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Create synthetic data

Abstract—Acquiring labeled data for machine learning algorithms in healthcare

is expensive due to the laborious expert annotation and privacy concerns. |.ce. _, 2"‘““%“’"‘““; .1;‘;1‘1:.‘:‘.::,,:;\“"Mm\"M'M'M‘\M
This challenge is further complicated in the case of mechanocardiogram

(MCG) data, which are characterized by high interpersonal and intrapersonal
complexity, compounded further by sensor variability. In this letter, we introduce ’
an innovative method for generating synthetic MCG signals to address the
scarcity of labeled data necessary for training machine learning models in
healthcare. Our approach involves generating RR-intervals, adding wavelets, |-/ iy > P omnco > 1
and incorporating noise to create realistic synthetic MCG signals. These ‘ i A
synthetic signals were used to train a convolutional neural network for peak

detection in real MCG data. Our key contributions include developing a detailed methodology for realistic synthetic
MCG signal generation, reducing the mean absolute error in peak detection by 4.88 beats per minute using synthetic
data, enhancing the training of machine learning models, creating a new peak detection method, and addressing
data scarcity in biomedical signal processing. These contributions emphasize the methodological innovations and the
significance of our results, underscoring the potential impact of synthetic data in improving healthcare diagnostics.
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Index Terms—Mechanical sensors, electrocardiogram (ECG), machine learning, mechanocardiogram (MCG), neural network, synthetic.

I. INTRODUCTION

In recent years, the use of deep neural networks in the field of
healthcare has significantly increased [1]. However, these solutions
demand a large amount of labeled data, aresource that is both challeng-
ing and time-consuming to gather [2]. This challenge is particularly
pronounced in healthcare data, where expertise is required for accurate
labeling and interpretation, and privacy issues further complicates the
situation [3]. The problem is even more significant when it comes
to the newer methods in the field, such as mechanocardiograms
(MCGs). MCG refers to all mechanical cardiac monitoring sensors,
including seismocardiography (SCG), ballistocardiography (BCG),
and gyrocardiography [4], [5]. MCG signals describe the mechanical
vibrations and movements of the heart [6]. One benefit of these sensors,
compared with the gold standard electrocardiogram (ECG), is that they
are much easier to obtain in home environments. Most people with a
smartphone can record MCG signals, highlighting the accessibility
of these biosignals. However, the variability in sensors used for data
collection contributes to significant signal variance. Currently MCGs
are employed in various clinical and research settings to screen heart
conditions, monitor cardiac health, and study the mechanical proper-
ties of heart function [4], [5], [6], [7], [8], [9], [10], [11].

The morphological components of typical MCG signals consist of
two distinct heart sounds, S1 and S2, which are shown in Fig. 1. Under-
standing the characteristics of S1 and S2 in the MCG signal is pivotal
for interpreting the mechanical behavior of the heart, forming the basis
for effective peak detection and further cardiovascular assessment.
One of the challenges with MCG signals is peak detection. Due to the
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Fig. 1. Real ECG and MCG signals and a synthetic MCG signal

created by using the RR-intervals derived from the ECG.

nature of the signal, it can easily be distorted by motion artifacts and
noise [12].

Since one of the challenges in MCG research is the scarcity of
sufficient data, emulating sensors and creating synthetic data could be
useful. The number of open datasets in MCG is minimal compared to
the number of open ECG and photoplethysmography (PPG) datasets,
for example. For MCG, there are fewer than ten open datasets, with
the largest containing only 100 subjects [6], [9], [10], [11], [13], [14],
while there are multiple open datasets for PPG and ECG with over
10 000 subjects [15], [16].

Since obtaining annotated datasets can be difficult, it can limit the
development of robust models for clinical applications. Synthetic data
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Fig. 2. Synthetic signal generation involves creating RR-intervals, selecting wavelets derived from real signals (a—d) or Gaussian sinusoids (e and
f) and adding noise and oscillation. Wavelets e and f represent the minimum and maximum values for Gaussian sinusoid in our study. This process
then results in MCG signals with corresponding labels. Example signals use wavelets a, c, and e.

generation emerges as a promising avenue to overcome these chal-
lenges by offering an unlimited supply of diverse MCG signals with
precise annotations. It is also more cost-effective and time-efficient
compared to the labor-intensive process of collecting and annotating
real MCG data. Ethical and privacy issues are also reduced when
generating the signals mathematically. Synthetic data also open up
novel research opportunities by allowing the exploration of scenarios
and conditions that may be difficult or impractical to study with real
data alone. This capability can lead to new insights and innovations in
cardiovascular health monitoring and diagnostics.

However, due to the high complexity of these mechanical signals,
accurately simulating them can be difficult. MCG signals can vary
from person to person due to weight, health, and other morphological
factors [6], [9]. Moreover, individual morphological changes can man-
ifest within the same recording or subject. This is particularly evident
when sensor locations are altered [8].

Some previous studies have been published on creating synthetic
MCGs with different methods [2], [12], [17]. These methods include,
for example, a generator phantom, which replicates SCG signals phys-
ically with a speaker alongside synthetic ECG [12]. Second approach
trains a generative adversarial network with real SCG heartbeats and
then uses the model to generate synthetic SCG heartbeats [17]. Third
approach is similar to the second, since it uses a transformer-based
neural network trained with real SCG heartbeats to generate synthetic
beats [2]. For other biomedical signals, such as ECG and PPG, syn-
thetic data have already been proven to be a useful tool [18], [19]. These
two studies used more of a algorithmic approach in order to generate
synthetic signals, where they generate the waveforms for the signals
based on mathematical functions. Our approach is a combination of
these, combining algorithmic approach with the real life heartbeats.

In this letter, we introduce a novel approach that emulates real-
life sensor characteristics to generate synthetic MCG signals. Sub-
sequently, we validate the effectiveness of this method by training a
convolutional neural network (CNN) model for peak detection with
the generated data and test the model with real sensor data.

. METHODS
A. Synthetic BCG Signal Generation

The BCG signal generator is divided into three main parts:
RR-interval generation, beat generation, and noise pollution.

1. RR-intervals are generated based on a randomly determined
heart rate (HR) between 50 to 130 beats per minute. The HR
can vary 100 ms up or down during the length of the signal.

2. A wavelet is added to each RR-interval. This was done in
two different ways in our algorithm. 1) We take an existing

wavelet from a real signal and modify it randomly for each
beat. We extracted four different wavelets from real signals,
seen in Fig. 2(a)—(d). The wavelets are then modified using a
Gaussian-modulated sinusoid [20]

efat2+j-2rrf;»t )

The length of the sinusoid is randomized between 15 to 40 ms,
the amplitude from O to 1, and the frequency between 6 to 16 Hz.
This enhances the realism and variability of the synthetic MCG
signals. 2) We generate the beats using only Gaussian sinusoids.
In this approach, the beats are generated entirely synthetically.
Fig. 2(e) and (f), representing the minimum and maximum
versions of these Gaussian sinusoids. The length (25-60 ms),
frequency (6—16 Hz), and derivative (+/-) of the sinusoid are all
randomized. In addition, an S2 is added as another Gaussian
sinusoid to the signal 300-500 ms after the first sinusoid (S1).
The amplitude of the S2 wavelet is randomized between 0.1 to
0.7 times the amplitude of S1, adding further variability to the
synthetic MCG signals.

3. Finally, noise is added to the generated signals. First, we add
white noise to the signal. This noise is created by a 1-D in-
verse discrete Fourier Transform [1] with the lower threshold
randomized between 0.1 to 2 Hz and the upper limit between
5 to 100 Hz. After this, an oscillation signal is added to the
signal. We observed that some of the recorded MCG signals had
oscillations, and adding them to the synthetic signals improved
the results and enhanced the resemblance to real MCG signals.

B. Peak Detection on Real Signals

1) Datasets: To evaluate our peak detection system, we utilized
four distinct datasets, each containing MCG signals and an ECG
reference. All signals were resampled to 100 Hz and filtered with a
Butterworth filter to maintain consistency. ECG signals were filtered
within the range of 0.5-20 Hz, while the MCG signals were filtered
within the range of 0.5-10 Hz. All of the signals were recorded in a
supine position.

The first dataset (I) includes 20 healthy subjects, collected in Uni-
versity of Turku by the authors using a ring device with six channels
of seismo- and gyrocardiography signals. The ring was placed on the
index finger of each subject. The average recording length is 5.5 min,
and the sampling frequency is 100 Hz. For each subject, the best
channel was manually selected by the authors by identifying the signal
with the strongest heartbeats.

The second dataset (1) is an open dataset [9] that includes 20 healthy
subjects. Each recording consists of an ECG and one channel of SCG
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signal. Each subject has three recordings, with one used as a test
recording and the other two included in the training set. The average
length for the test data is 5 min, while the training data average 50 min.
The signals were originally sampled at 5 kHz.

The third dataset (III) is another open dataset, containing six-axis
seismo- and gyrocardiographic data from 29 healthy subjects [6]. The
average recording length is 9 min, and the signals were originally
sampled at 800 Hz. The best channel was chosen using a method
similar to that used by the original authors, which involves calculating
the highest peak-to-peak amplitude divided by the absolute median
deviation.

The fourth dataset (IV) is an open dataset that includes 40 ballis-
tocardiogram signals recorded using a bed-based sensor [10]. These
recordings include eight channels of BCG data. The average recording
length is 7 min, with the signals originally sampled at 1 kHz. The best
BCG channel was selected using the same method as in dataset 111, as
it worked well.

2) Peak Detection: From all the datasets, R-peaks from the ref-
erence ECGs were detected using a modified Pan—Tompkins algo-
rithm [21]. From these peaks, HR was calculated and used as the
reference.

The HR for the MCG signals was calculated by detecting peaks with
the CNN model. All signals were segmented into 4-s long segments
that overlap with a step size of 1. After the segmentation, the segments
were fed to the CNN model, which then iterates through the signal.
The model predicts the peaks for each segment, from which we can
calculate the mean prediction array for the whole signal. From this
array, we can then detect the local maxima with SciPy’s find_peaks
function. The detected peaks were adjusted to find the local maxima
within the original MCG signals to ensure that the peak is in the correct
place. This was done by looking for the maxima within a small window
next to the predicted peak. With these local maxima, we can then
calculate the HR and compare it to the reference ECG.

C. Neural Network and Training

1) Convolutional Neural Network: A CNN model was trained to
detect peaks from 4-s-long signals with a sampling rate of 100, result-
ing in 400 samples per signal. The model comprises seven convolution
layers with exponential linear unit activation and a kernel size of 5.
The dilation rate of each layer increases exponentially from 1 to 64.
The final layer employs sigmoid activation for the 400-sample output,
serving as the prediction array. The model utilizes the Adam optimizer
and binary cross-entropy loss function, resulting in a model with 3281
parameters. All of the values and layers were determined through
experimentation to balance size and effectiveness.

2) Training: Six models were trained using identical structures but
different datasets. Each model was trained with a batch size of 2048
and 150 epochs. The first four models utilized synthetic signals with
varying wavelet styles. Model 1 used waveforms from real signals,
Model 2 used Gaussian waveforms without S2, Model 3 used Gaussian
waveforms with S2, and Model 4 used a combination of all variations.
Real data from database II were used for Models 5 and 6. Model
5 incorporated every other real signal along with 150 000 synthetic
signals, following the same variation as Model 4, while Model 6
exclusively used real data.

Ill. RESULTS

The results were produced by comparing the HR derived from
the ECG reference with the HR derived from our CNN model using
the MCG signals. HR was calculated for every 30-s segment. Fig. 3
shows the Bland—Altman plot for all the databases. Most of the HR
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Fig. 3. Bland—Altman plot for all databases using Model 4.

Table 1. MAE of HR compared from ECG to BCG for all of the
databases with different CNN models and state of the art reference

CNN model Database

# What data were used I yii i w

1 Real waveforms 4.66 3.21 6.19 7.62
2 Gaussian waveform, no S2 4.90 2.48 2.64 2.95
3  Gaussian waveform with S2 4.75 1.78 3.37 4.75
4 All of the above 2.29 1.12 2.72 2.30
5 Synthetic and real signals 4.86 2.37 3.09 3.48
6 Only real signals 4.59 6.21 9.25 7.92
7 Autocorrelation 2.18 2.18 3.98 1.46
4 Precision 86.11%  93.56%  73.92%  28.42%
4 Sensitivity 94.01%  93.22%  90.92%  26.99%

The best results for the synthetic model, and then the ‘reference method’ of AC is bolded.

are within the acceptable range, but some differ significantly from the
reference HR.

In Table 1, comprehensive results across all databases are presented.
The primary metric used for evaluation was the mean absolute error
(MAE), chosen for its straightforward interpretation and ability to
measure the average errors between the correct and predicted HR.
The first four results present the synthetically produced signals with
different variations, while Models 5 and 6 include real signals in the
training set. Result 7 is a reference result, where the HR was calculated
using an autocorrelation function. Autocorrelation has been found to
be an effective method to estimate HR for healthy MCG signals [22],
[23], [24].

Notably, employing any single variation in isolation did not yield
optimal results. However, combining all data generation approaches
into one model yielded the best results. It is worth emphasizing that cer-
tain databases exhibited varying responses to specific data variations,
further underscoring the nuanced relationship between data character-
istics and performance. It seems that adding variability and different
variations increases the authenticity of the synthetic signals. The results
also indicate that the model trained with real data does not perform as
well as Model 4, which used a combination of synthetic data.

It is also important to note that the results calculated HR for short
segments, meaning that missing one or predicting one extra peak can
significantly affect the result. With a longer window, the result might
be numerically better but would not accurately reflect the detection
method.
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Precision and sensitivity in Table 1 are calculated by comparing
R-peaks from the ECG and the predicted peak from the MCG using
Model 4. If these peaks are within 150 ms of each other, it is considered
a true positive. If not, it is considered a false positive, and if there
is no prediction for a peak at all, it is considered a false negative.
The results are reasonably good; for Database III, it seems that we
are predicting a lot of false positives. Comparing the result to that
of the original study [6], it seems to be a bit worse but in line with
their result. We, however, do seem to have more sensitive system than
them. For Database IV, however, it seems that the peaks are not detected
within 150 ms of the R-peak. When investigating the signals further,
it becomes evident that the gap between R-peak and MCG peak is
much longer. When doing the same test with a 400 ms, precision
is 94.4% and sensitivity is 92.6%. This could mean that the peaks
are detected correctly, but the delay is longer than with other MCG
signals.

IV. CONCLUSION

The results of the study were generally good and demonstrated
the potential of synthetic signals. We were able to produce realistic
signals that can be used to train a peak detection CNN model. This
peak detection method can successfully detect peaks from real MCG
signals, indicating that the synthetic data closely resemble real data.
We were able to see better model performance when augmenting
our training data with synthetic signals. The performance increased
especially when adding complexity and variability to the training data.
Gaussian waveforms, in particular, increased the performance. High
S2 especially seemed to be a challenge for some of the models, but
adding big S2 into the training data increases performance.

A notable limitation of this letter is the small amount of test data,
which included only healthy subjects. Consequently, the model’s
performance on subjects with heart diseases remains uncertain. Ad-
dressing this limitation requires expanding the test data to include
a diverse range of subjects with varying health conditions. In addi-
tion, potential biases introduced by synthetic data generation need to
be considered, as they may impact the model’s generalizability and
accuracy.

The results show that the peak detection system and the CNN
model could be improved. Other models were tested during the
study, but this model was chosen for its simplicity, computational
speed, and effectiveness. Long short-term memory (LSTM) mod-
els also performed well but required significantly more training
time. Future research could explore more complex models or so-
lutions to fully leverage the synthetic data generator developed in
this study. Additional directions could include improving the syn-
thetic data generation process and exploring a more diverse range
of synthetic data, including different arrhythmias. Testing the model
with a completely new database could further validate its effec-
tiveness and robustness. This would help in assessing the model’s
generalizability and performance across various conditions and
populations.
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