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Structure-Preserving Non-Linear PCA for Matrices
Joni Virta and Andreas Artemiou

Abstract—We propose a new dimension reduction method for
matrix-valued data called Matrix Non-linear PCA (MNPCA),
which is a non-linear generalization of (2D)2PCA. MNPCA is
based on optimizing over separate non-linear mappings on the
left and right singular spaces of the observations, essentially
amounting to the decoupling of the two sides of the matrices.
We develop a comprehensive theoretical framework for MNPCA
by viewing it as an eigenproblem in reproducing kernel Hilbert
spaces. We study the resulting estimators on both population and
sample levels, deriving their convergence rates and formulating
a coordinate representation to allow the method to be used
in practice. Simulations and a real data example demonstrate
MNPCA’s good performance over its competitors.

Index Terms—(2D)2PCA, dimension reduction, kernel meth-
ods, matrix data.

I. INTRODUCTION

THE diverse types of data encountered in modern applica-
tions have caused a surge in the development of statistical

methods specializing to datasets that do not exhibit the standard
form of samples of points in R

p. In this work, we focus on one
of these special cases, matrix-valued data, where we observe n
matrices, X1, . . . , Xn, each having the size p1 × p2. In typical
applications, such as imaging, the dimensions p1, p2 can be very
large in size and the first step of the analysis is often dimension
reduction.

One of the most well-known statistical dimension reduction
techniques for matrix-valued data is a generalization of the
classical PCA known as (2D)2PCA [1], where the observed ma-
trices are replaced with (d1 × d2)-sized latent matrices Zi :=
A′(Xi − X̄)B where X̄ is the sample mean matrix and A,B
contain, respectively, any first d1 and d2 eigenvectors of the
matrices

1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)′ and
1

n

n∑

i=1

(Xi − X̄)′(Xi − X̄).
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This reduction can be seen to be natural in the following two
senses. (a) (2D)2PCA takes as its input a sample of matrices and
gives as its output a sample of matrices, essentially preserving
the type of the data. This is not the case for many dimension
reduction methods (such as the kernel methodology listed be-
low) which instead produce samples of score vectors whose
relation to the matrix structure of the original data is not clear.
(b) The latent matrices Zi exhibit a row-column dependency
structure where two elements of Zi that share a row (column)
also share the same column of A (B). That is, denoting the
columns of A and B by ak and b�, respectively, we have
zi,k� = a′k(Xi − X̄)b�, showing that all latent variables on the
kth row of Zi use the column ak of A in their computation, and
similarly for the columns of Zi. These properties let (2D)2PCA
properly leverage the structure of the observed matrices and see
them as more than simply collections of elements. (2D)2PCA
has been used to great success in various applications, such as
face recognition [1] and stock price prediction [2].

In this work we propose Matrix Non-linear PCA
(MNPCA), a non-linear extension of (2D)2PCA that retains
both of the properties listed in the previous paragraph. That is,
we construct a non-linear mapping Xi �→ g(Xi) =: Zi such that
(a) Z1, . . . , Zn are (d1 × d2)-sized matrices, (b) g imposes
specific dependencies between the rows and between the
columns of the images Zi (i.e., two elements sharing a row are
more similar than elements on different rows), and (c) when
a linear kernel is used, the mapping g reduces to the usual
(2D)2PCA. Analogous to (2D)2PCA, our non-linear mapping
g can thus be seen to preserve the matrix structure of the
original data. This behavior of g is in strict contrast to existing
methods of non-linear dimension reduction for matrix-valued
data which we review next. All of the methods listed below
are based either on (2D)2PCA [1] or its one-sided precursor
2DPCA [3] which applies only the transformation A or B but
not both.

The authors in [4] defined kernel 2DPCA (K2DPCA), which
is essentially equivalent to applying the standard kernel PCA
to the set of all np1 rows in the matrix sample. Independently,
[5] proposed a method equivalent to K2DPCA of [4]. In [6]
K2DPCA was applied separately to the rows and columns of
the input matrices and standard PCA was used on the resulting
pairs of latent representations to obtain combined latent vari-
ables. Whereas, [7] first used K2DPCA to reduce the number
of rows in the data and then applied regular 2DPCA to the
obtained latent matrices to reduce also their column dimension.
To summarize, the literature on non-linear extensions of two-
dimensional PCA either focuses on one-sided methods (exten-
sions of 2DPCA) or combines a pair of one-sided methods into
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a two-sided method (i.e., into one that reduces both rows and
columns simultaneously) in a theoretically cumbersome way.
Both options can be seen as sub-optimal: If the number of
columns in the data is even moderately large, reducing only the
number of rows still leaves the data dimension high, making,
e.g., the visualization of the resulting components impossible.
Whereas, in chaining the row and column reductions, the out-
come either depends non-trivially on the order in which the
rows and columns are reduced [7] or is artificial and loses the
structural connection to the original matrices [6].

A further problem underlying the methods listed above is
their high computational complexity. Namely, as K2DPCA op-
erates on the sample of all np1 rows of the data, the size
np1 × np1 of the corresponding kernel matrix can be enormous
even for combinations of a moderate sample size n and number
of rows p1. To combat this, [6] propose approximating the full
kernel matrix with the kernel matrix of the within-observation
row means of the data, but this leads to the loss of the row
structure and it is not clear how it affects the accuracy of
the method.

Our proposed method for constructing the non-linear map-
ping Xi �→ g(Xi) avoids the previous pitfalls by working not
with the observed matrices Xi themselves but with their sin-
gular value decompositions (SVD), Xi = UiDiV

′
i . This simple

change of perspective has two major implications:
1) The singular value decomposition essentially “decou-

ples” the row and column information in the input matri-
ces, allowing the independent and simultaneous reduction
of the row and column spaces, possibly with different
kernel functions. As a consequence, MNPCA is fully two-
sided and the order in which the two sides are reduced
does not affect the outcome.

2) As leading singular vectors capture the main directions of
data variation, truncating the SVD allows us to leverage
(almost) the full data information while simultaneously
avoiding the inflation of the size of the kernel matrix.

The primary contributions of this work are: (i) We formulate
the population-level version of MNPCA, our proposed SVD-
based non-linear extension of (2D)2PCA. As is typical in the
literature on non-linear dimension reduction [8], this requires
casting the problem into the framework of reproducing kernel
Hilbert spaces (RKHS) and Hilbert-Schmidt operators. Special
attention is paid to formulating the exact assumptions under
which MNPCA is well-defined. (ii) We study the asymptotic
properties of MNPCA and derive the convergence rate of the
corresponding estimator. (iii) We derive a coordinate represen-
tation for MNPCA, allowing its sample-level implementation,
and discuss the selection of its tuning parameters. (iv) We
compare MNPCA to several of its competitors using both sim-
ulations and a real data example. Note that earlier work on the
non-linear extensions of (2D)2PCA (see the list of references
earlier) has focused solely on points (iii) and (iv), ignoring the
finer theoretical aspects of the corresponding methods.

We briefly note that the structure-acknowledging non-linear
dimension reduction of matrices can be approached also from
another viewpoint besides (2D)2PCA. Namely, [9] apply stan-
dard kernel PCA to the sample X1, . . . , Xn but with a very

specific choice of kernel that recognizes the matrix structure
of the data. While interesting, this approach goes somewhat
against the spirit of kernel methodology where the kernel func-
tion is typically seen as a tuning parameter and its choice is
equivalent to determining what kind of latent structures one
is after. The limiting to a single kernel in [9] is in strict con-
trast to our proposed method which allows the use of any
kernel function that is either odd or even, see the definition in
Section II. This restriction is a mild one as the classes of odd
and even kernels are very large (in fact, every positive semi-
definite kernel induces both a corresponding odd and an even
kernel). Finally, we remark that, from an abstract viewpoint,
the objective of MNPCA is to represent the observed data as
elements of a specific Hilbert space (non-linear features) and
then find an efficient low-rank representation for these elements
(dimension reduction). Other works that explore similar ideas
include, for example, [10], [11].

The manuscript is organized as follows. Section II begins
with some definitions and notation. In Section III we use the
combination of SVD and even/odd kernels to motivate a well-
defined non-linear analogy for the two-sided projection of a
matrix. In Section IV we formulate the population version of
the MNPCA-procedure. Section V focuses on the asymptotic
properties of the sample version of the method, whereas its
coordinate representation is constructed in Section VI. Tuning
parameter selection is discussed in Section VII. Simulations and
real data examples are given in Sections VIII and IX concludes
with a discussion. All proofs of technical results are collected
to the supplementary Appendix A, where a brief explanation of
the used proof techniques is also given.

II. NOTATION AND DEFINITIONS

For convenience, we have collected all the relevant notation
in this section. As is standard, we use the word kernel to refer
to any κ : Rp × R

p → R that is symmetric and positive semi-
definite [12]. Our main theoretical tool in this work are (kernel-
induced) reproducing kernel Hilbert spaces (RKHS) and, for the
convenience of the reader, we next briefly review the main idea
behind them.

Every kernel κ : Rp × R
p → R induces a Hilbert space

(H, 〈·, ·〉) of functions f from R
p to R. The members of the

space H are essentially all possible functions of the form∑m
j=1 ajκ(·, xj), where m ∈ N, aj ∈ R and xj ∈ R

p, along
with their limits when m→∞. As we see next, particularly
important members of H are the representations, or “features”,
κ(·, x) ∈H, x ∈ R

p (that is, the representation κ(·, x) of a point
x is a function). What makes the RKHS theoretically attrac-
tive is the reproducing property: for every f ∈H and x ∈ R

p,
we have f(x) = 〈f, κ(·, x)〉. That is, the evaluation f(x) of
a non-linear map f at x can be represented linearly (inner
products are linear) in the feature space of the representative
functions κ(·, x). This essentially allows us to formulate non-
linear methods linearly and to efficiently study their behavior
using tools of functional analysis. Finally, as the reproducing
property holds only for members f of the space H, we note
that the choice of the kernel κ implicitly determines the set of
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non-linear mappings we can consider. For further information
on RKHS, we refer the reader to [13].

Let next κ1, κ2 be continuous kernels. We denote the RKHS
induced by κ1 and κ2 by (H1, 〈·, ·〉), (H2, 〈·, ·〉), respectively.
That is, the Hilbert spaces H1,H2 are implicitly defined by the
two kernels in the manner described in the previous paragraph.
To avoid notational overload, we use the same symbols 〈·, ·〉
and ‖ · ‖ for the inner products and norms, respectively, of
both H1 and H2. The actual space in question can always be
understood from the context. We use the notation B(Hi,Hj) to
refer to the set of all bounded linear operators from Hi to Hj .
By the continuity of the kernels κ1, κ2, the spaces H1,H2 are
separable and admit orthonormal bases [14].

Recall that an operator F ∈ B(Hi,Hj) is said to be a Hilbert-
Schmidt operator if the quantity

∑∞
k=1

∑∞
�=1〈v�, Fuk〉2 is fi-

nite for some orthonormal bases {uk} and {v�} of Hi and Hj ,
respectively, in which case its value does not depend on the
choice of the bases and is termed the squared Hilbert-Schmidt
norm ‖F‖2HS of F . The vector space S(Hi,Hj) of all Hilbert-
Schmidt operators in B(Hi,Hj) itself becomes a Hilbert space
when endowed with the inner product

〈F1, F2〉HS :=

∞∑

k=1

∞∑

�=1

〈v�, F1uk〉〈v�, F2uk〉.

As with the norms and inner products of the RKHS earlier,
the notations ‖ · ‖HS〈·, ·〉HS leave implicit the actual domains
of the Hilbert-Schmidt norm and inner product. For f ∈Hi

and g ∈Hj , the tensor product g ⊗ f denotes the element of
S(Hi,Hj) acting as (g ⊗ f)h= 〈f, h〉g for any h ∈Hi. It is
straightforwardly checked that ‖g ⊗ f‖HS = ‖f‖‖g‖. Finally,
we note that the Hilbert-Schmidt norms satisfy 〈F1, F2〉=
〈F ∗

1 , F
∗
2 〉HS and 〈g, F1f〉= 〈(g ⊗ f), F1〉HS for all F1, F2 ∈

S(Hi,Hj), f ∈Hi and g ∈Hj , where F ∗ denotes the adjoint
of the operator F .

A key role in our development is played by the so-called even
and odd kernels. A kernel κ is said to be odd if κ(−x, y) =
−κ(x, y) for all x, y ∈ R

p. Analogously, a kernel κ is said to
be even if κ(−x, y) = κ(x, y) for all x, y ∈ R

p. The following
lemma, given originally as Corollary 1 in [15], details a simple
way of constructing odd/even kernels.

Lemma 1: Let κ : Rp × R
p → R be a kernel that satisfies

κ(x, y) = κ(−x,−y) for all x, y ∈ R
p. Then,

(a) The function κ− : Rp × R
p → R acting as (x, y) �→

κ(x, y)− κ(−x, y) is an odd kernel.
(b) The function κ+ : Rp × R

p → R acting as (x, y) �→
κ(x, y) + κ(−x, y) is an even kernel.

Lemma 1 essentially states that, given any kernel κ satisfying
κ(x, y) = κ(−x,−y), one can always construct the correspond-
ing odd and even kernels κ−, κ+. In the sequel, we say that
κ−, κ+ are the odd and even kernels induced by κ.

III. TWO-SIDED NON-LINEAR MAPPING

Let X be a random p1 × p2 matrix. In linear dimension
reduction for matrix-valued random variables, the objective is to
search for directions a ∈ S

p1−1, b ∈ S
p2−1, where Sp−1 denotes

the unit sphere in R
p, such that the two-sided projection a′Xb

provides a meaningful reduction. Having obtained the direc-
tions a1, . . . , ad1

and b1, . . . , bd2
(typically under orthogonality

constraints within the two sets), their combinations yield a
total of d1d2 projections that are most conveniently arranged
into the d1 × d2 matrix Z := (a′jXbk)

d1
j=1

d2

k=1. This dimension
reduction can be seen to produce a latent variable with a natural
matrix structure as, indeed, each row of Z shares the same
a-vector and each column of Z the same b-vector. Methods
subscribing to this paradigm include, e.g., [1], [16], [17], [18],
[19], [20].

In this section we formulate a non-linear extension of this
concept (simultaneous two-sided projection) using RKHS. Our
objective with the extension is to preserve the previous idea that
extracting a total of d1 “left” elements and d2 “right” elements
gives us a d1 × d2 reduced matrix where the latent variables
on a same row share the same row element and similarly for
the columns. In the sequel, we let κ1 : R

p1 × R
p1 → R and κ2 :

R
p2 × R

p2 → R denote the kernels corresponding to the two
sides and we make the following assumption regarding them.

Assumption 1: The kernels κ1, κ2 are either both odd or
both even.

The oddness/evenness of the two kernels is required later on
to ensure that the lack of fixed signs in singular value decom-
position does not compromise the uniqueness of our non-linear
mappings. We additionally make the following assumption re-
garding the random matrix X .

Assumption 2: For some r ≤min{p1, p2}, the random matrix
X has almost surely rank r and its non-zero singular values are
almost surely simple.

The first part of Assumption 2 (almost surely fixed rank)
is made for convenience and could easily be omitted at the
cost of more cluttered notation. We also note that the value
of r depends on the exact distribution of X . For example, if
X is drawn uniformly from a ball of finite radius in R

p1×p2 ,
then r =min{p1, p2}, see [21, Corollary 1.2]. The second part
(almost surely simple singular values) is satisfied, in partic-
ular, if X has an absolutely continuous distribution w.r.t. the
Lebesgue measure (in which case the rank is r =min{p1, p2}
almost surely).

Let (uj , vj)≡ (uj(X), vj(X)), j = 1, . . . , r, denote any pair
of jth left and right singular vectors of the random matrix X .
Under Assumption 2, each of the pairs (uj , vj), j = 1, . . . , r,
is almost surely uniquely defined up to the joint sign of the
members of the pair. That is, if (uj , vj) is a jth singular pair
of X , then the only other jth singular pair of X is (−uj ,−vj).
We denote the jth singular value of X by σj ≡ σj(X).

Let now f ∈H1 and g ∈H2 be arbitrary functions that play
the role of the projection directions a ∈ R

p1 , b ∈ R
p2 in our non-

linear extension. We define the two-sided mapping of X to the
pair (f, g) to be

r∑

j=1

σjf(uj)g(vj) =

〈
f,

⎛

⎝
r∑

j=1

σj{κ1(·, uj)⊗ κ2(·, vj)}

⎞

⎠ g

〉

=: 〈f, Ug〉, (1)

where the random operator U ≡ U(X) :=
∑r

j=1 σj{κ1(·,
uj)⊗ κ2(·, vj)} can be seen as the non-linear “representation”
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of the random matrix X . It is easy to show that U is a
Hilbert-Schmidt operator, see (2) in Section IV. The mapping
(1) is an exact non-linear analogy of the linear projection
a′Xb=

∑r
j=1 σja

′ujb
′vj , to which it reduces when the

kernels κ1, κ2 are linear. The oddness or evenness of the
kernels κ1, κ2 guarantees that the joint sign of any individual
singular pair plays no role in the construction of the mapping.
E.g., if both kernels are odd, we have for all u ∈ R

p1 ,
v ∈ R

p2 that

κ1(·,−u)⊗ κ2(·,−v) = {−κ1(·, u)} ⊗ {−κ2(·, v)}
= κ1(·, u)⊗ κ2(·, v).

Consequently, the reduced variable 〈f, Ug〉 in (1) is almost
surely uniquely defined, regardless of which particular singular
value decomposition of X we use. Note that this would not
be the case without the second part of Assumption 2 as then
more freedom would be allowed in choosing the singular vec-
tors corresponding to singular values with multiplicity greater
than one.

Finally, we note that if both κ1 and κ2 are taken to be linear
kernels, then the operator U is equal to the original matrix
X , meaning that in this case uniqueness is achieved for U
even without the second part of Assumption 2. Essentially, this
comes down to the fact that a rotation of a left singular space
of a matrix can always be cancelled by applying the inverse
of this rotation to the corresponding right singular space, and
using linear kernels transfers this property from X to U . Hence,
we conclude that the requirement of almost surely distinct non-
zero singular values in Assumption 2 is specific to the non-
linear case.

IV. MNPCA

Recall that (2D)2PCA [1] is a method of linear dimension
reduction that can be seen as an extension of principal com-
ponent analysis to matrices (when p2 = 1 it is equivalent to
the standard PCA). In (2D)2PCA, the left projection directions
a1, . . . , ad1

are found as the first d1 eigenvectors of the matrix
E[{X − E(X)}{X − E(X)}′], whereas their right-hand side
counterparts b1, . . . , bd2

are analogously taken to be the first
d2 eigenvectors of the matrix E[{X − E(X)}′{X − E(X)}].
Given the projection directions, the reduced matrix Z contain-
ing the d1d2 combined projections is formed as Z := (a′k{X −
E(X)}b�)d1

k=1
d2

�=1. If multiple eigenvalues are encountered, the
corresponding eigenvectors and projections are not uniquely
defined.

Prior to defining MNPCA, our non-linear analogue of
(2D)2PCA, we first construct the first and second moments of
the operator U defined in Section III. For this, we make a weak
assumption about the kernels κ1, κ2 that will simplify the pre-
sentation to come. We note that this assumption is made simply
for convenience and that our theory would function perfectly
well even without it, assuming that the moment assumptions in
Sections IV and V are suitably adjusted.

Assumption 3: There exist constants C1, C2 > 0 such that,
for all u ∈ S

p1−1, v ∈ S
p2−1,

κ1(u, u)<C1 and κ2(v, v)<C2.

Assumption 3 is satisfied, e.g., for even and odd kernels
induced (in the sense of Lemma 1) by all Gaussian, Laplace
and polynomial kernels.

Recall then that we defined the random operator U in
Section III as

U =

r∑

j=1

σj{κ1(·, uj)⊗ κ2(·, vj)},

where (uj , vj) is a jth singular pair of the almost surely
rank-r random matrix X and σj denotes the corresponding
singular value. To construct moments for U , we define the
expected value of an arbitrary random operator Y taking values
in S(Hi,Hj) in the usual way, i.e., as any Hilbert-Schmidt
operator E(Y ) ∈ S(Hi,Hj) satisfying

〈A,E(Y )〉HS = E〈A, Y 〉HS,

for all A ∈ S(Hi,Hj). By the Riesz representation theorem
[22], the expectation E(Y ) exists and is unique as soon as
E‖Y ‖HS <∞. Defined like this, the expectation of a random
operator is straightforwardly verified to satisfy the following
intuitive properties (where we implicitly assume that the rele-
vant expectations exist as unique): (i) The expectation is linear
in the sense that E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2) for all
scalars a1, a2 ∈ R and all random operators Y1, Y2. (ii) For any
random operator Y , we have E(Y ∗) = {E(Y )}∗. In particular,
if the operator Y is self-adjoint, then so is E(Y ). (iii) For
any fixed operator A and any random operator Y , we have
E(AY ) =AE(Y ).

Under Assumption 3, the Hilbert-Schmidt norm of U has a
particularly simple upper bound:

‖U‖HS ≤
r∑

j=1

σj‖κ1(·, uj)⊗ κ2(·, vj)‖HS

≤ (C1C2)
1/2r‖X‖2, (2)

where ‖X‖2 = σ1 is the spectral norm of the random matrix
X . Consequently, the expectation E(U) is well-defined and
unique as soon as E‖X‖2 <∞. However, we instead make
the following, stricter assumption that is needed when we next
construct the second moment of U .

Assumption 4: We have E‖X‖22 <∞.
Assumption 4, along with its fourth moment counterpart

appearing later as Assumption 5, essentially requires that the
random matrix X is not too heavy-tailed. This means that our
theoretical results for MNPCA cannot be guaranteed to hold
in scenarios typically exhibiting this kind of behavior, such as
with financial data. However, we note that the same is true also
for any method based on covariances (second moments), such
as the classical PCA or (2D)2PCA. From a theoretical perspec-
tive, Assumption 4 is needed to guarantee that the covariance
operator H1 defined below in (3) exists.

By the sub-multiplicativity of the Hilbert-Schmidt norm,
‖UU∗‖HS ≤ ‖U‖2HS, showing that Assumption 4 indeed guar-
antees that E(UU∗) is well-defined. Having constructed E(U)
and E(UU∗), we take the operator analogy of the matrix
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E[{X − E(X)}{X − E(X)}′] to be the Hilbert-Schmidt op-
erator H1 ≡H1(X) ∈ S(H1,H1) defined as

H1 := E[{U − E(U)}{U − E(U)}∗]
= E(UU∗)− E(U)E(U)∗. (3)

In (2D)2PCA, the left projection directions are obtained as
the eigenvectors of the matrix E[{X − E(X)}{X − E(X)}′].
We next show that the equivalent is well-defined in the non-
linear case. Denoting Y := U − E(U), as Y Y ∗ is self-adjoint,
so is the operator H1. Moreover, like its linear counterpart,
H1 is also positive semi-definite, as is seen by writing, for an
arbitrary f ∈H1,

〈f,H1f〉= 〈(f ⊗ f), H1〉HS

= E〈(f ⊗ f), Y Y ∗〉HS

= E‖Y ∗f‖2.

As Hilbert-Schmidt operators are compact [22, p.267], H1

admits the spectral decomposition H1 =
∑∞

k=1 λk(ak ⊗ ak)
where λ1 ≥ λ2 ≥ . . .≥ 0 and {ak} is an orthonormal basis of
H1 [23, Theorem 4.10.4]. We can similarly obtain the orthonor-
mal basis {bk} of H2 corresponding to the operator H2 :=
E[{U − E(U)}∗{U − E(U)}].

We next define MNPCA using the previously defined oper-
ators. We assume, for now, that the reduced ranks d1, d2 are
known and postpone the discussion of their estimation later to
Section VII on tuning parameter selection. Let then a1, . . . , ad1

and b1, . . . , bd2
be any first d1 and d2 eigenvectors of the self-

adjoint positive semi-definite operators H1 and H2, respec-
tively. The d1 × d2 matrix Z of MNPCA-components of X is
now found element-wise as

zk� := 〈ak, {U − E(U)}b�〉. (4)

Each row of the matrix Z shares the same non-linear row
element ak (and analogously for the columns of Z), implying
that it is meaningful to view Z as a matrix, instead of simply
as a collection of latent variables. Moreover, as lower indices k
correspond to larger eigenvalues and greater amount of informa-
tion, we expect the most interesting part of the MNPCA-matrix
Z to be its top left corner.

We next provide an interpretation for the first left-hand side
function a1 found by MNPCA. As discussed earlier, a1 is
found by maximizing the quadratic form f �→ 〈f,H1f〉. We
now show that this quadratic form admits a simplified form in
the special case where the right-hand side kernel κ2 satisfies the
following: for any orthonormal set of vectors v1, . . . , vr ∈ R

p2 ,
the matrix R := {κ2(vj , vk)}rj,k=1 is a constant not depending
on v1, . . . , vr. It is straightforwardly checked that, e.g., both
the even and odd kernels induced by Gaussian kernels satisfy
this condition.

Lemma 2: Let κ2 be as discussed above. Then,

〈f,H1f〉= (b1 − b2)tr(Σ) + b21
′
rΣ1r,

where 1r ∈ R
r is a vector of ones, Σ := Cov(Z), Z := (σ1

f(u1), . . . , σrf(ur)) ∈ R
r, b1 := κ2(e1, e1), b2 := κ2(e1, e2)

and ej denotes the jth standard basis vector of Rp2 .

Note that, due to κ2 being a kernel function, we always
have b1 ≥ b2. Lemma 2 allows us to make two interpretations:
(i) As both tr(Σ) and 1′rΣ1r measure the size of the covari-
ance matrix Σ, the result essentially implies that, to maximize
the quadratic form, we must choose f such that the random
vector Z = (σ1f(u1), . . . , σrf(ur)) exhibits as much variation
as possible. The elements of Z are scaled with the singular
values σ1 > · · ·> σr, meaning that if σ1 dominates the other
singular values, f is essentially chosen to maximize the variance
of f(u1). In the case of more balanced singular values, also the
later singular spaces play a role in choosing f . (ii) On a finer
scale, the weighting between tr(Σ) and 1′rΣ1r is determined
by the non-rigidity of the kernel function. If b2 ≈ 0, then κ2

maps orthogonal vectors into almost orthogonal features and
the value of 〈f,H1f〉 is determined almost fully by its first
term, the variances of the elements of Z. Whereas, if b2 differs
significantly from zero, then κ2 turns orthogonal vectors into
non-orthogonal features and also the off-diagonal elements of
Σ affect the choice of f .

We close this section by pointing out that, while MNPCA
reduces to (2D)2PCA under a linear kernel, interestingly it
does not reduce to KPCA when X is a vector, p2 = 1 but,
rather, to a weighted version of KPCA. To see this, decom-
pose the observed random vector as X = ‖X‖V , where V =
X/‖X‖. Then, in KPCA with the kernel κ the principal com-
ponents are determined by the covariance operator E{κ(·, X)⊗
κ(·, X)} − E{κ(·, X)} ⊗ E{κ(·, X)}. Whereas, in MNPCA
with the kernels κ, κ2, the operator representation of X equals
U = ‖X‖{κ(·, V )⊗ κ2(·, 1)} and the operator H1 is thus,

H1 = E{‖X‖2κ(·, V )⊗ κ(·, V )}
− E{‖X‖κ(·, V )} ⊗ E{‖X‖κ(·, V )}.

This shows that MNPCA with p2 = 1 is equivalent to running
KPCA for the normalized random vector X/‖X‖ and weight-
ing the kernel with the magnitude ‖X‖. Thus, in particular,
if the random vector resides in the unit sphere, ‖X‖= 1, the
two methods are the same. We also see that the two methods
are equal if κ is linear, and this relationship is equivalent to
the well-known fact that KPCA with linear kernel equals PCA.
We leave the study of the above novel weighted KPCA for
future work.

V. SAMPLE CONSISTENCY

We next turn our attention to the sample version of MNPCA
and its asymptotic properties. Without loss of generality, we
restrict our discussion to the left-hand side of the model, the
equivalent results for the right-hand side following instantly
by symmetry.

Let X1, . . . , Xn be a sample of p1 × p2 matrices from the
distribution of X and let (uij , vij) and σij denote the jth
singular pair of the ith observed matrix and the correspond-
ing singular value, respectively. For each i= 1, . . . , n, we let
Ui ∈ B(H2,H1) denote the linear operator

Ui :=

r∑

j=1

σj{κ1(·, uj)⊗ κ2(·, vj)}.
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Under Assumption 2 and for odd/even kernels κ1, κ2, the op-
erators U1, . . . , Un are almost surely unique and a computation
similar to (2) reveals that they are Hilbert-Schmidt operators.
By defining the “average” operator as Ūn := (1/n)

∑n
i=1 Ui,

the sample version Hn1 ∈ S(H1,H1) of the operator H1 is
defined as,

Hn1 :=
1

n

n∑

i=1

(Ui − Ūn)(Ui − Ūn)
∗.

We remind here that the role of the subscript n in Hn1 is to
denote that the operator is a sample-level object. Similarly, the
subscript 1 means that the Hn1 is an operator relating to the
left-hand side of the model. As our first asymptotic result, we
show that Hn1 converges to H1 in the Hilbert-Schmidt norm at
the standard root-n rate, as soon as the fourth moment of X is
bounded. In classical statistics, finite moments of order 2k are
required to obtain the convergence of the sample kth moment
via the central limit theorem at the root-n rate [24]. In this sense,
the need for Assumption 5 below is perfectly reasonable in the
current scenario where we are studying the convergence of a
quantity based on second moments.

Assumption 5: We have E‖X‖42 <∞.
Theorem 1: Under Assumptions 1, 2, 3 and 5, we have,

as n→∞,
√
n‖Hn1 −H1‖HS =Op(1).

The notation “Yn =Op(1)” in Theorem 1 means that the
sequence Yn of random variables is stochastically bounded [24].
Under suitable regularity conditions, the convergence of Hn1 in
Theorem 1 guarantees that also the corresponding eigenspaces
are consistent. A standard assumption for this in the kernel
dimension reduction literature is that the operator in question
has finite rank and its positive eigenvalues are distinct [25], [26],
[27]. A finite rank essentially ensures that a large enough sample
can be used to capture the full information content of the pop-
ulation distribution, whereas having distinct eigenvalues makes
certain that the individual latent variables can be identified.
Thus, Assumption 6 can be seen as being very practical, and if it
was omitted, conducting dimension reduction in practice would
partially lose its meaning. We also note that Assumption 6 is
required only for Corollary 1 below, no other result in this work
requires it. The proof of the corollary is omitted as it follows
directly from [25, Theorem 2].

Assumption 6: The operator H1 has finite rank d1 and its
positive eigenvalues are distinct.

Corollary 1: Let Assumptions 1, 2, 3, 5 and 6 hold. Denote by
ak and ank, k = 1, . . . , d1, any kth eigenvectors of H1 and Hn1,
respectively, with their signs chosen such that 〈ak, ank〉 ≥ 0.
Then, as n→∞,

√
n‖ank − ak‖=Op(1).

The proof of Theorem 1 reveals that E(U) can be estimated
root-n-consistently by the operator Ūn, guaranteeing together
with Corollary 1 that the sample MNPCA-components

zi,k� := 〈ank, (Ui − Ūn)bn�〉, i= 1, . . . , n,

are themselves a good approximation to their population coun-
terparts in (4). As with their population version, the sample
MNPCA-components are naturally collected into the matrices
Z1, . . . , Zn of size d1 × d2.

We close this section by noting that the
√
n-rate of con-

vergence is very standard in the context of principal com-
ponent analysis and, essentially, any moment-based statistical
inference on i.i.d. data. Namely, it is satisfied by PCA [28],
(2D)2PCA [29], kernel PCA [25], and various methods for
matrix-valued random variables, such as [18], [19].

VI. COORDINATE REPRESENTATION

The results of the preceding section were stated on the oper-
ator level, and, in order to apply MNPCA in practice, we next
develop a finite-dimensional representation of the method. For
this, assume that we are given a sample X1, . . . , Xn of p1 × p2
matrices from the distribution of X . As before, we let (uij , vij)
and σij denote the jth singular pair of the ith observed matrix
and the corresponding singular value, respectively.

In standard kernel methodology for vector-valued data, it is
typical to take the sample counterpart of the RKHS induced
by the kernel κ to be the linear span of the representatives
κ(·, xi) of the observed sample of vectors x1, . . . , xn. In our
case of matrix data, the natural counterpart to this procedure
is to use the representatives of the singular vectors instead.
A key question is then how many singular vectors from each
Xi should be used. This choice has a direct impact on the
computational complexity of MNPCA as using, say, m singular
vectors from each observation yields a kernel matrix of the
size mn×mn, leading to increased computational burden for
larger m. On the other hand, a larger m also guarantees a richer
function space, making the choice a trade-off (and m essentially
a tuning parameter). For notational simplicity, we have in the
following restricted ourselves to using only the first singular
vectors, m= 1, but the formulas could easily be adapted for
other m as well. We thus define the sample counterpart of the
RKHS H1 as,

Hn1 := span(Bn1),

where the spanning set Bn1 := {κ1(·, ui1) | i= 1, . . . , n} is, for
notational convenience, taken to satisfy the following condition,
which implies, in particular, that Bn1 forms a basis for Hn1 and
that dim(Hn1) = n.

Assumption 7: The elements of Bn1 are linearly independent.
For an arbitrary member f of Hn1, we define its coordi-

nate [f ] ∈ R
n to be the vector of its coefficients in the basis

Bn1. Thus, letting k1 : R
p → R

n denote the function acting as
k1(x) = (κ1(x, u11), . . . , κ1(x, un1))

′, we have

f(x) = [f ]′k1(x), (5)

for every x ∈ R
p1 , f ∈Hn1. Let K1 ∈ R

n×n denote the ker-
nel matrix whose (i, j)-element is 〈κ1(·, ui1), κ1(·, uj1)〉=
κ1(ui1, uj1). To turn Hn1 into a Hilbert space, we equip Hn1

with the inner product

〈f, g〉n := [f ]′K1[g], (6)
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whose positive-definiteness is guaranteed by Assumption 7.
Note, however, that the resulting space is, strictly speaking, not
an RKHS as we take the domain of its elements to be the full
space R

p1 instead of the set {u11, . . . , un1}. This means, in
particular, that the reproducing property f(x) = 〈f, κ1(·, x)〉n
holds only when x ∈ {u11, . . . , un1} (however, for x not satis-
fying this, we still have the relation (5)). Finally, we construct
the right-hand side counterparts Hn2,K2 similarly, under the
analogous assumptions.

Under the above specifications, the sample algorithm for
MNPCA (as described in Section IV) is given in the next
theorem.

Theorem 2: Denote Fi :=
∑r

j=1 σijk1(uij)k2(vij)
′, i=

1, . . . , n, and let a1, . . . , ad1
and b1, . . . , bd2

be any first d1 and
d2 eigenvectors of the n× n matrices

P1 :=K
−1/2
1

(
1

n

n∑

i=1

FiK
−1
2 F ′

i − F̄K−1
2 F̄ ′

)
K

−1/2
1 , (7)

and

P2 :=K
−1/2
2

(
1

n

n∑

i=1

F ′
iK

−1
1 Fi − F̄ ′K−1

1 F̄

)
K

−1/2
2 ,

respectively, where F̄ := (1/n)
∑n

i=1 Fi. Then, the d1 × d2
matrix Zi of the MNPCA-components of the ith observation
is given by

zi,jk := a′jK
−1/2
1 (Fi − F̄ )K

−1/2
2 bk. (8)

Two notes are in order. First, the proof of Theorem 2 reveals
that to obtain the MNPCA-component matrix of an out-of-
sample observation X0, it is sufficient to replace Fi in (8) with
the equivalent matrix having the singular vectors/values of X0

in place of those of Xi. Secondly, the presence of the inverses
K−1

1 ,K−1
2 might make the procedure numerically unstable in

practice, and in our later examples we have replaced them with
the corresponding regularized inverses K† := (K + ε‖K‖2)−1

where ε= 0.2. Similarly, one might want to truncate the decom-
positions Fi after some small number of singular values, say,
two or three (effectively assuming that the rank in Assumption 2
is r = 2 or r = 3).

The sample MNPCA-procedure described in Theorem 2 can
be seen as a true non-linear generalization of (2D)2PCA in the
sense that it reverts back to the standard (2D)2PCA when a
linear kernel is used, as long as the sets of leading singular
vectors u11, . . . , un1 and v11, . . . , vn1 span the full spaces Rp1

and R
p2 , respectively. This result, formalized in Theorem 3

below, is proven in the appendix. Note also that all linear kernels
are odd, satisfying our requirement of odd/even kernels.

Theorem 3: Let κ1, κ2 be linear kernels and assume that
n≥max{p1, p2} and that the matrices U := (u11, . . . , un1)

′,
V := (v11, . . . , vn1)

′ have full rank. Then, treating the in-
verses in Theorem 2 as Moore-Penrose generalized inverses,
the MNPCA-components of the ith observation are,

Zi :=A′(Xi − X̄)B,

TABLE I
THE COMPUTATIONAL COMPLEXITIES OF DIFFERENT METHODS

UNDER THE SIMPLIFIED SCENARIO WHERE p1 = p2 =: p AND THE

NUMBER OF LATENT DIMENSIONS IS NEGLIGIBLE COMPARED TO n, p

MNPCA PCA KPCA K2DPCA (2D)2PCA

n4 min{np4, n2p2} n2 n2p2 np3

where A,B contain, respectively, any first d1 and d2 eigenvec-
tors of the matrices

1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)′ and
1

n

n∑

i=1

(Xi − X̄)′(Xi − X̄).

We next compare the computational complexity of MNPCA
to those of standard PCA, kernel PCA (KPCA), K2DPCA (as
proposed in [4]) and (2D)2PCA. For simplicity, we focus only
on the required number of matrix multiplication and eigende-
composition operations and assume that the latent dimensions
d1, d2, d are negligible in size compared to the parameters
n, p1, p2.

For MNPCA, as detailed in Theorem 2, the computation of
the matrix (7) and the extraction of the full set of latent variables
(8) both have O(n4) complexity. These are the most expensive
operations involved, meaning that the complexity of the full
procedure is O(n4). Recall that we assumed earlier that only
the first singular space is used to estimate H1 and H2, i.e.,
m= 1. In the case of general m, it is simple to check that the
complexity of MNPCA is O(m3n4), verifying that m indeed
has a major impact on the complexity.

For PCA and KPCA, we assume that the sample of matrices
has been vectorized into a sample of p1p2-dimensional vec-
tors. Now, the complexity of estimating the d first principal
components of an arbitrary n× p dataset Y is either O(np2)
or O(n2p), depending on whether we decompose the matrix
Y ′Y or Y Y ′, respectively. Hence, the complexity of PCA in
the current problem is O(min{np21p22, n2p1p2}). Finally, for
KPCA, the only operation needed is that of extracting the d
first eigenvalue-eigenvector pairs of the kernel matrix, which
has the complexity O(n2). For K2DPCA, based on the previous
paragraph and Theorem 3 in [4], the complexity of the full
procedure is O(n2p21).

In (2D)2PCA, computing (1/n)
∑n

i=1 XiX
′
i − X̄X̄ ′ re-

quires n+ 1 multiplications of p1 × p2 and p2 × p1 matri-
ces, giving the complexity O(np21p2). The extraction of the
first d1 eigenvector-eigenvalue pairs of a p1 × p1 matrix is an
O(p21)-operation. Finally, taking into account also the right-
hand side of the model, the computation of the latent matrices
in (2D)2PCA has the total complexity of O(np21p2 + np1p

2
2).

The computational complexities of the five methods under
a simplified scenario where p1 = p2 =: p are summarized in
Table I. Based on the table, the ranking of the methods depends
crucially on the dimensions of the data. In the extreme scenario
where n� p, the fastest method is (2D)2PCA which avoids
both the vectorization and the need to operate on n× n kernel
matrices. Whereas, if p� n, then KPCA is the fastest (but
fails to acknowledge the matrix structure of the data), with
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MNPCA coming in second. Finally, we note that the previous
computations ignore the complexity involved in computing the
kernel functions κ1, κ2.

VII. TUNING PARAMETER SELECTION

The tuning parameters of MNPCA include the number m of
singular spaces used to approximate the spaces H1 and H2, the
rank r involved in computing the matrices Fi in Theorem 2,
the latent dimensionalities (d1, d2) and any additional tuning
parameters involved with the kernels κ1, κ2. We next give sug-
gestions on how to choose these in practice.

The number m of singular spaces differs from the other
tuning parameters in the sense that increasing m is always better
from the viewpoint of estimation accuracy (barring any possible
numerical instability), enabling better coverage of the RKHS.
However, as discussed in the previous section, the computa-
tional burden of MNPCA increases in the third power of m
and, hence, our suggestion is to choose as large value of m as
is possible within the given computational limits.

The rank r can be seen to control a bias-variance trade-off
on the level of individual observations. That is, too small values
of r risk discarding some defining features of the observations
Xi whereas large r might bring with it noisy singular spaces,
distracting from efficient estimation. In an exploratory context,
we suggest experimenting with several small values of r, say
1–5, whereas, when using MNPCA as a preprocessing step for
another method with measurable performance, cross-validation
can also be used.

As in most forms of PCA, the selection of d1 (and, equiva-
lently d2) can be based on a scree plot of the eigenvalues of the
matrix P1 (P2) in Theorem 2. The large dimensionality n of the
matrix means that standard cut-offs such as 80% explained vari-
ance might not be useful due to the long tail of small but non-
zero noise eigenvalues. Instead, we suggest using the following
heuristic: retain all principal components whose eigenvalues λi

exceed λ̄+ 2 · sd(λi), separately for the two sides of the model.
Finally, to choose the tuning parameters of the kernels κ1, κ2,

an obvious choice is to use cross-validation. Alternatively, in ab-
sence of any performance criterion, we suggest using a suitable
default value. For example, for the even/odd kernel induced by
the Gaussian kernel (x, y) �→ exp{‖x− y‖2/(2σ2)}, a natural
choice is to use σ2 = ‖G‖/n where the matrix G has the inner
product u′

i1uj1 as its (i, j)th element. This choice makes σ2

comparable in magnitude to the average value of ‖x− y‖2
and is additionally invariant to any sign-changes to individual
singular vectors ui1. This value will be used as a “baseline” in
our later data examples.

VIII. DATA EXAMPLES

The R-codes for running MNPCA are available on the web
page of one of the authors, https://users.utu.fi/jomivi/software.

A. Simulation

We next evaluate the performance of MNPCA using
simulated image data. As competitors, we take (2D)2PCA

Fig. 1. A sample of 20 images from Group 1 (top two rows) and 20 images
from Group 2 (bottom two rows). The members of Group 2 can be seen to
exhibit a denser checkerboard pattern compared to Group 1.

(a linear baseline) and its non-linear extension K2DPCA, as
proposed in [4]. Given x ∈ [−π, π] and α ∈ (−1, 1), we let
u(x;α) denote the 10-dimensional vector whose jth element
equals cos{(1− α)(x− π + j−1

10 2π)}. We then fixα ∈ (−1, 1)
and generate images representing two groups as follows: for
images from Group 1, we first randomly generate θ1, θ2, θ3, θ4
i.i.d. from Unif(−π, π). A 10× 10 image is then constructed as
u(θ1;α)u(θ2;α)

′ + u(θ3;α)u(θ4;α)
′. An image from Group

2 is generated with identical steps but by using −α in place
of α, meaning that the parameter α controls the distance be-
tween the two groups; larger α corresponds to better separated
groups. In this study, we consider a total of three values α=
0.125, 0.100, 0.075. Samples of images from the two groups
generated with α= 0.125 are shown in Fig. 1. The two groups
(top two vs. bottom two rows in Fig. 1) are not that easy to
discern visually but, as we will later see, the two groups are
actually perfectly separable after a non-linear mapping.

We consider two different sample sizes n= 50, 100, gener-
ating in both cases 50% of the observations from each group.
In every replicate of the simulation, we use each of the methods
to estimate a total of 4 components (2× 2 latent matrices), fit a
QDA classifier to them and, finally, use the trained classifier to
predict the classes of a separate test image set of size n0 = 50.
We use the Gaussian kernel for all non-linear methods and
distinguish two versions of MNPCA, even and odd, giving
us a total of four methods to compare. For simplicity and to
alleviate computational burden we used m= 1 singular spaces
to estimate the RKHS and the truncated rank r = 2.

The resulting average classification accuracies in the test set
over 500 replicates of the simulation are shown in Fig. 2. The
horizontal axes of the panels correspond to the value of the
tuning parameter σ2 and are relative in the sense that the tick
mark a denotes the value σ2 = 2aσ2

0 where σ2
0 is a “default”

value estimated from the data (once). For MNPCA (the lines
denoted by “Even” and “Odd”), we used the default value
proposed in Section VII and for K2DPCA we use the value
σ2
0 = (1/n2)

∑n
i,j=1 ‖xi − xj‖2 where x1, . . . , xn are the vec-

torized images. As the parameter σ2 takes the fixed values spec-
ified earlier, no actual tuning is involved in running any of the
methods. Note that (2D)2PCA does not use tuning parameters,
meaning that its line in Fig. 2 is perfectly horizontal.

We make the following observations from Fig. 2: (i)
(2D)2PCA, while improving over a random guess prediction,
fails to reach a satisfactory level of accuracy even in the

https://users.utu.fi/jomivi/software
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Fig. 2. The results of the simulation study. Each line traces the average
classification accuracy of the corresponding method as a function of the tuning
parameter σ2. The panels correspond to the choice of sample size (columns)
and the α-parameter controlling the difficulty of the separation task (smaller
α equals more difficult task).

easiest scenario with α= 0.125. This is because the separating
boundary between the two groups is highly non-linear and,
in particular, no single pixel (or even the average behavior of
a row or column) can be used to identify whether an image
belongs to Group 1 or 2 because of the oscillating mechanism
we used to generate the data. (ii) With larger values of σ2,
K2DPCA manages to improve over (2D)2PCA. but only by a
very small margin. In fact, with an improper choice of the tuning
parameter, the accuracy of K2DPCA drops well below that of
(2D)2PCA. (iii) Both the even and odd version of MNPCA
manage to find a non-linear mapping (corresponding to small
values of σ2) that perfectly separates the groups, yielding sig-
nificantly improved performance over the other two methods.
Actually, even though the choice of the tuning parameter σ2

greatly affects its performance, MNPCA is still, even for sub-
optimally selected σ2, roughly as efficient as the competitors
at their best. We also note that there is very little difference
between the choice of odd or even Gaussian kernel.

Finally, we briefly remark on the validity of Assump-
tions 2, 4, 5 and 6 in this example (Assumptions 1 and 3 are

Fig. 3. A sample of 20 images from class 5 (sandals, top two rows) and 20
images from class 9 (ankle boots, bottom two rows) in the FashionMNIST
data set.

automatically satisfied by our choice of kernels). The data is
generated from a continuous distribution so Assumption 2 is
satisfied (up to machine precision). The data take values in
bounded interval, implying that Assumptions 4 and 5 hold.
For Assumption 6, as the operator H1 is not available to us,
we rather inspected the eigengaps of the symmetric matrix
K

1/2
1 [Hn1]K

−1/2
1 , whose eigenvalues match those of the coor-

dinate form [Hn1] of the sample estimator of H1. Assumption 6
can be seen to hold if no non-zero eigengap follows a zero
eigengap. We inspected the distributions (not shown here) of
these eigengaps over several replicates of the data for different
parameter settings and came to the conclusion that there is no
reason to doubt the validity of Assumption 6 either in the current
scenario.

B. Real Data Example

We next apply MNPCA to the FashionMNIST data, contain-
ing gray-scale 28× 28 images of clothing objects and available
at Kaggle1. We consider only the 10000 images designated as
a “test set” and restrict our attention there to the 2000 images
of classes 5 and 9, sandals and ankle boots. Fig. 3 illustrates
a selection of 40 random images from these two classes. Our
objective is the same as in the simulation study, to extract a
small amount of components from a training data and use these
to fit a QDA classifier for predicting the labels in a separate
test data set. We consider two sample sizes n= 50, 100 for
the training data, taking n0 = 50 test images in both cases. We
perform a total of 100 repetitions of the study for both sample
sizes, always drawing the training and test sets randomly from
the full data set of 2000 images. For the tuning parameters we
use the same specifications as in the simulation study.

Due to clear visual differences between the two groups in
Fig. 3, the separating boundary is likely to be, if not linear, then
at least closely approximable by a linear direction. As such, the
differences between the four methods are not expected to be as
drastic as in the earlier simulation. Indeed, the results illustrated
in Fig. 4 reveal that this is what happens: (2D)2PCA is not the
best method but it comes very close to the others in terms of
classification accuracy. For n= 50, K2DPCA achieves, by a
small margin, the best performance, whereas, when the sample
size is doubled, MNPCA surpasses K2DPCA, regardless of
the type of the kernel. We also observe that, especially when

1https://www.kaggle.com/datasets/zalando-research/fashionmnist

https://www.kaggle.com/datasets/zalando-research/fashionmnist
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Fig. 4. The results of the FashionMNIST data example. Each line traces
the average classification accuracy of the corresponding method as a function
of the tuning parameter σ2. The panels correspond to the choice of sample
size.

Fig. 5. The scatter plot of the first two diagonal components of Zi found
by MNPCA with σ2 = 0.25σ2

0 in one replicate of the study with n= 100.
The two groups have been color-coded for visual clarity.

n= 100 and using the odd Gaussian kernel, MNPCA can be
seen as a very “safe” choice, offering a reliable performance
regardless of the value of the tuning parameter σ2.

To better understand why MNPCA produced improved re-
sults over its linear counterpart (2D)2PCA, we studied the la-
tent variables produced by the two methods. Our investigations
revealed that the better results of MNPCA are predominantly
caused by it finding, in general, tighter clusters than (2D)2PCA.
This has been demonstrated in Figs. 5 and 6 which show the
scatter plots of the first two diagonal components of Zi es-
timated from the training data with MNPCA and (2D)2PCA,
respectively, in one instance of the study with n= 100. Both
scatter plots show good separation of the two groups (colored
red and blue for clarity) but it is clear that MNPCA produces a
more defined boundary between the groups, explaining why it
outdoes (2D)2PCA in Fig. 4. For MNPCA we used, based on
Fig. 4, even Gaussian kernel with the tuning parameter value
σ2 = 0.25σ2

0 .
Regarding the validity of our assumptions in this ex-

ample, we conducted the eigengap experiment described
in Section VIII-A also for the FashionMNIST data, with

Fig. 6. The scatter plot of the first two diagonal components of Zi found
by (2D)2PCA in one replicate of the study with n= 100. The two groups
have been color-coded for visual clarity.

analogous results (no evidence to suggest that Assumption 6
would not hold). Assumptions 4 and 5 hold as the data (gray-
scale intensities of pixels) reside on a bounded set. And, since
the pixel intensities are, while high-resolution, not continuous,
we studied the distribution (not shown here) of the first eigengap
of Xi which was significantly separated from zero, showing
that also Assumption 2 can be seen to hold here. Note that it
is sufficient to inspect only the first eigengap since we use the
truncated rank r = 2 in the experiment.

IX. DISCUSSION

The work proposed here offers multiple opportunities for
future study, which we detail next. Firstly, since its proposal
in [1], the linear (2D)2PCA-paradigm has later been extended
to other settings besides PCA, for example, to supervised di-
mension reduction [16] and independent component analysis
[19]. This naturally begs the question whether the two-sided
non-linearization applied in the current work can be extended
to these scenarios.

Secondly, in our data examples there was not a major qual-
itative difference between the odd and even Gaussian kernel.
However, this might be context-dependent and it would be
interesting to theoretically compare these two classes of kernels.
Despite their similarity here, it could be that their behavior
differs from one another in some fundamental way.

Thirdly, besides matrix-valued data, also tensor data is cur-
rently routinely produced by applications such as medical imag-
ing. As such, extending our non-linearization approach from
two-sided to multi-sided would allow for the development of
non-linear tensorial dimension reduction methodology. Such
an extension is not straightforward as our work here hinges
crucially on the use of the singular value decomposition, which
is known not to have a direct analogy in the case of tensors [30].

Fourthly, as with any unsupervised method, choosing a
proper value for the tuning parameters of the used kernel is
not straightforward in MNPCA, for the lack of a criterion for
measuring the success of the method. However, in both the sim-
ulation study and the real data example MNPCA offered, with
both even and odd Gaussian kernels, a very good performance
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with the choice σ2 = 2−3σ2
0 where σ2

0 is the value given in
Section VII. This empirically observed value could thus be used
as a starting point for a more involved study of the tuning of
MNPCA.
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