
uses a continuous latent space, resulting in a better representa-
tion ability and a more flexible architectural design. The VAE
intrinsically makes no assumption about the data distribution
and was shown to work well in domains where it is traditionally
challenging to derive statistical data models, e.g., in image
processing [19].

In this work, we propose a VAE-parameterized estimator,
combining a GM and classical estimation theory, with the fol-
lowing contributions:

• We model the analytically intractable data distribution as
conditionally Gaussian (CG) with the help of the VAE,
yielding conditional first and second moments to param-
eterize conditional linear minimum mean squared error
(LMMSE) estimators given the latent representation and
noisy observations. The conditional LMMSE estimators
are mean squared error (MSE)-optimal and analytically
tractable in closed-form due to the CG likelihood model.

• Since the VAE inherently makes no assumptions about
the data distribution, the proposed estimation framework
works independently of the adopted data distribution.

• We introduce a low-complexity estimator version based on
a maximum a posteriori (MAP) estimate requiring only
one neural network (NN) forward pass (MAP-VAE esti-
mator). In contrast to many existing GM-based estimation
frameworks for inverse problems, e.g. [13], [14], [15],
[16], this procedure allows for a computationally efficient
approximation of the CME, which is high-performing and
robust, as a consequence of the VAE serving as a gener-
ative prior. Compared to classical algorithms for inverse
problems such as least squares (LS) or approximate mes-
sage passing (AMP), the proposed MAP-VAE estimator
achieves significant performance gains.

• Three estimator variants are proposed, differing in the
availability of ground-truth data during their training and
estimation phases. The VAE-real variant is particularly
noteworthy as it requires no access to samples of ground-
truth data in either the training or estimation phases.

• We rigorously derive a bound on the performance gap be-
tween the MAP-VAE estimator and the CME, allowing for
an interpretable estimation procedure. The bound connects
the training objective of the VAE with the resulting estima-
tion performance and reveals that the proposed estimator
entails a bias-variance tradeoff that is well-known in the
estimation literature.

• As an application example, we consider CE, offering
a low-complexity implementation due to the structural
properties of the CE problem. Our extensive numerical
simulations first validate the theoretical analysis and then
underline the superiority of the proposed VAE-based es-
timator variants compared to the baseline methods under
various system configurations.

Moreover, we provide the following extensions in this
manuscript compared to the preliminary results in [20]. The
analyses in Sections III-A and III-D enhance the theoretical
foundation of the VAE-based estimator’s MSE-optimality. We

provide a more general treatment by providing a scheme for
linear inverse problems of which multiple-input multiple-output
(MIMO)-CE is a special instance. We make the training of the
VAE signal-to-noise ratio (SNR)-independent, meaning that we
use a single trained VAE for every SNR value, in opposition to
[20], where an individual VAE is trained for every SNR value.
Finally, the numerical simulations in this manuscript are more
comprehensive.

The structure of this manuscript is as follows. Section II
discusses the signal model and the general problem formula-
tion and provides background information about the VAE. In
Section III, we introduce the VAE-based estimator and its three
variants, followed by the derivation and interpretation of the
error bound between the proposed estimator and the CME. We
discuss CE as an application example in Section IV. Numerical
simulation results are presented in Section V, and we conclude
this manuscript in Section VI.

Notation: We denote vectors and matrices as lower-case
and upper-case bold-faced symbols, respectively. Element-wise
multiplication is denoted as �, the all-zeros vector as 0, and
the all-ones vector as 1. The vectorization operation vec(G) ∈
C

g1g2 stacks the columns of G ∈ C
g1×g2 into a vector. The Kro-

necker product of two matrices B ∈ C
b1×b2 and D ∈ C

d1×d2

is (B ⊗D) ∈ C
b1d1×b2d2 .

II. PRELIMINARIES

A. Signal Model and Problem Formulation

We consider the generic linear inverse problem

y =Ah+ n (1)

with the observation matrix A ∈ C
M×N and additive noise

n∼NC(0,Σ). It is assumed that the matrix A and the noise
covariance Σ are given. The task is to recover h based on y.
The design of A is characteristic of the problem to be solved,
e.g., in CE, A represents the pilot allocation [12], [13], [14],
[15]. For further examples, we refer to [21].

For the solution of (1), we aim to estimate h based on the
noisy observation y. In the Bayesian framework, h is a RV with
an unknown prior p(h). The goal is to minimize the MSE

E
[
‖h− ĥ‖2

]
=

∫ [∫
‖h− ĥ‖2p(h |y) dh

]
p(y) dy (2)

with the estimate ĥ ∈ C
N . For minimizing the MSE, mini-

mizing the inner integral is sufficient due to p(y)≥ 0. The
minimizer is the well-known CME

E[h |y] = argmin
ĥ

E
[
‖h− ĥ‖2

]
(3)

resulting in MSE-optimal estimates, cf. [18, Ch. 10] for details.
More generally, the CME is the optimal predictor for all Breg-
man loss functions, of which the MSE is a special case [22].
Application of Bayes’ rule to p(h |y) yields

E[h |y] =
∫

h
pn(y −Ah) p(h)

p(y)
dh. (4)

Note that pn represents the noise probability density function
(PDF). By inspection of (4), it becomes clear why the CME is



BAUR et al.: LEVERAGING VARIATIONAL AUTOENCODERS FOR PARAMETERIZED MMSE ESTIMATION 3733

Fig. 1. Bayesian network illustrating the VAE decoder distribution pθ(h|z),
encoder distribution qφ(z|y), and the known p(y|h) =NC(Ah,Σ).

difficult to compute. First, it requires access to the unknown and
difficult-to-determine prior p(h), necessitating an estimate of
p(h). Second, an approximation of the integral in (4) is required
since, in general, there exists no closed-form solution. Another
approach may involve directly approximating p(h |y), e.g.,
with Monte-Carlo sampling methods. Nevertheless, this would,
in general, still necessitate calculating an intractable integral
over p(h |y) to yield E[h |y]. Consequently, such procedures’
applicability would be limited, especially in time-sensitive
applications.

B. VAE Fundamentals

In a parametric approach, the parameterized likelihood model
pθ(h) approximates the unknown prior p(h). One of the sim-
plest parametric models is assuming a Gaussian prior, param-
eterized with the sample mean and covariance. The resulting
parameterized CME approximation is the well-known LMMSE
estimator [18, Ch. 10]. However, assuming a Gaussian prior is
restrictive, causing the estimator to perform weakly if the true
prior strongly deviates from a Gaussian distribution, which is
the case in real-world systems. A way to significantly improve
the expressiveness of the likelihood model while preserving
the favorable properties of a Gaussian distribution is to let it
hold only conditionally so the data is modeled as CG. The CG
likelihood model has the form

h | z ∼ pθ(h | z) =NC(μθ(z),Cθ(z)) (5)

with the so-called latent vector z ∈ R
NL such that

pθ(h) =

∫
pθ(h | z)p(z)dz (6)

with a fixed p(z). Besides its great properties in terms of
expressiveness, the CG model in (5) will be a key aspect for
deriving the VAE-parameterized estimator in Section III-A.
Since pθ(h | z) is defined according to (5), θ also implicitly
parameterizes the intractable posterior

pθ(z |h) = pθ(h | z)p(z)∫
pθ(h | z)p(z)dz . (7)

A blueprint to obtain θ is given by the Bayesian network in
Fig. 1 that parameterizes the joint PDF

pθ(y,h, z) = p(y |h) pθ(h | z) p(z). (8)

Since the system model in (1) sets p(y |h) =NC(Ah,Σ), only
pθ(h | z) must be learned in (8) if p(z) is fixed. By inspection
of Fig. 1, the following becomes apparent: all involved RVs
are stochastically dependent, whereas y and z are conditionally

Fig. 2. Structure of a VAE with CG distributions for qφ(z|y) and pθ(h|z).
The encoder and decoder each represent a NN.

independent given h due to the local Markov property in the
Bayesian network. Moreover, the learnable qφ(z |y) in Fig. 1
symbolizes the connection from y to z, which we will use to
infer a z based on y in Section III-A because the true posterior
pθ(z |y) is intractable, cf. (7).

The VAE [4] practically realizes the considered Bayesian
network, for which an illustration is visible in Fig. 2. For the
VAE training, pθ(h) is typically decomposed as [23]

log pθ(h) = Lθ,φ(h) + DKL(qφ(z |y) ‖ pθ(z |h)) (9)

with the evidence lower bound (ELBO)

Lθ,φ(h) = Eqφ [log pθ(h | z)]−DKL(qφ(z |y) ‖ p(z)) (10)

and the non-negative Kullback-Leibler (KL) divergence

DKL(qφ(z |y) ‖ pθ(z |h)) = Eqφ

[
log

(
qφ(z |y)
pθ(z |h)

)]
. (11)

Note that Eqφ(z|y)[·] = Eqφ [·]. The variational distribution
qφ(z |y) is introduced aiming to approximate the intractable
pθ(z |h) as can be seen in (11). Contrary to the VAE from [4],
the variational distribution here is conditioned on y instead of h
since the latter will be inaccessible during the estimation phase
after the training. Consequently, a maximization of the ELBO is
independent of (7), maximizes log pθ(h), as well as minimizes
(11). In summary, a sufficiently trained VAE yields θ for the
CG model in (5), as well as an approximation of the intractable
posterior in (7) via qφ(z |y).

The remaining distributions in (10) are defined as:

qφ(z |y) =N (μφ(y), diag(σ
2
φ(y))), (12)

p(z) =N (0, I). (13)

Moreover, the VAE implements pθ(h | z) and qφ(z |y) as NNs.
With these considerations, let us revisit Fig. 2. The encoder
takes an observation y and maps it to μφ(y) and σφ(y) to ob-
tain a reparameterized sample z = μφ(y) + σφ(y) � ε. The
sample z is fed into the decoder to obtain μθ(z) and Cθ(z)
representing the first and second moments of pθ(h | z).

Due to the CG distributions, the terms in the ELBO can be
calculated analytically, which is beneficial for the training of
the VAE. The expectation term in (10) can be approximated
with a single sample z̃ ∼ qφ(z |y), i.e., (−Eqφ [log pθ(h | z)])
is replaced by the estimate

log det(πCθ(z̃)) + (h− μθ(z̃))
HC−1

θ (z̃)(h− μθ(z̃)).
(14)
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The KL divergence DKL(qφ(z |y) ‖ p(z)) in (10) results in

1

2

(
1T

(
− logσ2

φ(y) + μ2
φ(y) + σ2

φ(y)
)
−NL

)
. (15)

By utilizing an expressive decoder NN and Cθ(z) parameteri-
zation, we assume that a properly trained VAE where (5) holds
delivers a pθ(h) that well approximates p(h). We will explic-
itly discuss conditional covariance matrix parameterizations for
Cθ(z) in Sections III-B and IV.

III. VAE-PARAMETERIZED ESTIMATOR

A. MMSE Estimation With the VAE

After its successful training, the VAE yields pθ(h | z) as CG
according to (5). Recall the corresponding Bayesian network in
Fig. 1 visualizing the dependencies of the involved RVs, which
will be helpful for the following estimator derivation. Starting
from (4), the law of total expectation enables reformulating the
CME as [24, Sec. 4.3]:

E[h |y] = Epθ(z |y)[Eθ[h | z,y] |y], (16)

where the inner expectation is with respect to pθ(h | z,y). We
neglect a possible approximation error between pθ(h) and p(h)
in (16) as it is irrelevant for the estimator derivation. Since
p(h) is anyway inaccessible, an analysis of such an error is
only possible empirically in terms of an MSE investigation,
which will be done in Section V. Similar to pθ(z |h), pθ(z |y)
and pθ(h | z,y) are also implicitly parameterized by θ due
to (7), the fixed prior p(z) in (13) and the model in (1). In-
deed, pθ(z |y) is generally inaccessible for the same reason as
pθ(z |h), cf. (7). Since the encoder receives y as input and h is
conditioned on z according to (5), the training objective in (10)
enforces n and z to be independent. Then, given (5), we obtain
a closed-form expression for the inner expectation in (16) due
to the CG property causing y and h to be jointly Gaussian given
z. Therefore, Eθ[h | z,y] results in [25]:

μθ(z) +Cθ(z)A
H(ACθ(z)A

H +Σ)−1(y −Aμθ(z)),
(17)

where the matrix A and vector y belong to (1), and μθ(z),
Cθ(z), and z to (5). See Appendix A for a step-by-step deriva-
tion of (17).

It remains to solve the intractable outer expectation in (16).
To this end, the approximation of pθ(z |h) via qφ(z |y) in (11)
comes into play. Although (11) shows the approximation of
pθ(z |h) instead of pθ(z |y), the parameter combination that
maximizes pθ(h | z) in (10) also maximizes pθ(y | z) since the
noise distribution is considered to be known and not subject to
optimization, thus permitting the substitution. Consequently, by
replacing pθ(z |y) with qφ(z |y) in (16),

E[h |y]≈ Eqφ [tθ(z,y)] , tθ(z,y) = Eθ[h | z,y]. (18)

As we can easily obtain samples of qφ(z |y) with the help of the
encoder, we can approximate E[h |y] using samples of the form
z(k) = μφ(y) + ε(k) � σφ(y) where every ε(k) is a sample
from N (0, I), k = 1, . . . ,K. Based on the samples z(k) we can

approximate the MMSE estimator as a consequence of the law
of large numbers [26]:

ĥ
(K)

VAE(y) =
1

K

K∑
k=1

tθ(z
(k),y), z(k) ∼ qφ(z |y), (19)

where tθ(z
(k),y) is evaluated with (17).

The estimator ĥ
(K)

VAE(y) generally becomes better for a large
number of samples K. However, a large K is unwanted in a
real-time system. It is desirable to reduce the complexity of the
estimator as much as possible, which means that K should be
low. To this end, we first obtain a MAP estimate for z, which is
μφ(y) at the encoder output due to the Gaussianity of qφ(z |y),
cf. (12). The MAP estimate is subsequently passed in a single
step through the decoder to evaluate tθ(z,y). Consequently, we
define the MAP-VAE estimator

ĥVAE(y) = ĥ
(1)

VAE(y) = tθ(z
(1) = μφ(y),y) (20)

based on the MAP estimate z(1) = μφ(y) from qφ(z |y). In
Section III-D, we rigorously analyze the performance gap be-
tween the MAP-VAE estimator and the CME. Furthermore, in
Section V-A, we compare ĥ

(K)

VAE(y) and ĥVAE(y) for different
K, demonstrating that their estimation quality is nearly identi-
cal. Unless otherwise stated, we use the MAP-VAE estimator
in (20) for the numerical simulations.

B. Covariance Matrix Parameterization

According to (5), the VAE aims to learn a full covariance
matrix for h | z. However, learning such a full matrix requires
learning a large number of parameters, resulting in huge NNs. It
is also known that covariances usually exhibit problem-specific
structures, which can be exploited to drastically reduce the
number of parameters to learn.

In this work, we consider equidistantly sampled wide-sense
stationary (WSS) random processes covering a broad class of
applications in signal processing:

• sensor array processing with equidistantly spaced sensors,
e.g., for beamforming [27] or speech processing [28]

• CE in the spatial and time-frequency domain [12], [29]
• times series analysis in financial markets [30]

As a result of the WSS assumption, the covariance matrix is
Toeplitz structured. The parameterization of a Toeplitz ma-
trix is possible with an oversampled discrete fourier transform
(DFT) matrix as demonstrated in [31], [32], [33]. However, if
the covariance matrix dimensions are large, a circulant matrix
can asymptotically approximate the Toeplitz covariance ma-
trix [34]. By reasonably assuming that the VAE finds latent
conditions that preserve the structural properties of the second
moments [35], we can choose

Cθ(z) = F H
N diag(cθ(z))FN , cθ(z) ∈ R

N
+ , (21)

parameterizing a circulant matrix, where FN ∈ C
N×N is a

DFT matrix. By choosing a covariance matrix parameteriza-
tion in accordance with the structure of the actual covariance,
assuming pθ(h | z) well-approximates the true distribution is
reasonably motivated.
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Circulant matrices have the advantage that they allow for a
low-complexity and memory-efficient implementation and have
already been used in previous work, cf. [29]. This can be seen
in (21) since a positive and real-valued vector cθ(z) suffices to
parameterize a full covariance matrix. Due to the DFT matrix,
(21) is furthermore straightforwardly invertible in O(N logN)
time (by using FFTs), motivating its usage in the proposed VAE-
based estimation framework.

C. Variants of VAE-Based Estimators

We present three possible estimator variants that leverage the
VAE. All three estimators have in common that the VAEs can be
trained offline before application. The estimators differ in their
ground-truth data knowledge during the training and evaluation
phase. A comprehensive overview of all variants with their
losses will be shown in Section IV in Table I.

1) VAE-genie: To determine the full potential of our method,
we assume n= 0 in (1) for the encoder input while (17) is still
evaluated with a non-zero noise realization. VAE-genie is sup-
posed to exhibit the best estimation results among all variants
because the μθ(z) and Cθ(z) at the decoder are inferred with
the ground-truth data at the encoder and its latent representa-
tion. Although VAE-genie even has the potential to outperform
the CME, as the ground-truth data acts as side information,
this estimator is not applicable in practice, since it requires
ground-truth knowledge during the evaluation phase. Instead,
it can be a suitable benchmark result in a scenario where the
optimal estimator is unknown and inaccessible. VAE-genie re-
quires ground-truth data knowledge during the training and
evaluation phase.

2) VAE-noisy: This estimator version directly relates to
Fig. 2. The encoder receives the noisy observation y as input
with n 	= 0. VAE-noisy only requires ground-truth data access
during the training phase to compute (14) for its loss. During
the evaluation phase, the mean μφ(y) is obtained based on the
noisy observation y to compute (17), which is the reason for
the name of this estimator. We expect that VAE-noisy delivers
worse estimation quality than VAE-genie as VAE-genie has
ground-truth knowledge in the evaluation phase. VAE-noisy is,
in contrast, applicable in practice.

3) VAE-real: Similar to VAE-noisy, this estimator variant also
receives y as encoder input. The change compared to VAE-
noisy happens at the decoder in Fig. 2 where VAE-real learns
first and second moments for pθ(y | z) instead of pθ(h | z).
However, to efficiently compute Eθ[h | z,y] we require a CG
model for h and not y. As long as E[n] = 0, which is the case
in (1), the mean of y | z is Aμθ(z). A simple workaround
can determine the conditional covariance of y | z. While the
VAE decoder continues to output Cθ(z), e.g., according to
(21), the matrix ACθ(z)A

H +Σ is used as covariance for
pθ(y | z). Consequently, in (14), VAE-real replaces μθ(z) with
Aμθ(z) and Cθ(z) with ACθ(z)A

H +Σ during the training.
This way, the decoder forces to substitute only the desired
part, the conditional covariance Cθ(z), which is used for the
computation of (17). It should be noted that no ground-truth
data is needed by VAE-real, neither during training nor during

evaluation. VAE-real is the most realistic estimator variant since
noisy observations can be utilized to train the VAE. In contrast,
access to ground-truth data during the training phase is usually
related to a considerable additional effort and may sometimes
be impractical.

D. MSE-Optimality and Conditional Bias-Variance Tradeoff

In this section, we provide a theoretical analysis of the in-
troduced MAP-VAE estimator. Before establishing a bound on
the difference between the MAP-VAE estimator and the CME,
let us denote the decoder NN functions as

fθ,1 : R
NL → C

N , z �→ μθ(z), (22)

fθ,2 : R
NL →CN

+ , z �→Cθ(z), (23)

where CN
+ is the set of all N ×Npositive semi-definite (PSD)

matrices (we consider the case of a full covariance matrix as
this trivially includes all parameterized covariances discussed in
Section III-B). In this section, we assume y = h+ n to analyze
the theoretical properties independent of A.

Theorem 1: Consider a decorrelated observation y = h+ n
with n∼NC(0, ς

2 I) and let (5) and (16) hold. Further, assume
the decoder neural network functions are Lipschitz continuous,
i.e., for i= {1, 2} and a, b ∈ R

NL ,

‖fθ,i(a)− fθ,i(b)‖2 ≤ Li‖a− b‖2. (24)

Then, the expected Euclidean distance between the CME (16)
and the MAP-VAE estimator (20) is upper bounded as

E
[∥∥E[h |y]− ĥVAE(y)

∥∥
2

]
≤ (C1L1 + C2L2)

·
(√

tr(Cpθ(z |y)) +

√
E
[∥∥∥μpθ(z |y) − μφ(y)

∥∥∥
2

2

])
(25)

with the SNR-dependent factors

C1 =

√
E

[
ς4

(ξmin(y) + ς2)2

]
, C2 =

√
N

ς2
. (26)

where ξmin(y) is the smallest eigenvalue of Cθ(μφ(y)).
Proof: See Appendix B.

1) MSE-Optimality: Theorem 1 shows the expected distance
of the MAP-VAE estimator to the CME only depends on the
first two moments of the posterior distribution pθ(z |y), which
is approximated by qφ(z |y). In particular, the bound is smaller
if the first moments of qφ(z |y) match those of pθ(z |y),
which can reasonably assumed to be the case after successfully
training the VAE, being a mild assumption as no restrictions to
higher moments apply.

Moreover, the smaller the variances of pθ(z |y), the better
the CME approximation. Intuitively, this means that the less
stochastic a mapping from the observation to the latent space
is, the better the MAP-VAE estimator performs. Let us consider
the following setup to motivate the encoder variances to become
small after training. Assume the input data is compressible
onto a lower-dimensional manifold, i.e., a lossless compression
mapping exists from C

N to R
NL . In particular, this is known
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to be fulfilled for natural signals, e.g., images or audio sig-
nals, wireless channels (especially in mmWave systems), or, in
general, signals that exhibit a sparse representation through a
dictionary. Then, a deterministic mapping exists into the latent
space that can be learned by the VAE. In other words, there
is no necessity for a stochastic mapping, and the variances in
(25) can be chosen as zero without performance loss. This holds
without restriction for the VAE-genie variant, where the encoder
input is noiseless. For the VAE-noisy and VAE-real variants,
although the latent encoding is trained to be stochastically in-
dependent of the noise, finding a deterministic mapping may
be more intricate, especially in the low SNR regime, yielding
a possibly higher encoder variance. We elaborate on this hy-
pothesis in more detail for the example of channel estimation
in MIMO systems in Section IV and show through simulations
in Section V-A that the VAE’s encoder variances are indeed
converging towards zero during the training process.

Concluding the above discussion, the bound in Theorem 1 es-
tablishes a connection between the training of the VAE, purely
relying on likelihood maximization, and the resulting MSE
performance. Moreover, the impact of the latent dimension on
the estimation performance is better interpretable. Thus, by a
successful training of a well-designed VAE, the resulting pa-
rameterized estimator converges to the CME, thereby achieving
a low MSE. We validate this proposition also through numerical
results in Section V-A.

2) Conditional Bias-Variance Tradeoff: In addition to the
above insights about the connection of the VAE’s training and
the resulting estimation performance, the constants C1 and C2

in (26) have a reciprocal behavior over the SNR and, in par-
ticular, are vanishing in the high and low SNR, respectively.
That is,

lim
ς2→0

C1 = 0, lim
ς2→∞

C2 = 0. (27)

Interestingly, this can be interpreted as a conditional bias-
variance tradeoff since C2L2 in (25), addressing the contri-
bution of the conditional covariances, vanishes in low SNR;
moreover, C1L1, attributed to the conditional means, vanish
in high SNR, cf. (55). Thus, the parameterized conditional
covariance quality is less critical in the low SNR regime, as the
parameterized LMMSE estimator relies more on the conditional
first moment and vice versa in the high SNR regime. Conse-
quently, the respective error terms have less impact on the bound
to the CME. The entailment of such a conditional bias-variance
tradeoff is a highly desirable property of the proposed estimator
as it serves as a regularization for the estimation performance
and allows for great interpretability. Moreover, the analysis
holds without restriction for all discussed estimator variants
in Section III-B and all parameterized conditional covariance
matrices since we made no assumptions about their structural
properties.

IV. EXAMPLE APPLICATION: CHANNEL ESTIMATION

In this work, we consider MIMO CE as an application ex-
ample. In a MIMO communications system, the transmitter
with Ntx antennas sends Np pilots to the receiver with Nrx

antennas for estimating the channel matrixH ∈ C
Nrx×Ntx . More

precisely, the noisy observations

Y =HX +N ∈ C
Nrx×Np (28)

are obtained at the receiver with the pilot matrix X ∈ C
Ntx×Np

and noise matrix N . After vectorizing (28), the relation to (1)
becomes apparent. Consequently, y = vec(Y ), h= vec(H),
A= (XT ⊗ I), and n= vec(N). Further, M =NrxNp and
N =NrxNtx. We investigate the uplink of a communications
system where the mobile terminal (MT) transmits to the base
station (BS) with Ntx <Nrx. However, the proposed framework
can also be applied to the downlink since A has a comparable
structure.

We assume that the BS and MT are both equipped with
a uniform linear array (ULA) with half-wavelength spacing.
Note that a different array structure or antenna spacing can be
straightforwardly reflected by the VAE’s parameterized covari-
ance at the decoder output. Furthermore, we consider the fully
determined case of (28), i.e., Np =Ntx. We utilize DFT pilots,
resulting in a unitaryX , which results in a unitaryA. Moreover,
we assume Σ= ς2I with given ς2. Therefore, we perform a
LS estimate of (1) to interpret it as a denoising task relating
directly to the theoretical analysis in the previous section. The
underdetermined case involving a wide A is investigated in
[32] and the uniform rectangular array (URA) case at the BS
in [33] covering more advanced setups. The works [32], [33]
demonstrate a superior performance of the VAE-based estima-
tors, highlighting the framework’s versatile applicability under
various system configurations.

Due to the common WSS assumptions in wireless communi-
cations [36, Sec. 2.6], the transmit- and receive-side covariance
matrices at the BS and MT side, respectively, are Toeplitz
structured, which are approximated by circulant matrices as ex-
plained in Section III-B. When additionally assuming uncorre-
lated scattering in the vicinity of the transmitter and receiver, we
can decompose the channel covariance matrix (CCM) into the
Kronecker product of the transmit- and receive-side circulant-
structured covariance matrices [37]:

Cθ(z) =QH diag(cθ(z))Q, cθ(z) ∈ R
N
+ (29)

where Q= (FNtx ⊗ FNrx). In (29), Cθ(z) is a block-circulant
matrix, possessing the same favorable attributes regarding
memory efficiency and low-complexity as an ordinary circu-
lant matrix. For a single-input multiple-output (SIMO) system,
which implies Ntx = 1, (29) simplifies to (21).

A. Training Loss and Network Architecture

In principle, we train a VAE with the loss in (10), and, after
the training, perform CE as described in Section III-A. Indeed,
we can simplify (10) as a result of the circulant parameteriza-
tion. Let hQ =Qh, then the negative decoder likelihood in (14)
can be expressed as

N log π + 1T
(
λθ(z̃)� |hQ −Qμθ(z̃)|2 − logλθ(z̃)

)
(30)
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TABLE I
OVERVIEW OF THE PROPOSED VAE-BASED ESTIMATOR VARIANTS

Variant VAE Encoder Input Training Loss Lθ,φ (Relates to One Batch Element)

VAE-genie ground-truth channel 1T
[
λθ(z̃)� |hQ −Qμθ(z̃)|2 − logλθ(z̃)− logσφ(h) + 0.5 (μ2

φ(h) + σ2
φ(h))

]

VAE-noisy noisy observation 1T
[
λθ(z̃)� |hQ −Qμθ(z̃)|2 − logλθ(z̃)− logσφ(y) + 0.5 (μ2

φ(y) + σ2
φ(y))

]

VAE-real noisy observation 1T
[
(cθ(z̃) + ς21)−1 � |yQ −Qμθ(z̃)|2 + log(cθ(z̃) + ς21)− logσφ(y) + 0.5 (μ2

φ(y) + σ2
φ(y))

]

Fig. 3. Detailed illustration of the different layers constituting our VAE implementation. The real and imaginary parts of the input are stacked as convolutional
channels (CCs) and processed. The colored arrows represent different layers or layer compositions. Purple stands for a 1× 1 CL, orange for a block
of a convolutional layer (CL), batch normalization (BN) layer, and ReLU activation function, gray for a reshaping layer (RL), green for a linear
layer (LL), and red for a block of a transposed CL, BN layer, and ReLU activation function.

with λθ(z) = c−1
θ (z) and the element-wise absolute value | · |.

Eq. (14) reduces the numerical complexity during the training
process because it avoids the inversion of a full covariance
matrix compared to (30). What is more, we utilize the LS esti-
mate of (1) (or h for VAE-genie) multiplied with Q as encoder
input. Thus, the encoder input is effectively transformed into the
angular or beamspace domain [38, Sec. 7.3], which is known
to be sparse or highly compressible in massive MIMO systems,
especially in mmWave systems. This validates the hypothesis of
having a deterministic compression mapping that can be learned
through the encoder in Section III-D. Therefore, a performance
of the MAP-VAE estimator close to the CME can be expected,
which is also seen later in Section V.

Combining every aspect from this section, the reformulated
training objective that VAE-noisy is supposed to minimize is:

Lθ,φ = 1T
[
λθ(z̃)� |hQ −Qμθ(z̃)|2 − logλθ(z̃)

− logσφ(y) + 0.5(μ2
φ(y) + σ2

φ(y))
]
. (31)

The argument and constants are omitted for brevity and z̃ is
a sample from qφ(z |y). Since VAE-genie has the ground-
truth channel as encoder input, the training loss for this variant
replaces μφ(y) and σφ(y) with μφ(h) and σφ(h), respec-
tively. Apart from that, the training loss is identical to (31). For
the training of VAE-real, in (31), hQ is replaced with yQ =
QAHy, and λθ(z) with (cθ(z) + ς21)−1. Table I summarizes
the proposed estimator variants with an overview regarding the
respective encoder input and training loss. In each case, the
training loss refers to a single batch element.

We briefly describe our VAE implementation at this point.
The simulation code with the corresponding architectures is
also publicly available.1 Fig. 3 illustrates the VAE implemen-
tation. The arrow colorings in Fig. 3 symbolize different layers

1https://github.com/tum-msv/vae-estimator.

or layer compositions. On the left, it is visible that the real and
imaginary parts of the encoder input are stacked as convolu-
tional channels (CCs). As a first block, the purple arrow
represents a 1× 1 CL that maps to a higher number of CCs,
which is different for every system configuration. Subsequently,
three orange arrows follow, representing a block of a CL, a
BN layer, and a ReLU activation function. In each CL, the CC
amount at the output is multiplied by a factor of 1.75. After a
reshaping layer (RL) and linear layer (LL), symbolized by the
gray arrow and green arrow , respectively, we arrive
at the latent space. The reparameterized sample z is fed into
the decoder, which is a symmetrically flipped version of the
encoder. The red arrows symbolize blocks of a transposed
CL, a BN layer, and a ReLU activation function. At the out-
put, we have a sample with three CCs that is fed into an RL
and LL to produce the decoder outputs. We use exponential
functions to enforce strictly positive values as it is required for
σφ and cθ .

The number of CCs, kernel size, and latent dimension are
different for every system configuration and are found by a
random search over the hyperparameter space by searching for
the combination that yields the highest value for (30) [39]. We
perform the random search with the help of the Tune package
[40]. We use 2D CLs in the MIMO case and 1D CLs in the
SIMO case. A batch size of 128, a learning rate of 7 · 10−4

in combination with Adam [23], and a stride of two in the
CLs are used. Overall, we found the estimation performance
is robust regarding the selected VAE architecture as long as it
contains enough layers and model parameters for the considered
problem. We implement the NNs with PyTorch and refer the
reader to the simulation code for further details. Additionally,
we experimented with BN and its variants to determine how we
can achieve the best performance [41], [42], [43]. We achieve
the best performance with BN as is proposed in [41]. The only

https://github.com/tum-msv/vae-estimator.
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important point is to consider a large enough batch size to limit
the variance of the stochastic gradient. We additionally use the
method of free bits during the training as described in [23].

B. Computational Complexity

In this section, we discuss the computational complexity of
the proposed estimator. The procedure to determine ĥVAE(y)
can be split into two parts. The first step is a forward pass
through the VAE to acquire μθ(z) and Cθ(z). The second
step is the evaluation of tθ(z,y) in (17) with given μθ(z) and
Cθ(z). The computational complexity of the first step is tied
to the VAE architecture in Fig. 3. Since all layers exhibit a
different complexity, we need a complexity bound for which
two aspects are relevant. First, a CL requires O(RN) time, with
R being the product of the number of parameters divided by the
stride in the CL. Second, the final LL requires O(N2) time. The
remaining layers exhibit less complexity than the CLs and final
LL. Although R should be increased if N grows, R arguably
does not show more than linear growth in N . In conclusion,
utilizing O(N2) as complexity bound per layer is reasonable.
For the D layers of the VAE forward pass, this makes an overall
complexity of O(DN2).

We come to the second step of obtaining ĥVAE(y), which
is the evaluation of tθ(z,y). In principle, the inversion of
ACθ(z)A

H + ς2I dominates the complexity. Let us inspect
ACθ(z)A

H =AQH diag(cθ(z))QAH in more detail. If we
assume to have unitary pilots and set Ã=AQH we can show
that ÃÃH = I and ÃHÃ= I holds, so Ã is unitary. Hence,
the inverse of ACθ(z)A

H is Ãdiag(c−1
θ (z))ÃH. We can

therefore simplify the estimate tθ(z,y) as in (17) to

μθ(z) +QH diag(1+ cθ(z)� ς−21)Q(AHy − μθ(z))
(32)

whose complexity is O(N logN) due to multiplying with Q.
As can be seen from our elaborations above, the evaluation of
the VAE requires O(DN2) time, which outweighs the evalua-
tion time of O(N logN) for (32). Additionally, many potentials
exist to reduce the VAE complexity, e.g., with pruning [44].
Moreover, the computations in the VAE are highly paralleliz-
able due to the CLs, which mitigates the O(DN2) complexity.

C. Channel Models

We consider different channel models in this work to validate
the proposed methods. The 3rd Generation Partnership Project
(3GPP) defines an urban macrocell spatial channel model which
computes the transmit-side CCM as [45]:

Cδ,tx =

∫ π

−π

gtx(ϑ; δ)atx(ϑ)a
H
tx(ϑ)dϑ. (33)

The vector atx(ϑ) denotes the transmit array steering vector,
which is [1, exp(jπ sin(ϑ)), . . . , exp(jπ(N tx − 1) sin(ϑ))]H in
the case of a ULA. Analogously, the receive-side CCM Cδ,rx

is obtained. The function gtx(·; δ) describes an angular power
spectrum relating to the involved propagation clusters and is
parameterized by the vector δ, following a prior distribution

p(δ) that accounts for the involved path gains and angles. More
precisely, gtx(·; δ) is a mixture of Laplace densities whose stan-
dard deviations represent the angular spreads, cf. [29] for more
details. The CCM for h in (1) is determined as Cδ = (Cδ,tx ⊗
Cδ,rx), under the assumption of uncorrelated scattering [37].
For a large number of sub-paths per propagation cluster, which
is a common assumption for sub-6GHz frequency bands, a
CG channel distribution is well-motivated by the central limit
theorem. A channel realization can, thus, be obtained with
h | δ ∼NC(0,Cδ) [38, Sec. 4.2]. Accordingly, a correlated
Rayleigh fading model is enforced that only holds conditionally,
meaning that every channel is individually associated with a
different set of path gains and angles contained in δ representing
different propagation clusters. Note that Cδ is different for
every channel realization, causing p(h) to be non-Gaussian.

The QuaDRiGa channel simulator allows for the simulation
of realistic channels with spatial consistency and time evo-
lution [46], [47]. MIMO channel matrices are modeled as a
superposition of in total L propagation paths such that H =∑L

�=1 G� exp(−2πjfcτ�) where the carrier frequency is de-
noted as fc and the delay of the �-th path as τ�. The entries
of the matrix G� represent the complex-valued gain between
every antenna pair caused by the path loss, antenna radiation
pattern, and polarization. We use version 2.6.1 of QuaDRiGa
to simulate channels at a frequency of 6GHz in an urban
macrocell scenario. We place the BS at a height of 25m, and it
covers a sector of 120 ◦. Twenty percent of the MTs are outdoors
1.5m above the ground at a distance between 35 and 500m
from the BS. The remaining eighty percent are situated indoors
at different floor levels. We consider a line of sight (LOS)
propagation environment, where L= 37. We equip the BS with
“3GPP-3D” antennas and the MTs with omnidirectional an-
tennas. After generation, the channels are post-processed to
normalize the path gain. Compared to the 3GPP channel model,
which is fully stochastic, the QuaDRiGa simulator is of a
geometric nature. QuaDRiGa determines channel realizations
by a geometric simulation in a randomized and approximately
realistic BS environment. The QuaDRiGa model enables us to
highlight that the proposed framework works independently of
the adopted channel model.

D. Related Channel Estimators

This section presents related channel estimators as baselines
for the numerical simulations in Section V-B. In the case of the
3GPP channel model from Section IV-C, we have access to the
true CCM Cδ . This allows us to evaluate a genie covariance-
based estimator (genie-cov) [29], which is given by the LMMSE
formula

ĥgenie-cov(y) =CδA
H(ACδA

H +Σ)−1y. (34)

This estimator uses utopian genie knowledge to acquire Cδ .
A practical estimator can be based on the sample covari-

ance matrix Ĉ = 1
Tr

∑Tr

i=1 hih
H
i for Tr samples in the training

dataset. The corresponding estimator reads as

ĥglobal-cov(y) = ĈAH(AĈAH +Σ)−1y. (35)
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LS estimation is another comparison method we investi-
gate in our simulations. An LS estimate can be obtained as
ĥLS(y) =AHy.

CS-based CE techniques are another prominent topic in
the literature. Especially regarding millimeter waves, CS algo-
rithms are potentially interesting candidates [48]. This work
compares the proposed estimators with the AMP algorithm
[49], [50]. As a dictionary for AMP, we use a two times over-
sampled DFT matrix.

We also want to compare the proposed estimators with cur-
rent ML-based channel estimators. A recently proposed method
exploits structural information of the MMSE estimator to de-
sign a neural network-based estimator for the SIMO signal
model [29]. The derivation leads to a convolutional neural net-
work with ReLU activation function, so we call this estimator
CNN. The extension of [29] to the MIMO case is proposed in
[51], to which we also refer in our simulations.

The last comparison method in this section, also recently
proposed, is based on a GMM [12]. The idea is to fit a GMM to
the underlying channel distribution and parameterize a channel
estimator with the help of the GMM, representing an estimator
based on a generative prior. We fit a GMM with 128 mixture
components for all simulations and a restriction on the fitted
covariances such that they are block-circulant.

V. SIMULATION RESULTS

This section presents the CE results based on numerical
simulations. We create 200,000 channel realizations for every
system configuration in the upcoming section representing a
randomly sampled realistic BS environment. The channels are
divided into Tr = 180,000 training, Tv = 10,000 validation, and
Te = 10,000 test samples. The channels are normalized such
that E[‖h‖2] =N . In our experiments, we calculate the normal-
ized mean squared error (NMSE) as 1

TeN

∑Te

i=1 ‖hi − ĥi‖2 for

the test dataset, where we denote the i-th channel realization and
corresponding estimate as hi and ĥi, respectively. Accordingly,
we define the SNR as Ntx/ς

2. We train the VAEs for a range of
SNR values between −19 and 39 dB. The proposed estimators
are, therefore, SNR-independent. During the training of VAE-
noisy and VAE-real, we sample new realizations n after every
epoch. We train the VAEs until (30) does not improve for
100 consecutive epochs on the validation dataset. If not stated
otherwise, NL = 16 for one propagation cluster and NL = 32 in
all other cases.

A. Numerical Convergence Analysis

At first, we illustrate the training progress of the VAE-noisy
variant for the 3GPP SIMO signal model with three propagation
clusters at an SNR of 10 dB in Fig. 4. The VAE-genie and VAE-
real variants exhibit a similar behavior, so we only display VAE-
noisy here. It can be observed that most of the training progress
happens in the first 20 epochs. Interestingly, an increase of the
REC term from (30) coincides with a decrease of the NMSE,
which indicates that the VAE learns to properly model the data.
Moreover, this validates the theoretical analysis in Theorem 1

Fig. 4. Training of the VAE-noisy variant for the 3GPP channel model
(SIMO case) with three propagation clusters at an SNR of 10 dB. ELBO
refers to the complete training loss in (31), REC to the negative of (30), and
KL to (15). REC is plotted including the in (30) omitted constants.

Fig. 5. Normalized MSE for different numbers of training samples at
an SNR of 10 dB for the 3GPP channel model (SIMO case) with three
propagation clusters and 128 antennas at the receiver. The dotted lines display
the achieved result with the complete training dataset of 180,000 samples.

that showed a smaller gap to the CME and, thus, a lower NMSE
for a VAE that better matches the first moments of the posterior
distributions, which is achieved during a successful training.

Further, we investigate two critical quantities of the model se-
lection process: the training dataset’s size and the latent space’s
dimensionality. Regarding the size of the training dataset, a
larger size is likely to lead to better estimation results. Fig. 5
provides insights into this matter. We display the estimation
results of the test dataset for the three proposed variants of VAE-
based estimators depending on the size of the training dataset.
The 3GPP channel model (SIMO case) with three propagation
clusters and 128 antennas at the receiver is used in Fig. 5. As
dotted lines, we display the attained estimation result for the
complete training dataset of 180,000 samples. We also show
the estimation performance of the genie-cov estimator in blue.
It is visible that the most progress is reached from 102 to 104

training samples. More than 104 training samples only lead to
minor NMSE improvements for all three types of VAE-based
estimators.

The influence of the dimensionality of the latent space on the
estimation result is less apparent than the size of the training
dataset. We illustrate the NMSE for dimensionalities in the
range [4, 32] for the 3GPP SIMO channel model with 128
antennas at the receiver in Fig. 6 by considering one and three
propagation clusters. The NMSE is nearly constant for the case
with one propagation cluster. In contrast, the NMSE decreases
from dimensionality 4 to 16 for the three propagation clus-
ters case and saturates for larger dimensional latent spaces. In
practice, the operator must select an ample enough latent space
to obtain a desirable performance.
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Fig. 6. Normalized MSE for different sizes of the latent space at an SNR of
10 dB for the 3GPP channel model (SIMO case) with one or three propagation
clusters and 128 antennas at the receiver.

Fig. 7. Trace of encoder variances and NMSE over training epochs on the
3GPP channel model (SIMO case) with 128 antennas, one propagation cluster,
10 dBSNR, and NL = 4. The NMSE curves are displayed as dashed.

Theorem 1 in Section III-D described that the convergence
of the MAP-VAE estimator to the CME depends on the van-
ishing of tr(Cpθ(z |y)). To this end, we analyze the trace of
the encoder variance, i.e., the summed variance σ2

φ of qφ,
which optimally is a good approximation of tr(Cpθ(z |y)),
over the training epochs on the validation dataset in Fig. 7.
We evaluate VAE-genie and VAE-noisy with NL = 4 on the
3GPP channel model (SIMO case) with 128 antennas and one
propagation cluster at an SNR of 10 dB. It is visible that both
encoder variances are decreasing in a comparable way as the
NMSE, indicating that lower traces improve the NMSE. The
noise variance detrimentally influences VAE-noisy’s encoder
variance trace since it is always higher than that of VAE-genie.
In conclusion, since the wireless channel data is expected to be
sparse or compressible in the angular domain, cf. Section IV,
the VAE indeed aims to find a less stochastic encoder mapping
during training. This is in agreement with the argumentation in
Section III-D and the observation of a decreasing NMSE of the
parameterized estimator during training in Fig. 4.

As pointed out in Section III-A, we approximate the CME
with the MAP-VAE estimator by only forwarding the latent
mean vector μφ(z) to approximate the outer expectation in
(16). It is interesting to see the NMSE performance for different

numbers of K samples from qφ(z |y) to compute ĥ
(K)

VAE(y)
from (19). Fig. 8 provides such an analysis by showing the
NMSE for different numbers of latent samples. As dashed
lines, we display the MAP-VAE estimator, which only uses the
single sample μφ(z) for the input of the VAE’s decoder. We
observe that VAE-real benefits the most from more samples. For
VAE-genie and VAE-noisy, there are only slight improvements

Fig. 8. Normalized MSE for different numbers of samples K drawn in the

latent space for the evaluation of ĥ
(K)
VAE (y) at an SNR of 10 dB for the 3GPP

channel model (SIMO case) with three propagation clusters and 128 antennas
at the receiver. The dashed lines represent the estimate ĥVAE(y) in (20).

Fig. 9. Normalized MSE for the 3GPP channel model (SIMO case) with
three propagation clusters for different numbers of antennas at the receiver at
an SNR of 15 dB. The proposed methods are displayed with solid linestyles.

present. Interestingly, only taking the mean value, representing
the MAP-VAE estimator, delivers an estimation performance
of about K = 64 samples for VAE-real. The excellent per-
formance of the MAP-VAE estimator is a supporting argu-
ment for the theoretical analysis of the estimator in Theorem 1
that predicts a small distance from the CME if the VAE is
well-trained.

B. Normalized MSE Results

We begin with an NMSE investigation for the 3GPP chan-
nel model (SIMO case) with three propagation clusters and
varying numbers of antennas at the receiver at an SNR of
15 dB in Fig. 9. The illustration shows that the proposed VAE-
based methods need a sufficiently large amount of antennas to
develop their full potential. From 16 antennas on, the VAE-
based methods outperform the baselines and exhibit increasing
performance gains if more antennas are considered. All other
baselines perform significantly worse than the proposed meth-
ods in the large antenna regime. It is also visible that VAE-genie
converges to the genie-cov curve. Surprisingly, the VAE-real
variant is almost on par with the VAE-noisy variant, although
no ground-truth data is available for its training, underlining
the strong performance of the VAE as a generative prior even
in cases with imperfect training data.

A massive amount of antennas is significant for prospec-
tive communications systems. Hence, we investigate the large
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Fig. 10. Normalized MSE for the 3GPP channel model (SIMO case) with
one propagation cluster and 128 antennas at the receiver. The proposed
methods are displayed with solid linestyles.

Fig. 11. Normalized MSE for the QuaDRiGa channel model (SIMO case)
with LOS channels and 128 antennas at the receiver. The proposed methods
are displayed with solid linestyles.

antenna regime in more detail in the following. We inspect
the NMSE performance for the 3GPP channel model with one
propagation cluster and 128 antennas at the receiver in the
SIMO case over the SNR in Fig. 10. The proposed estimators
outperform the baseline methods and achieve about 10 dB ad-
vantage compared to LS over the whole SNR range.

To highlight the independence of the adopted channel model,
we show simulation results for the QuaDRiGa channel model
(SIMO case) in Fig. 11. This time, we cannot display the genie-
cov curve as the true CCM is unavailable. As can be seen in
the plot, all VAE-based estimators show superior NMSE results.
The advantages are not as pronounced as in the previous figures
but still noticeable.

Fig. 12 shows the NMSE performance for the 3GPP channel
model (MIMO case) with one propagation cluster, 32 antennas
at the receiver, and 4 antennas at the transmitter. The qualitative
behavior of the curves is similar to Fig. 10, where also one
propagation cluster is considered. CNN and GMM show the
worst NMSE among the ML-based methods for SNRs larger
than −5 dB. In this case as well, VAE-noisy and VAE-real
show comparable performance. Compared to LS, the VAE-
based methods attain a performance gain between 6 and 13 dB.
In Fig. 13, we illustrate estimation results for the 3GPP channel
model (MIMO case) with three propagation clusters, 32 anten-
nas at the receiver, and 4 antennas at the transmitter. As in the

Fig. 12. Normalized MSE for the 3GPP channel model (MIMO case) with
one propagation cluster, 32 antennas at the receiver, and 4 antennas at the
transmitter. The proposed methods are displayed with solid linestyles.

Fig. 13. Normalized MSE for the 3GPP channel model (MIMO case) with
three propagation clusters, 32 antennas at the receiver, and 4 antennas at the
transmitter. The proposed methods are displayed with solid linestyles.

previous figure, the proposed estimators clearly outperform the
baselines. However, the performance gaps in Fig. 12 are more
noticeable than in Fig. 13. The performance gain compared to
LS shrinks to a range from 2 to 11 dB.

In summary, the VAE-based methods exhibit immense per-
formance gains for large antenna arrays, i.e., larger equal 16
antennas and all considered numbers of propagation clusters,
significantly outperforming the baseline methods. The strong
performance for arrays with many antennas is likely due to the
circulant approximation to the Toeplitz CCM, which becomes
better for large arrays. VAE-genie lies almost on the genie-cov
estimator, and the performance of VAE-noisy and VAE-real is
almost identical for all considered scenarios. Moreover, all ML-
based methods use genie knowledge during the training phase
in the form of ground-truth channel training data, except for
VAE-real, which is trained and evaluated solely based on noisy
pilot observations. From this point of view, the strong estima-
tion results of VAE-real are even more meaningful. What is
more, the parameterization choices for pθ(h | z) and qφ(z |y)
excellently fulfill their purpose in accordance with Theorem 1
as a result of the VAE-based approaches’ strong estimation
results. This becomes apparent when comparing the VAE to
the global-cov or GMM results, either adopting a Gaussian or
GMM prior, respectively, highlighting the superiority of the
VAE-based prior.
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VI. CONCLUSION

This manuscript presents a novel estimation technique based
on the VAE. The idea is to tractably model the underlying
data distribution as CG via a VAE, yielding a powerful gen-
erative prior. The CG modeling allows us to parameterize the
MSE-optimal CME under the VAE framework. We propose
three estimator variants, of which we find the VAE-real variant
particularly appealing as it does not require access to ground-
truth data during training or evaluation. We provide theoretical
analysis that quantifies the error gap between the proposed
MAP-VAE estimator and the CME and relates the training
process of the VAE to the estimation performance, support-
ing the strong estimation capabilities of the proposed VAE-
based estimators. Our extensive CE simulations highlight that
the proposed methods attain excellent performance for various
system configurations. In future works, we want to investigate
the effects of regularization terms in the training objective and
analyze other (especially wide) observation matrices. Moreover,
we plan to consider nonlinear system models, e.g., quantized
systems [52], to broaden the application horizon.

APPENDIX

A. Derivation of (17)

For the parameterized joint PDF of y and h given z,

pθ(y,h | z) = p(y |h, z) pθ(h | z) = p(y |h) pθ(h | z) (36)

with p(y |h) =NC(Ah,Σ) and pθ(h | z) as in (5). The depen-
dency of p(y |h, z) from z can be dropped due to the Bayesian
network in Fig. 1 showing y is conditionally independent of z
given h. Since the multiplication of two Gaussian distributions
is again Gaussian, pθ(y,h | z) =

NC

⎛
⎝
[
Aμθ

μθ

]
,

[
Σ−1 −Σ−1A

−AHΣ−1 AHΣ−1A+C−1
θ

]−1
⎞
⎠ (37)

after some algebraic reformulations, which shows that y and
h are jointly Gaussian given z. We omit the z-argument here
for notational brevity. For the derivation of Eθ[h | z,y], we are
interested in the conditional pθ(h | z,y). Using standard results
for jointly Gaussian distributions, the conditional is again Gaus-
sian with the mean vector Eθ[h | z,y] =

μθ +
(
AHΣ−1A+C−1

θ

)−1
AHΣ−1(y −Aμθ) (38)

and covariance matrix (AHΣ−1A+C−1
θ )−1. Application of

the matrix inversion lemma to (38) and further algebraic refor-
mulations yield (17), concluding the derivation.

B. Proof of Theorem 1

Proof: Let us define the variables

Ψ= fθ,2(z)− fθ,2(μφ), ψ = fθ,1(z)− fθ,1(μφ), (39)

Γ= fθ,2(μφ) + ς2 I, (40)

and denote Ez[·] := Epθ(z|y)[·] for notational convenience.
First, let us rewrite T (z) =Cθ(z)(Cθ(z) + ς2 I)−1 as

T (z) = (Cθ(z) + ς2 I)−1Cθ(z) (41)

= (Γ+Ψ)−1fθ,2(z) (42)

=
(
Γ−1 − Γ−1Ψ(Γ+Ψ)−1

)
fθ,2(z) (43)

= Γ−1fθ,2(μφ) + Γ−1Ψ
(
I−(Γ+Ψ)−1fθ,2(z)

)
(44)

by using the push-through identity in (41) and the matrix in-
version lemma in (43). Using this result, we rewrite the CME
E[h |y] from (16) in terms of the MAP-VAE estimator ĥVAE(y)
from (20) and an additive error term as

E[h |y] = Ez[fθ,1(z) + T (z)(y − fθ,1(z))] (45)

= fθ,1(μφ) + Γ−1fθ,2(μφ)(y − fθ,1(μφ))︸ ︷︷ ︸
=ĥVAE(y)

+ Ez[(I−Γ−1fθ,2(μφ))ψ]

+ Ez[Γ
−1Ψ(I−(Γ+Ψ)−1fθ,2(z))(y − fθ,1(z))].

(46)

We further note that we can simplify the term

I−(Γ+Ψ)−1fθ,2(z))(y − fθ,1(z)) = y − E[h|y, z] (47)

= E[n|y, z]. (48)

Thus, we get an upper bound on the expected Euclidean dis-
tance between the MAP-VAE estimator and the CME ε=
E[‖E[h |y]− ĥVAE(y)‖2] as

ε≤ E
[
‖ I−Γ−1fθ,2(μφ)‖2 Ez[‖ψ‖2]

]

+ E
[
‖Γ−1‖2 · ‖Ez[ΨE[n|y, z]]‖2

]
(49)

≤ E

[
ς2

ξmin + ς2
Ez[‖ψ‖2]

]
+

1

ς2
E [Ez[‖ΨE[n|y, z]‖2]]

(50)

where we used the reformulation from (48) and the bounds on
the spectral norms

‖ I−Γ−1fθ,2(μφ)‖2 =
ς2

ξmin + ς2
, ‖Γ−1‖2 ≤

1

ς2
, (51)

together with the triangle and Cauchy-Schwarz inequalities.
Note that ξmin is a function of y and the outer expectations are
with respect to p(y) if not denoted otherwise. Thus, we employ
Hölder’s inequality for both summands in (50) to get

ε≤ C1

√
E[Ez[‖ψ‖22]]

+
1

ς2

√
E[Ez[‖E[n|y, z]‖22]]

√
E[Ez[‖Ψ‖22]] (52)

≤ C1

√
E[Ez[‖ψ‖22]] +

1

ς2

√
E[‖n‖22]

√
E[Ez[‖Ψ‖22]] (53)

= C1

√
E[Ez[‖ψ‖22]] + C2

√
E[Ez[‖Ψ‖22]] (54)

where we used Jensen’s inequality in combination with the
law of total expectation in (53), and with C1, C2 in (26). By
resubstituting the variables in (39), we get

ε≤ C1

√
E[Ez[‖fθ,1(z)− fθ,1(μφ)‖2]]
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+ C2

√
E[Ez[‖fθ,2(z)− fθ,2(μφ)‖22]] (55)

≤ (C1L1 + C2L2)
√

E[Ez[‖z − μφ‖22]] (56)

by using the Lipschitz continuity (24). By defining the first and
second moments of the posterior distribution pθ(z |y) as μ̄=
Ez[z] and C̄ = Ez[(z − μ̄)(z − μ̄)H], we write

√
E[Ez[‖z − μφ‖22]] =

√
E[Ez[‖z − μ̄+ μ̄− μφ‖22]] (57)

≤
√
E[Ez[

(
‖z − μ̄‖2 + ‖μ̄− μφ‖2

)2
]] (58)

≤
√
tr(C̄) +

√
E[‖μ̄− μφ‖22] (59)

since only one summand in (58) depends on y or z, respectively.
Plugging (59) in (56) yields (25), completing the proof. �
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