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Abstract— This paper introduces a novel fully distributed
estimation scheme for nonlinear continuous-time dynamics over
directed and strongly connected graphs. Leveraging on the
assumption of local negativizability, the proposed approach
performs the estimation of the interdependent subsystems of
a cyber-physical system, despite the presence of nonlinear
dependencies on the dynamics. This transforms the intricate
task of nonlinear state estimation by each agent into more
manageable local negativizability problems for the design of
the estimation gains. A pivotal aspect of the approach is
that each agent should be aware of an upper bound on
the Lipschitz constant of the overall nonlinear function that
characterizes the dynamics. To face this issue, we developed
a novel distributed methodology for the estimation of the
global Lipschitz constant, starting from the local observations
of the system’s nonlinearities. The effectiveness of the proposed
scheme is numerically demonstrated through simulations.

Index Terms— Cyber-Physical Systems, Distributed State Es-
timation, Negativizability, Nonlinear Systems

I. INTRODUCTION

In recent years, distributed state estimation has become a
focal point of research for multi-agent and cyber-physical
systems, aiming to estimate states using local observers
based on partial measurements and neighbors’ estimates [1],
[2]. In this context, nonlinearity is a significant challenge,
as it can degrade performance if not properly managed.
Researchers have addressed this through nonlinear state
estimation under bounded noises [3], [4], particularly when
noise statistics are unavailable [5]. Studies have also explored
event-triggered robust state estimation [6] and methods for
systems with time-varying delays and random nonlineari-
ties [7]. While several techniques assume local observability,
others have considered jointly observable nonlinear networks
with known stochastic properties of nonlinear changes [8] or
assuming the nonlinearities are Lipschitz functions (which
implies that its growth is at most linear) [9], [10]. In
particular, these works offer strategies for broader nonlinear
systems [9] and enhance robustness through sensor redun-
dancy [10]. Notice that all the aforementioned approaches
have common characteristics: they consider the analysis of
the full dynamical system as a monolithic entity, partially
measured by a set of distributed sensors that collectively
aim to obtain the state estimate of the entire system. This
framework, in addition to requiring the agents to have global
knowledge of information concerning the system, such as
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the entire dynamics, is often inefficient and implausible
in a purely distributed context, such as a cyber-physical
system [11], [12]. In this context, the physical part of
the system is divided into subsystems, each of which is
associated with a single agent on the cyber layer, while the
network is not a mere transmission model but takes on a
role also to indicate the physical interconnections between
subsystems. Therefore, the objective of each agent in an
interdependent setting is to estimate the state of its asso-
ciated subsystem starting from local information about the
dynamics while handling complications due to coupling with
other subsystems. Although this setting has been explored for
linear systems [13]–[15], and has found practical applications
in the literature, such as for the problem of multiarea state
estimation (e.g., see [1] and references therein), to the best of
our knowledge, it remains unexplored for nonlinear systems.
In this paper, we present a novel fully distributed estimation
scheme for Cyber-Physical Systems (CPS)s characterized by
nonlinear continuous-time dynamics over directed graphs.
Unlike the other approaches in the literature [3]–[10], our
scheme leverages on a novel interdependent setting that is
fully integrable with the interconnected structure of CPSs,
and whose main features are: (i) the physical level is divided
into interdependent subsystems, each associated with an
agent at the cyber layer that is in charge of estimating the
state of its related physical part in spite of the nonlinear
couplings. (ii) each local observer is assumed to have only
partial knowledge of the dynamics, limited to the blocks
related to its own subsystem; (iii) under the assumption of
negativizability (discussed in Section II-A) subsystems are
able to locally compute their own estimation gains while
collectively carrying out the estimation tasks, despite the
additional complexity represented by the nonlinear couplings
and the limited knowledge of the system. Compared with
the negativizability problem presented in [13], the novelty
lies in the distributed handling of the different nonlinearities
experienced at the level of each subsystem. This requires,
on one side, that the presence of nonlinear couplings be
incorporated into the application of the negativizability prop-
erty, and, on the other side, the development of a novel
fully distributed algorithm to estimate an upper bound on
the Lipschitz constant, based on knowledge of the local
nonlinearities that are experienced at each CPS.

II. PRELIMINARIES

We denote vectors with boldface lowercase letters and
matrices with uppercase letters. We refer to the (i, j)-th entry
of a matrix A by Aij . We represent by 0n and 1n vectors
with n entries, all equal to zero and to one, respectively and
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we use 0n×m to denote the n × m matrix with all entries
equal to zero, while In denotes the n × n identity matrix.
We use ker(A) to denote the kernel of a matrix A and
span(x) to denote the span of x. We use σ(A) to denote
the spectrum of A, i.e., the set of its eigenvalues. Given N
matrices Ai ∈ Rni×mi , we use blkdiag(Ai) to denote a
block diagonal matrix having Ai as its i-th diagonal block.
Given a matrix A ∈ Rn×n, we use diag(A) to denote the
n× n diagonal matrix such that diagii(A) = Aii. We use
∥ · ∥ to denote the Euclidean norm. A matrix A ∈ Rn×n

is positive semidefinite (respectively, negative semidefinite)
if for all x ∈ Rn,x ̸= 0n it holds xT (A + AT )x ≥ 0
(respectively, xT (A + AT )x ≤ 0); if the inequality is
tight, then A is said positive definite (respectively, negative
definite). We use A ≻ 0 (resp. A ⪰ 0) to specify that a matrix
A is positive definite (resp. positive semidefinite); similarly,
we use A ≺ 0 and A ⪯ 0 to denote negative definiteness
and semidefiniteness of A, respectively. Let B(c) and B[c]
denote the open and closed ball centered in the origin of
radius c in Rn. A function f(x, t) is Lipschitz in its first
argument in a set X if, for all x,y ∈ X and for all times
t ≥ 0, it holds ∥f(x, t)− f(y, t)∥ ≤ ℓ(t)∥x− y∥, for some
Lipschitz constant ℓ(t) > 0. Let G = {V,E} be a graph with
n nodes V = {v1, v2, . . . , vn} and e edges E ⊆ V × V ,
where (vi, vj) ∈ E captures the existence of a link from
node vi to node vj . A graph is said to be undirected if the
existence of an edge (vi, vj) ∈ E implies the existence of
(vj , vi) ∈ E, while it is said to be directed otherwise. In this
paper, we consider graphs that are, in general, directed. A
graph is strongly connected if each node can be reached from
each other node via some edges, respecting their orientation.
Let the in-neighborhood N in

i of a node vi be the set of
nodes vj such that (vj , vi) ∈ E. Moreover, let the out-
neighborhood N out

i of a node vi be the set of nodes vj
such that (vi, vj) ∈ E.

A. Negativizability

In [13] the pair (A, C), where A ∈ Rn×n and C ∈ Rq×n, is
said to be negativizable if it is possible to find a matrix K ∈
Rn×q such that A−KC is negative definite. Interestingly, a
necessary and sufficient negativizability condition is derived
in [13] by noting that the problem can equivalently be
expressed as a semidefinite programming (SDP) problem, for
which the existence of a solution can be decided based on
the semidefinite version of the Farkas Lemma (see Lemma
6.3.3, p. 153 in [16]). This implies that the problem can
be numerically solved by resorting to an SDP solver (the
interested reader is referred to [13] for more details). Relying
on the fact that a negative definite matrix is also Hurwitz
stable and exploiting a block version of the Gershgorin Circle
Criterion, in [13] the negativizability property is exploited
to solve the distributed and decoupled state estimation and
control problem of a linear LTI system. Specifically, consider
block partitioned matrices A, C in the form

A =

[
A11 . . . A1N

...
. . .

...
AN1 . . . ANN

]
, C = blkdiag(Ci), (1)

where Aij ∈ Rni×nj , and Ci ∈ Rqi×ni .
The following proposition [13] shows that, solving local

negativizability problems on the pairs

(Aii +
∑
j ̸=i

∥Aij∥Ini
+ βIni

, Ci), (2)

for some β > 0, i.e., identifying the corresponding gains
Ki ∈ Rni×qi such that Aii+

∑
j ̸=i ∥Aij∥Ini+βIni−KiCi is

negative definite for all i ∈ {1, . . . , N}, results in an asymp-
totically stable matrix A−KC, with K = blkdiag(Ki).

Proposition 1: Let the pairs in Eq. (2) be negativizable
for all i ∈ {1, . . . , N} for some β > 0, and let Ki ∈ Rni×qi

be a gain matrix that solves the negativizability problem for
the i-th pair. Then, defining K = blkdiag(Ki), we have
that A−KC is negative definite.

Remark 1: The agents do not need to coordinate in order
to consider a global parameter β. In fact, in the proof of
Proposition 1 in [13], the role of β is to guarantee that the
real part of the eigenvalues of A−KC are more negative
than −β. Therefore, if each agent computes its gain Ki con-
sidering a βi > 0, using the same argument as in [13] it can
be shown that A−KC is negative definite with eigenvalues
that have real part smaller than −mini=1,...,n βi < 0. In the
following, we assume that each agent chooses its own βi

independently and we use β to denote mini=1,...,n βi.

III. DISTRIBUTED NONLINEAR STATE ESTIMATION

In this section, we aim to exploit the negativizability
concept to provide a useful tool for distributed state es-
timation of nonlinear systems dynamics. In particular, as
shown in [13], by fulfilling the negativizability assumption,
the agents in a network are able to implement the overall
estimation strategy by means of local gains. Let us consider
a Cyber-Physical system composed of N interdependent
and non-overlapping subsystems, which interact with each
other in accordance with the directed and strongly connected
graph G = {V,E}, both at the physical and cyber level.
Specifically, let us assume that the physical layer of the i-th
subsystem is characterized by a nonlinear dynamics that can
be represented as follows{

ẋi(t) = Aiixi(t) +
∑

j∈N in
i
Aijxj(t) + fi(xi(t), t),

yi(t) = Cixi(t),
(3)

where xi(t) is the state of the i-th subsystem, Aii ∈
Rni×ni , Aij ∈ Rni×nj , Ci ∈ Rqi×ni , and xi(t) is the
stack of the vectors xj(t)∈ Rnj corresponding to all agents
j ∈ N in

i ∪ {i}, and thus it holds xi(t) ∈ Rni , where
ni =

∑
j∈N in

i ∪{i} nj . In other words, fi(·, t) is computed
only over the state of the in-neighbors of agent i and
the state of agent i itself1. From this perspective, within
the physical layer, an edge (vj , vi) exists whenever the

1The structure of fi(·, t) is quite general and includes, as a particular
case, the class of functions in the form fi(·, t) =

∑
j∈N in

i
fij(xi,xj , t),

where fij(xi,xj , t) models the pairwise coupling between the i-th and
j-th subsystems. An example of application of this class of functions in the
context of distributed consensus can be found in [17].
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i-th subsystem is influenced by the j-th one. Defining
n =

∑N
i=1 ni, q =

∑N
i=1 qi and x(t) ∈ Rn, y(t) ∈ Rq as

the stack of the vectors xi(t), yi(t), respectively, the overall
dynamics can be expressed (for the sake of the analysis) in
a compact form as{

ẋ(t) = Ax(t) + f(x(t), t),

y(t) = Cx(t),
(4)

where A and C are as in Eq. (1) and f(x(t), t) is the stack
of the functions fi(xi(t), t).

In the considered framework we assume that, for the phys-
ical layer, each subsystem is regulated by the corresponding
one at the cyber layer. Notably, both layers are interconnected
according to the same graph topology G. Within the cyber
layer, each subsystem j functions as an agent and can
transmit information to an agent i if there is an edge (vj , vi)
in the graph. In this view, a coupling on the dynamics that
affects two subsystems in the physical layer corresponds to
a flow of information between agents at the cyber layer.
The goal of each agent is to estimate the state of its own
physical subsystem, based on knowledge of the physical
coupling with its in-neighbors. We point out that this setting
fundamentally differs from other distributed nonlinear state
estimation approaches [3]–[10] which aim at the estimation
of a complete and monolithic dynamical system, while in
our model the subsystems composing the CPS are able to
locally compute their gains while collectively carrying out
the estimation tasks, despite the additional complexity rep-
resented by the nonlinear couplings. The limited knowledge
of the agents in the estimation process is expressed by the
following assumption.

Assumption 1: Each agent i has only knowledge of the
blocks of the dynamical system matrix regarding its own
piece of dynamics Aii and the piece of dynamics that
describes the interaction with its incoming neighbors Aij ,
where j ∈ N in

i . Moreover, each agent possesses knowledge
of its local output matrix Ci and of the nonlinear function
fi(·) associated with its own subsystem, which depends on
the state of agent i itself and its in-neighbors.

In the given cyber-physical context, we demonstrate how
the negativizability assumption ensures the effectiveness of
a distributed nonlinear state estimation scheme that relies on
local gains. Specifically, we will examine a scenario in which
each agent has the aim to estimate its individual state using a
distributed Luenberger-type observer, building the estimation
dynamics as follows.

żi(t) =Aiizi(t) +
∑

j∈N in
i

Aijzj(t) +Ki(yi(t)−Cizi(t))

+ fi(zi(t), t)

(5)

where zi(t) is the stack of the terms zj(t) for all j ∈ N in
i ∪

{i} and Ki ∈ Rni×qi . Interestingly, according to the above
equation, the feedback is local and only involves the state and
estimates locally available at node i; however, the different
observers are coupled by the fact that each observer exhibits
a dependency on the estimates of its in-neighbors. Notice

that the previous observer dynamics can be expressed in a
compact form by using z(t) ∈ Rn to represent the collection
of vectors zi(t) for all agents. The overall observer dynamics
is given by ż(t) = Az(t) +K(y(t)− Cz(t)) + f(z(t), t),
where K = blkdiag(Ki) ∈ Rn×q .

Let us now define the estimation error as e(t) = x(t) −
z(t) ∈ Rn, where e(t) is the stack of all the terms ei(t) =
xi(t)− zi(t) ∈ Rni . The error dynamics is given by

ė(t) = (A−KC) e(t) + f(x(t), t)− f(z(t), t). (6)

Starting from the definition of the error dynamics, it is pos-
sible to analyze the convergence of the proposed nonlinear
estimation methodology.

IV. CONVERGENCE ANALYSIS

This section is devoted to establishing the convergence
of the proposed estimation scheme. Specifically, we first
show that convergence is achieved under the assumption
that f(·) is Lipschitz in all Rn and that nonlinear state
estimation problem amounts to solving N local negativiz-
ability problems. Then, under the hypothesis that the state
of the system being estimated is bounded, we establish
an analogous result also when f is Lipschitz only in a
neighborhood of the origin; this latter result will prove useful
when the overall Lipschitz constant is unknown, and the
agents need to collectively estimate it in a distributed fashion.
To this aim, let us introduce the following assumption.

Assumption 2: The pairs

(Aii +
∑
j ̸=i

∥A∥ij Ini + ℓ Ini
, Ci) (7)

are negativizable for all i ∈ {1, . . . , N} and let K̂i ∈ Rni×qi

be a matrix that solves the negativizability problem for the
i-th pair in Eq. (7).
We are now in position to prove convergence.

Theorem 1: Suppose f(x, t) is Lipschitz in its first argu-
ment in all Rn, with ℓ(t) ≤ ℓ for some ℓ. Moreover, suppose
that Assumption 2 holds; then, choosing Ki = K̂i for all i,
the origin of Eq. (6) is globally asymptotically stable.

Proof: In order to prove the statement, let us consider
the Lyapunov candidate function V (e(t)) = 1

2∥e(t)∥
2. The

above function is positive for all t ≥ 0 and e(t) ̸=
0n, while it is zero for e(t) = 0n. Since we assumed
f(·, t) is Lipschitz in its first argument, we have that
(omitting the time dependency of e(t), ė(t), x(t) and
z(t) for the sake of brevity), for all t ≥ 0 it holds
V̇ (e) = eT ė = eT (A−KC)e+ eT (f(x, t)− f(z, t)), and
eT (f(x, t)− f(z, t)) ≤ ℓ∥e∥2, since e = x− z; therefore,

V̇ (e) ≤ eT (A−KC + ℓ In)e < 0, (8)

where the last inequality follows from Proposition 1
(K = blkdiag(Ki) for suitable gains Ki, which exist by
Assumption 2). Therefore, the origin of Eq. (6) is globally
asymptotically stable. This completes our proof.

Remark 2: A class of CPSs that satisfy Assumption 2
is represented by those CPSs that, in the absence of cou-
pling, can be made asymptotically stable and monotonically
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converging by means of suitable estimation gains Ki. In
this case, introducing a nonlinear coupling with Lipschitz
constant bounded by ℓ = mini ρi, where ρi is the largest real
part among the eigenvalues of Aii −KiCi, the same gains
Ki still guarantee convergence of the estimation process.

Since, as discussed later in the paper, existing approaches
to compute the Lipschitz constant are typically able to
compute a constant only with respect to a bounded subset of
the domain of the function, we now extend our analysis to the
case where f(·) is Lipschitz in the first argument in a neigh-
borhood of the origin. Specifically, the next results show that
asymptotic converge of the error to zero is guaranteed when
the state is bounded in B[η] and f(x, t) is Lipschitz in its
first argument in a ball twice as big.

Corollary 1: Suppose ∥x(t)∥ ≤ η for all t ≥ 0 and
assume z(0) = 0n; moreover, let f(x, t) be Lipschitz in x
for all t ≥ 0 and for all x ∈ B[2η], with Lipschitz constant
ℓ(t) ≤ ℓ for some ℓ. Finally, suppose that Assumption 2
holds; then, choosing Ki = K̂i for all agents i, the error
e(t) asymptotically converges to zero.

Proof: In order to prove the result we observe that,
while both x(t) and z(t) are in B[2η], being f(·, 0)
Lipschitz in B[2η], their distance in norm is monotoni-
cally decreasing according to Eq. (8). At this point we
observe that ∥e(0)∥ = ∥x(0)− z(0)∥ = ∥x(0)∥ ≤ η; there-
fore, since ∥e(t)∥ is monotonically decreasing while both
x(t) and z(t) are in B[2η], we have that in the worst case
where ∥x(t)∥ = η it holds ∥x(t)−z(t)∥ ≤ η, which implies
that ∥z(t)∥ ≤ 2η. In other words, both x(t) and z(t) remain
by construction in B[2η] at all times t, and thus Eq. (8) holds
at all times t ≥ 0; this implies asymptotic convergence of
the error to zero. The proof is complete.

Remark 3: The above results establish convergence to
zero of the estimation error, but do not allow to reach con-
clusions on the convergence rate. However, if Assumption 2
holds when ℓ is replaced with ℓ̃ > ℓ in Eq. (7) then,
since we have that A − KC ≺ −ℓ̃In, we conclude that
V̇ (e) ≤ −(ℓ̃− ℓ)∥e∥2. Hence, we are guaranteed that V (t)

converges to zero at least as fast as V (t) = e−(ℓ̃−ℓ)t∥e(0)∥2.

V. DISTRIBUTED LIPSCHITZ CONSTANT ESTIMATION

In Section IV, we have proved that each agent is able to
perform the estimation of the nonlinear subsystem in a purely
distributed manner, solving local negativizability problems.
However, our approach relies on the fact that the agents
know an upper-bound ℓ on the Lipschitz constant of the
overall nonlinear function f(·). To address this requirement,
this section is devoted to developing an upper bound on
the overall Lipschitz constant which can be computed in a
distributed manner. It is based on the upper bounds on the
local Lipschitz constants ℓi associated to the components
fi(·) of the overall nonlinear function f(·), which can be
computed locally by each agent. To this end, let us first
present some ancillary results.

Proposition 2 (Ex. 3 in [18], p. 356 ): Let S be an open
and convex subset of Rn and let g : S → Rm be differ-
entiable at each point of S. Then for all x,y ∈ S there is

a z ∈ S in the form z = τx + (1 − τ)y for some τ ∈
[0, 1], such that ∥g(x)− g(y)∥ ≤

∑m
i=1 ∥∇gi(z)∥∥x− y∥,

where ∇gi(z) is the gradient of the i-th component of g(·),
evaluated at z.

Corollary 2: Let the assumptions of Proposition 2 hold
true and, further to that, suppose S is boudned. Then g(·)
is Lipschitz in S with Lipschitz constant ℓ = supw∈S q(w),
where q(w) =

∑m
i=1 ∥∇gi(w)∥.

Proof: The proof follows noting that, ∀z ∈ S it
holds

∑m
i=1 ∥∇gi(z)∥ ≤ supw∈S q(w); hence we have that

∥g(x)− g(y)∥ ≤ supw∈S q(w)∥x− y∥.
Let us now apply the above technique to our problem setting.

Theorem 2: Suppose that, for all t ≥ 0 the local nonlinear
functions fi(w, t) are differentiable at all w ∈ Si, with
Si ⊆ Rni an open, bounded and convex set. Then, fi(w, t)
is Lipschitz in its first argument in for all t ≥ 0 and
all w ∈ Si, i.e., for all t ≥ 0 and all xi,yi ∈ Si it
holds ∥fi(xi, t)− fi(yi, t)∥ ≤ ℓi(t)∥xi − yi∥, for some
ℓi(t) > 0. Moreover, it holds

ℓi(t) ≤ sup
t


sup
w∈Si


ni∑
j=1

∥∇fij(w, t)∥

︸ ︷︷ ︸
ζ(t)


= ℓi,

where ∇fij(·) is the gradient of the j-th component of fi(·).
Proof: We observe that Si is open, bounded, and

convex and that, for all t ≥ 0, the function fi(w, t) is
differentiable at all w ∈ Si. Hence, for all t′ ≥ 0, the
function fi(·, t′) satisfies the assumptions of Corollary 2 and
thus ℓi(t

′) ≤ ζ(t′). Let us consider the directional derivative
of fi(w, t) with respect to w ∈ Si along a given unit-length
vector v ∈ Rni for any t ≥ 0, i.e.,

∇vf(w, t) = lim
h→0

f(w + hv, t)− f(w, t)

h
(9)

Since f(w, t) is differentiable at w we have that
∇vf(w, t) = ∇f(w, t)⊤v. At this point, since f is Lips-
chitz in w, we have that

∥∇f(w, t)⊤v∥ = lim
h→0

∥f(w + hv, t)− f(w, t)∥
|h|

≤ ℓ∥v∥.

We conclude that the gradient has bounded entries by
choosing v as the i-th vector in the canonical basis of Rn.
Therefore ζ(t) is bounded for all t ≥ 0. The proof follows
taking the sup of ζ(t) over all time instants t ≥ 0.

Let us now show that, based on the local knowledge each
agent has of its own Lipschitz constant ℓi, it is possible to
derive an upper bound on the Lipschitz constant ℓ of the
overall nonlinear function f(x(t), t).

Theorem 3: Let the assumptions of Theorem 2 hold
true for all i ∈ {1, . . . , n} and considering the set
Si = (−γ, γ)ni , with γ > 0. Moreover, suppose that the
graph G underlying the agents’ interaction is directed
and strongly connected. Then, for all t ≥ 0, the over-
all nonlinear function f(x, t) is Lipschitz (in its first
argument) in (−γ, γ)n, i.e., in the open hypercube in
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Rn with side 2γ, centered in the origin. Finally, for all
t ≥ 0 and all x ∈ (−γ, γ)n, the Lipschitz constant
ℓ of the overall nonlinear function f(x(t), t) satisfies

ℓ ≤
√
(maxi=1,...,N{|N out

i |}+ 1)maxi=1,...,N{ℓ2i }.
Proof: Since, by Theorem 2, the local functions fi(·)

are Lipschitz in their first argument in Si, we have that, for
all the state vectors xi and for all t, it holds

∥fi(xi, t)− fi(yi, t)∥
2≤ ℓ

2

i ∥xi − yi∥
2
=ℓ

2

i

∑
j∈N in

i ∪{i}

∥xj − yj∥2,

where the last equality holds since, by definition, xi and yi

are the stack of the terms xj and yj for all j ∈ N in
i ∪ {i}.

Then, summing the above equation for all i yields
N∑
i=1

∥fi(xi, t)− fi(yi, t)∥
2 ≤

N∑
i=1

∑
j∈N in

i ∪{i}

ℓ
2

i ∥xj − yj∥2

=

N∑
i=1

∑
j∈N out

i ∪{i}

ℓ
2

j︸ ︷︷ ︸
ω2

i

∥xi − yi∥2,

with ωi > 0. Notice that the fact G is strongly con-
nected guarantees that all terms ∥xi − yi∥2 appear at
least once in the above sum. Therefore, since we as-
sumed all xi and yi ∈ Si (i.e., all entries are in the
range (−γ, γ)), we have that, by construction, it holds∑N

i=1 ∥fi(xi, t)− fi(yi, t)∥
2
= ∥f(x, t)− f(y, t)∥2, and

N∑
i=1

ω2
i ∥xi − yi∥2=∥blkdiag(ωi Ini

) (x− y)∥2

≤∥blkdiag(ωi Ini)∥2 ∥x− y∥2 =max
i

(ω2
i )∥x− y∥2;

then we observe that any choice of x,y ∈ (−γ, γ)n

corresponds to some choice of the vectors xi,yi ∈ Si for
all agents i. Moreover, for all x,y ∈ (−γ, γ)n and all
t ≥ 0 it holds ∥f(x, t)− f(y, t)∥ ≤

√
maxi(ω2

i )∥x− y∥.
In conclusion, we consider that

ω2
i =

∑
j∈N out

i ∪{i}

ℓ
2

j ≤ (|N out
i |+ 1) max

i=1,...,N
{ℓ2i }.

This completes our proof.
Notice that this upper bound can be computed in a distributed
way. In fact, the out-degree can be computed in finite time via
algorithms available at the state of the art (e.g., see [19]). As
for maxi=1,...,N{ℓ2i }, it is sufficient to run a max-consensus
algorithm where the initial state of each agent is set to ℓ

2

i ;
such an algorithm is guaranteed to converge in finite-time
[20]. The overall procedure is summarized in Algorithm 1.

VI. SIMULATIONS

In this section, we show the effectiveness of the proposed
approach via a simulation scenario. Specifically, we consider
a distributed nonlinear estimation problem involving four
subsystems, interconnected according to the graph topology
reported in Fig. 1a. The overall dynamical matrix A and
the nonlinear function f(x(t), t) are reported below and

Algorithm 1 Distributed computation of ℓ
1) Distributed computation of |N out

i |;
2) Distributed computation of maxi=1,...,N{|N out

i |};
3) Local computation of ℓi as in Theorem 2;
4) Distributed computation of maxi=1,...,N{ℓ2i };
5) Local computation of ℓ as in Theorem 3.
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Fig. 1: (a) Topology of the CPS considered in the example; (b)
temporal evolution of the Euclidean norm of the error e(t) between
the overall state vector x(t) and estimated state vector z(t) (blue
solid line), along with the one obtained using the strategy in
Remark 3 (black dashed line) and its corresponding upper bound
(red dotted line).

are block-partitioned in a way that is consistent with the
dynamics of each subsystem

A =



0.2 0.8 0.9 1 0.3 0.05 0.07 0 0
−0.8 −10 −2 0.7 0.2 0.1 0.1 0 0
−0.1 0.2 −5 0.1 0.2 0.2 0.1 0 0
0.01 0.01 −1 −3.5 −0.1 0.2 0.06 0 0
0 0 0 0 −8 −2 −1 0.8 −0.3
0 0 0 0 −1 −1 5 0.6 0.5
0 0 0 0 2 −5 −6 0.01 0.02

0.02 0.03 0 0 0 0 0 −2 −0.5
0.01 0.03 0 0 0 0 0 0.5 −5


,

f(x(t), t) =



1.3
√

x2
1 + 5cos(5t) − 0.2

√
x2
3 + 5

0.9sin(10t)
0.4cos(t)

−0.1
√

x2
2 + 5− 0.8

√
x2
4 + 5

0.2
√

x2
5 + 2− 0.4

√
x2
7 + 4

1.2sin(x9)
0.6cos(3t)
1.3sin(t)

0


,

Moreover, the output matrices Ci that constitute the overall
output matrix C are C1 = [1, 0], C2 = [1, 1], C3 =
[0, 2, 1], and C4 = [1,−1], while the initial conditions
xi(0) = xi,0 of each subsystems are x1,0 = [4.95,−3.83]⊤,
x2,0 = [4.50,−4.66]⊤, x3,0 = [−0.61,−1.18]⊤, and x4,0 =
[2.95,−3.13]⊤. Firstly, we let the agents compute their
local Lipschitz constants. According to Theorem 2 it holds
ℓ1 = 1.3153, ℓ2 = 0.8062, ℓ3 = 1.6472, ℓ4 =
0; interestingly, the last Lipschitz constant is zero as the
nonlinear function only depends on time. Based on the above
local Lipschitz constants, the agents identify an upper bound
on the overall Lipschitz constant following the procedure
expressed by Algorithm 1; as a result, the upper bound
ℓ = 2.853 is obtained.At this point, we implement the
proposed local state estimation scheme. To this end, we
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Fig. 2: Temporal evolution for the state variables xi(t) (solid lines) and the estimated states zi(t) (dashed lines), considering the example
discussed in Section VI. Each subplot reports the evolution of the variables associated with a given subsystem.

consider the negativizability problems for the pairs (Âi, Ci)
with Âi = Aii +

∑
j ̸=i ∥Aij∥Ini

+ ℓIni
, and we use an

SDP solver for Matlab, namely fminsdp [21] to solve a SDP
problem similar to the one in [13], where F0 contains the
value of ℓ. The resulting gain matrices Ki for the local
observers are: K1 = [6.497, 0]⊤, K2 = [−0.445, 1.306]⊤,
K3 = [−0.358, 1.873,−0.818]⊤, and K4 = [1.028, 0.716]⊤.
For all the subsystems, the negativizability problems are
successfully solved. Fig. 2 reports the temporal evolution
of the states xi(t) associated with each subsystem, and the
related observer state zi(t). As noted by the figure, the
satisfaction of the negativizability assumptions guarantees
that the vectors zi(t) asymptotically coincide with the actual
states xi(t); in other words, the estimation error e(t) asymp-
totically converges to zero (see the blue curve in Fig. 1b)
despite the presence of the nonlinear term in the dynamics.
To conclude, Fig. 1b also provides an application of the
strategy outlined in Remark 3 to the example discussed in
this section. Specifically, the black dashed curve shows the
convergence of the error when ℓ̃ = 1.1ℓ (i.e., ℓ̃−ℓ = 0.2853).
In this case, the local negativizability problems all admit a
solution. Interestingly, the red dotted line in Fig. 1b shows
the convergence of the theoretical upper bound V (t), which
is quite conservative.

VII. CONCLUSIONS

In this paper, we have presented a new methodology for
distributed estimation of interconnected nonlinear subsys-
tems that, based on solving local negativizability problems
at the edge of each agent, allows for estimation gains design
in a fully distributed manner. We also demonstrated the
feasibility of a novel algorithm for estimating an upper
bound on the global Lipschitz constant to the network that
is also purely distributed and functional to the proposed
estimation scheme. Through simulation, we demonstrated the
effectiveness of the approach on an example of a CPS with
four agents. Possible future directions of the methodology
include the application of negativizability to Kalman filtering
and optimal control problems and the extension to the case
of subsystems featuring overlapping states.
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