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Linear Quadratic Zero-Sum Differential Games
With Intermittent and Costly Sensing
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Abstract—In this letter, we revisit the two-player
continuous-time infinite-horizon linear quadratic differen-
tial game problem, where one of the players can sample
the state of the system only intermittently due to a sensing
constraint while the other player can do so continuously.
Under these asymmetric sensing limitations between the
players, we analyze the optimal sensing and control strate-
gies for the player at a disadvantage while the other
player continues to play its security strategy. We derive an
optimal sensor policy within the class of stationary ran-
domized policies. Finally, using simulations, we show that
the expected cost accrued by the first player approaches its
security level as its sensing limitation is relaxed.

Index Terms—Differential games, perception-control
co-design, age of information.

I. INTRODUCTION

EMERGING applications such as autonomous driving,
multi-robot systems, smart-grid, smart and connected

cities [1], [2], [3], [4] require game theoretic formulations
involving multiple players with time-varying and heteroge-
neous sensing/communication constraints. Understanding the
effects of the latter on the players’ objective functions is a
pivotal research direction for efficient and optimal operations
of such networked systems.

Major research investigations have focussed on single-
player networked control systems that constitute two
decision-makers: the controller and the sampler [5]. The
controller decides on the control inputs based on the measure-
ments received via the sampler, whose objective is to reduce
the sensing/communication burden on the system. In this
context, the event-triggered and self-triggered [6] paradigm
is an important line of work which has also been extended
to the case of cooperative multi-agent systems [7], [8]. In
this letter, however, we are concerned with a non-cooperative
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multi-player game formulation—a setting which has not
received proportionate attention—under resource constraints.

Research on noncooperative games with sensing/commu-
nication constraints have mimicked the developments on event-
and self-triggered frameworks and imposed similar pre-defined
sensing/communication policies for the players; see, e.g., [9].
This line of work has not considered designing equilibrium
sensing/communication strategies. From a theoretical side,
considering both control and sensing/communication actions
as part of the players’ strategies is a challenging research direc-
tion as the information structure becomes decentralized and
(sampler’s) action dependent. Even simpler games (such as
two-player linear-quadratic (LQ) games) with well-known ana-
lytical (saddle-point) control strategies may become intractable
under these additional sensing/communication constraints, and
finding security strategies thus becomes challenging.

It is worth noting that the single agent setup with a
joint optimization on control and sensing/communication
is itself an extremely challenging problem, see for
example [10], [11], [12]. The presence of another agent
makes the problem significantly more challenging, often
rendering a partially observed LQ game to be an infinite-
dimensional optimization/game problem even with continuous
observation [13].

In this letter, we revisit the classical two-player linear-
quadratic zero-sum differential game (LQ-ZSDG) due to
its wide applicability as well as analytical tractability. We
consider the set-up proposed in [14] involving one of the
players (minimizer) to be sensing limited. This player cannot
sense the state continuously and it has to intermittently turn
on the sensor to obtain the state measurements. The sensor
turns itself off immediately after making a measurement and
sending it to the controller. A new sensing request is required
to turn the sensor on again. Due to resource limitation, the
player has a constraint on the average number of times it may
turn on the sensor. The objective of this letter is to analyze
the differential game under this asymmetric sensing limitation
and obtain: (i) the optimal controller and sensing strategies for
the minimizing player, (ii) the effect of the sensing constraint
on the minimizing player’s cost function.

Prior work on games with intermittent sensing: One of
the first papers that addresses zero-sum differential games
with sampled state information for the players is [15], where
however the sampling is fixed, but the dynamics switch
modes intermittently. The first work involving a joint controller
and sampler for LQ-ZSDGs, on the other hand, appears to
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be [16] where both players had access to only intermittent
measurements. In that work, the minimizing (maximizing)
player optimized an upper (lower) bound of the objective
function in order to derive a guaranteed performance bound.
The necessary condition on the equilibrium/optimal sensing
strategy was discussed, and the sensing strategy was left
open as an optimization problem. Later, in [17] saddle-point
control strategies were derived for the true objective function
(as opposed to optimizing a bound on the objective function
considered in [16]) with the added constraint that, no matter
which player requests the sensing, the state measurement will
also be revealed/leaked to the other player. This resulted in a
cooperative sensing strategy and the sensing problem became
a joint optimization (instead of a game) among the players. In a
later extension [18], each player was allowed to select its own
sensing instances without revealing the state information to
the other player. While the equilibrium control strategies were
derived, derivation of the equilibrium sensing strategy turned
out to be an intractable problem. However, [18] discussed
the existence of multiple equilibria and the corresponding
necessary and sufficient conditions. Recently, this framework
was adopted for asset defense applications [19], which is a
special case of the above mentioned setup where two players
have two decoupled dynamics. Due to this decoupling, the
sensing strategy does not involve a game, rather it becomes an
optimization problem similar to what was proposed in [16].
The authors proposed a bisection-search based algorithm to
find the sensing instances; however, the algorithm lacks any
optimality guarantee.

Contributions: The contributions of this letter are as follows:
(i) We consider an infinite-horizon LQ-ZSDG setup between
two players, one of which (minimizer, called Player P1) is
sensing limited. We derive the optimal control strategy as
well as the optimal sensing strategy. (ii) We analytically
quantify the degradation in Player P1’s performance as we
vary the budget on the sensing constraint. (iii) We prove
that the optimal sensing follows a threshold-based policy
on the Age-of-Information at the controller. We discuss a
tractable and analytical computational method for this thresh-
old. (iv) Although we consider an average cost formulation,
our analysis converts the problem into a discounted cost
formulation, and then recovers the solution to the average cost
formulation by taking appropriate limits. Hence, the analytical
treatment of this letter readily applies to a discounted cost
formulation as well.

Organization: The rest of this letter is organized as follows.
We formulate the two-player differential game problem in
Section II. The optimal controller and sensor policies for P1
are computed in Sections III and IV, respectively. We provide
supporting numerical simulations in Section V and conclude
this letter with its major highlights in Section VI.

Notations: For a given time t, t− denotes the time right
before t. We define the set N0 := {0, 1, 2, . . . , }. For symmetric
matrices X, Y , the notation X � Y implies that X−Y is positive
semi-definite. I[·] denotes the indicator function. N (μ,�)

denotes Gaussian distribution with mean μ and covariance �.

II. PROBLEM FORMULATION

We consider an LQ-ZSDG between two players (P1 and
P2) where one of the players (say P1) has a sensing limitation

which constrains the sensing-rate. The scenario is motivated
by pursuit-evasion games where players often rely on remote
sensors (e.g., a radar) to detect and track their opponents. The
remote sensor must be used sporadically as it is typically a
shared resource that needs to serve other processes.

Let the state of the game evolve according to a stochastic
linear differential equation

dx(t) = [Ax(t) + B1u1(t) + B2u2(t)]dt + GdW(t),

x(0) ∼ N (0, �0), (1)

where x ∈ R
nx is the state of the system, ui ∈ R

nu
i is the control

input of player Pi, i = 1, 2, and {W(t)}t≥0 is a p–standard
Brownian motion which is independent of the initial state x(0).
We consider an infinite-horizon zero-sum game with objective
function

J = lim sup
T→∞

1

T
E

[ ∫ T

0

(
‖x‖2

Q + ‖u1‖2
R1

− ‖u2‖2
R2

)
dt

]
, (2)

where Q � 0, Ri 
 0. Player P1 is tasked to minimize J
whereas P2 maximizes it. In order to avoid an ill-posed game
(i.e., P2 can ensure J → ∞ regardless of P1’s strategy), some
parametric assumptions on (A, B1, B2, Q, R1, R2) are needed.
A sufficient (and almost necessary) condition is that there
exists a P � 0 that satisfies the following generalized algebraic
Riccati equation (GARE)

A�P + PA + Q + P
(

B2R−1
2 B�

2 − B1R−1
1 B�

1

)
P = 0. (3)

A detailed discussion on the necessary and sufficient condi-
tions for the well-posedness of (2) can be found in [20]. Under
the assumption that GARE (3) has a positive-semidefinite
solution, the LQ-ZSDG admits a unique saddle point in state-
feedback form given by

u∗
i (t) = (−1)iR−1

i B�
i Px(t), (4)

where P is the minimal positive-semidefinite solution to (3).
This saddle-point strategy pair results in the expected cost:

J∗ = tr
(

PGG�)
. (5)

The pair of saddle-point strategies (4) provides security strate-
gies [20] for both players with the unique security level being
J∗ in (5). That is, any player who deviates from (4), while the
other uses (4), will receive a worse value than J∗.

In this letter, we consider P1 to be sensing-limited and
not having continuous access to x(t). An average sensing
constraint is imposed on P1:

lim sup
T→∞

1

T
E[n(T)] ≤ b, (6)

where b is the sensing budget and n(T) denotes the total
number of sensing instances up to time T .

Due to (6), P1 cannot implement (4) and is forced to deviate
from the equilibrium strategy. However, this player can decide
when it wants to sense x(t), thus having some control over its
sensing mechanism. We also assume that P2 does not know
the budget b. The objective of this letter thus is to determine
the optimal sensing instances as well as the optimal control
strategy to arrive at the minimum possible cost.

Player P2 can sense the state x(t) continuously at every
time instance t, whereas P1 can only access the state x(t)
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intermittently at discrete time instances while obeying the
allowed constraints budget. In this regard, P1 designs a sensor-
controller pair (denoted by S and C, respectively), similar to
a setup originally proposed in [16]. We denote the combined
policy of P1 by μ := (μS, μC), where μS and μC denote the
sensing and the control policies, respectively.

Let the set of (possibly random) sensing instants for player
P1 up to the current instant t be denoted by T (t) :=
{τ1, . . . , τn(t)}, where τk’s are strictly increasing, τn(t) ≤ t
almost surely. The randomness in the sensing instances could
be due to their dependence on the previously sensed x, which
follows a stochastic process, or due to μS being a randomized
strategy itself. n(t) denotes the cardinality of T (t), i.e., the
total number of sensing till t. These sensing instances are not
known to P2, and cannot be computed in advance since P2
does not know the budget b. P2 continues to implement (4),
which is a security strategy for P2, resulting in a payoff of at
least tr(PGG�). We finally note here that once the strategy of
P2 is fixed as above, the resulting game problem reduces to
solving for the best response function of P1, which is what
we consider in the rest of the work.

Remark 1: While it might be tempting for P2 to deviate
from (4) to exploit P1’s sensing limitation, this may not
be possible since P2 faces an incomplete information game.
Without knowing b, P2 cannot optimally respond to P1’s
strategy. In fact, by ‘wrongly’ deviating from (4), P2 can be
worse off than sticking with (4), i.e., it may receive a payoff
which is less than tr(PGG�).

A. Information Set and Admissible Policies for P1

We let IS(t) := {x(s), u1(r), T (t−) | r ∈ [0, t), s ∈ T (t−)}
to be the information available to the decision-maker for sens-
ing, whereas that for the control is IC(t) := {x(s), u1(r), T (t) |
r ∈ [0, t), s ∈ T (t)}. Note that the slight difference in these
two information sets lies in whether T (t) ⊃ T (t−), i.e.,
whether a sensing occurred exactly at t or not. For t = 0, we
define IS(0) := ∅ and IC(0) := T (0).

We define the space of admissible controller policies for P1
as MC := {μC | μC is adapted to IC} and that of the admis-
sible sensor policies as MS := {μS | μS is adapted to IS}.

III. OPTIMAL ESTIMATOR-CONTROLLER FOR P1

Given that u2 follows (4), we may rewrite J in (2) as

J = lim sup
T→∞

1

T
E

[ ∫ T

0

(
‖x‖2

Q̃
+ ‖u1‖2

R1

)
dt

]
, (7)

where Q̃ = Q − PB2R−1
2 B�

2 P is positive-semidefinite [20].
Substituting u2 = R−1

2 B�
2 Px in the dynamics (1) yields

dx(t) =
[
Ãx(t) + B1u1(t)

]
dt + GdW(t),

x(0) ∼ N (0, �0), (8)

where Ã = A + B2R−1
2 B�

2 P. For notational convenience, we
define Mi := PBiR

−1
i B�

i P, i = 1, 2. After the standard
completion of squares, we may rewrite J in (7) as

J = tr
(

P̃GG�)
+ lim sup

T→∞
1

T
E

[ ∫ T

0
‖u1 + R−1

1 B�
1 P̃x‖2

R1
dt

]
,

where P̃ is the unique positive-semidefinite solution of the
algebraic Riccati equation

Ã�P̃ + P̃Ã + Q̃ − P̃B1R−1
1 B1P̃ = 0. (9)

It is also known [20] that P̃ = P, and consequently,

J = tr
(

PGG�)
+ lim sup

T→∞
1

T
E

[ ∫ T

0
‖u1 + R−1

1 B�
1 Px‖2

R1
dt

]

= J∗ + lim sup
T→∞

1

T
E

[ ∫ T

0
‖u1 + R−1

1 B�
1 Px‖2

R1
dt

]
. (10)

Thus, with sampled measurements, the optimal controller for
P1 takes the form

u∗
1(t) := μC

(
IC(t)

)
= −R−1

1 B�
1 Px̂∗(t), (11)

where x̂∗(t) = E[x(t) | IC(t)] is the least-squares estimate for
x(t) under the information available to the controller.

Let τ(t) denote the latest sensing instance at any given time
t, i.e., τ(t) = τn(t). Then, from the dynamics (8), we obtain

x(t) = eÃ(t−τ(t))x(τ (t)) +
∫ t

τ(t)
eÃ(t−s)B1u1(s)ds

+
∫ t

τ(t)
eÃ(t−s)GdW(s),

which yields

E

[
x(t) | IC(t)

]
= eÃ(t−τ(t))x(τ (t)) +

∫ t

τ(t)
eÃ(t−s)B1u1(s)ds,

where we have used the properties of the Brownian motion to
conclude E[

∫ t
τ(t) eÃ(t−s)GdW(s) | IC(t)] = 0. Therefore, we

notice that the estimate x̂∗(t) follows the dynamics

˙̂x∗(t) = Ãx̂∗(t) + B1u1(t), t ∈ [0,∞) \ T (T)

x̂∗(t) = x(t), t ∈ T (T). (12)

We note that the estimator (12) itself does not depend on
the controller strategy (i.e., the emergence of a separation
principle). Under the optimal control strategy of (11), we may
further simplify the estimator to obtain

˙̂x∗(t) =
(

Ã − P−1M1

)
x̂∗(t), t ∈ [0,∞) \ T (T)

x̂∗(t) = x(t), t ∈ T (T). (13)

Let e(t) = x(t) − x̂∗(t) denote the estimation error. Notice
that x̂∗ (or equivalently, e(t)) is completely characterized by
T (T), which is determined by the sensing strategy μS. After
substituting the optimal controller for P1 in (10), we obtain

J = J∗ + lim sup
T→∞

1

T
E

[∫ T

0
‖e‖2

M1
dt

]
. (14)

Next we turn towards constructing the optimal sensor policy.

IV. OPTIMAL SENSOR POLICY

The key ingredient facilitating the construction of an optimal
sensing policy (as we will see later) will be the observation
that we can work with an equivalent countable state Markov
decision process (MDP) rather than an uncountable one.
Consequently, we use the properties of the optimal value
function to derive the threshold structure of the optimal policy,
and then provide an algorithm to compute the threshold
parameter explicitly.
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A. Sensor Optimization Problem
The sensor’s objective is to control the estimation error e(t)

satisfying the following differential equation:

de(t) = Ãe(t)dt + GdW(t), t ∈ [0,∞) \ T (T)

e(t) = 0, t ∈ T (T). (15)

This results in e(t) = ∫ t
τ(t) eÃ(t−s)GdW(s).

Let us define the sensor action at time t as: {0, 1} � δ(t) :=
μS(IS(t)), where μS ∈ MS is an admissible sensor policy and
δ(t) = 1 denotes that a sensing occurred at time t.

Next, we define the age of information of the controller as
�(t) = t − τ(t), which denotes the time elapsed since the last
sensing instant. Then, one may notice that �(t) follows the
controlled MDP:

�̇(t) = 1, t ∈ [0,∞) \ T (T),

�(t) = 0, t ∈ T (T). (16)

Consequently, by defining the (state transition) matrix
�Ã(t) := eÃt, we may compute E[e(t)e�(t)] as

E

[
e(t)e�(t)

]

= E

[( ∫ t

τ(t)
�Ã(t − s)GdW(s)

)( ∫ t

τ(t)
�Ã(t − s)GdW(s)

)�]

= E

[ ∫ �(t)

0
�Ã(s)GG���

Ã
(s)ds

]
, (17)

where the second equality follows from temporal indepen-
dence of Brownian motion. Substituting (17) in (14) yields

J = J∗

+ lim sup
T→∞

1

T
E

[ ∫ T

0
tr
(

M1

∫ �(t)

0
�Ã(s)GG���

Ã
(s)ds

)
dt

]
.

(18)

Thus, we seek the best response strategy of the sensor
to minimize J subject to the dynamics (16) and the sensing
constraint (6). That is, we wish to find the optimal sensing
strategy by considering

arg minμS∈MS J̄
(
μS

)
subject to (6), (19)

where J̄(μS) := lim supT→∞ 1
T E[

∫ T
0 tr(M1

∫ �(t)
0 �Ã(s)GG�

��
Ã
(s)ds)dt].

So far we have considered the case that the sensing could
be performed at any time t, which implies the AoI �(t)
is a continuous variable. This results in a continuous state-
space constrained MDP, which is analytically, and sometimes
computationally, intractable. To facilitate a simpler analysis
and a tractable solution to the problem defined in (19), we
further assume that the sensor can only sense at predefined
time instances {0, h, . . . , kh, . . .}. Later, we will consider how
h affects the solution to (19), as well as consider the limiting
case of h → 0.

Let the discrete time index k determine the continuous time
t = kh, and let discrete AoI be defined as �k := �(kh)

h .
Therefore,

�k+1 =
{

�k + 1, δk+1 = 0,

1, δk+1 = 1.
(20)

where δk = δ(kh). Equation (20) is the discrete time equivalent
of (16).

For any t = kh, we may write

∫ �(t)

0
�Ã(s)GG���

Ã
(s)ds =

�k−1∑
i=0

∫ (i+1)h

ih
�Ã(s)GG���

Ã
(s)ds

=
�k−1∑
i=0

�Ã(ih)G̃h��
Ã
(ih),

where we define the constant G̃h := ∫ h
0 �Ã(s)GG���

Ã
(s)ds.

Therefore, in a similar fashion, we may write

J̄h
(
μS

)
:= lim sup

m→∞
1

m
E

[ m∑
k=0

U(�k, δk)
]

U(�k, δk) := tr
(

M1

�k−1∑
i=0

�Ã(ih)G̃h��
Ã
(ih)

)
, (21)

where we have used the superscript h in J̄h to remind us that
the cost depends on the choice of h. Notice that U(�k, δk)

does not directly depend on δk, and the dependence is through
�k which gets reset to 0 via δk.

B. Sensor Best-Response Strategy
Now, we wish to solve the constrained MDP problem with

the objective J̄h(μS) subject to the dynamics (20) and the
discrete time equivalent of the constraint (6). To this end, we
first note that �k ∈ N0, and Q(�k + 1,�k, δk) = δk and
Q(1,�k, δk) = 1−δk, where Q(s′, s, a) denotes the probability
of transitioning to the next state s′ given that an action a was
chosen in the current state s. Next, we define the Lagrangian
function corresponding to (21) as:

J̄h
λ

(
μS

)
= lim sup

m→∞
1

m
E

[ m∑
k=0

U(�k, δk) + λn(m)
]

= lim sup
m→∞

1

m
E

[ m∑
k=0

U(�k, δk)
]
, (22)

where U(�k, δk) = U(�k, δk) + λδk and λ ≥ 0 is the
Lagrange multiplier. Consequently, we obtain an uncon-
strained minimization problem defined by (22) subject to (20),
for which we obtain an optimal sensing policy in the sequel.
The procedure [21] for the same involves first passing to a
discounted cost problem corresponding to the average cost
problem in (22), establishing the optimal policy structure for
the former, and then taking sequential limit of the discount
factor to 1 to recover the policy structure for the average cost
problem [21].

Let us start by considering a discounted cost formulation
corresponding to (22) with a discount factor of β ∈ (0, 1) as
follows:

J̄h
β,λ

(
μS

)
= E

[ ∞∑
k=0

βk U(�k, δk)
]
. (23)

Further, let us also define the optimal value function asso-
ciated with the above discounted cost by Vh

β,λ(�) :=
infμS∈MS J̄h

β,λ(�,μS). Then, it is easy to see that due to the
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positivity of the cost Ū(·, δk), Vh
β,λ(�) is non-decreasing in

its argument. Moreover, we can show using [21] that Vh
β,λ(�)

satisfies the Bellman equation

Vh
β,λ(�) = min

δ∈{0,1}

{
Ū(�, δ) + βE

[
Vh

β,λ

(
�′)]}, (24)

and that a stationary (deterministic) policy solving the RHS
in (24) is optimal, which we refer to as β–optimal. The
following proposition now characterizes the structure of the
β-optimal policy as a threshold-based policy.

Proposition 1 [21]: The β–optimal policy is of the form
δk = I[�k ≥ ηβ,λ], for some ηβ,λ ≥ 0.

Consider now a sequence β
 of discount factors converging
to β, and define η̄λ to be the limit of the η(β
p), which are
β
p –optimal thresholds with β
p a converging subsequence of
β
. The limit η̄λ is guaranteed to exist by the compactness of
{0, 1}∞. We then have the main result as follows.

Theorem 1: There exist V̄h
λ

:= limβ↗1(1 −
β)Vh

β,λ(�),∀� ∈ N0 and f h
λ (�) := Vh

λ(�) − Vh
λ(1) satisfying

V̄h
λ + f h

λ (�) = min
δ

{
Ū(�, δ) + E

[
f h
λ

(
�′)]}. (25)

Moreover, the limiting policy μS,∗ generating actions accord-
ing to δ∗

k = I[�k ≥ η̄λ] as constructed above is average cost
optimal (i.e., it achieves the minimum on the RHS of (25)).

Proof: To prove the above, we first observe that Vh
β,λ(�) −

Vh
β,λ(1) ≥ 0 using monotonicity of Vh

β,λ(·). Further,
by using (24), we have that Vh

β,λ(�) ≤ Ū(�, 1) +
βVh

β,λ(1) ≤ Ū(�, 1) + Vh
β,λ(1). This implies that Vh

β,λ(�) −
Vh

β,λ(1) ≤ Ū(�, 1). Next, let us fix an i ∈ N0. Then,
we have that

∑
j∈N0

Q(j, i, 1)Ū(j, 1) = Ū(1, 1) < ∞
and

∑
j∈N0

Q(j, i, 0)Ū(j, 0) = Ū(i + 1, 0) < ∞. Hence
Assumptions 2 and 3∗ in [22] are satisfied. The result then
follows using the main theorem of [22].

The above theorem establishes the threshold structure of
the optimal policy μS,∗. Moreover, the quantity V̄h

λ is called
the average cost, and is independent of the initial condition,
and (25) gives the Bellman equation corresponding to Vh

λ(�).

C. Threshold Computation & Policy Construction
We now proceed to computing the threshold parameter

η̄λ, which will then completely characterize the optimal pol-
icy solving the unconstrained minimization problem defined
by (22) subject to (20). In this regard, let us first define the
finite state space K = {1, . . . , η̄λ}. For notational convenience,
we also relabel U(�, δ) as U(�). Then, for � = η̄λ, we have
from Theorem 1 that δ∗ = 1. Similarly, for � = η̄λ − 1,
we have δ∗ = 0. Thus, using (25), we arrive at Vh

λ(η̄λ) ≤
λ+Vh

λ(1) ≤ Vh
λ(η̄λ +1), from which we have that there exists

θ ∈ [0, 1] such that

Vh
λ(η̄λ + θ) = λ + Vh

λ(1). (26)

Further, for � ≥ η̄λ, we have that δ∗ = 1, and thus

Vh
λ(�) = U(�) + λ + Vh

λ(1) − V̄h
λ, (27)

which upon simplification and using (26), yields

V̄h
λ = U(η̄λ + θ). (28)

Further, for � ≤ η̄λ, we have that Vh
λ(�) + V̄h

λ = U(�) +
Vh

λ(� + 1), which, further using (27) and (28), yields

U(η̄λ + θ)η̄λ =
η̄λ∑


=1

U(
) + λ. (29)

The above is an implicit equation which can be solved numer-
ically to find η̄λ. Thus, we have completely characterized the
solution to the unconstrained MDP defined in (22).

Now, we return to our original constrained optimization
problem of minimizing (21) subject to the sensing con-
straint (6). To this end, we start by observing that the sensing
rate for P1 is given as 1/η̄λ, and thus the constraint (6) can
be rewritten as

1

η̄λ

≤ bh. (30)

It is also easy to see that an optimal policy (if it exists)
satisfies the above constraint with equality. However, for such
constrained optimization problems, an optimal policy may
not lie in the class of deterministic policies [23]. Thus, we
construct a randomized policy (μS

r ) for the same, similarly
to [21], [24]. We briefly highlight the construction here.

We first compute the optimal Lagrange multiplier (λ∗)
in (22). To do so, we use the iterative bisection search method.
Precisely, we initialize λ

(0)
1 = 0 and λ

(0)
2 = 1, and use the

bisection method to find λ∗ within the interval [λ(0)
1 , λ

(0)
2 ] by

satisfying (30). If it is not satisfied, we set λ
(i+1)
1 = λ

(i)
2 and

λ
(i+1)
2 = λ

(i)
2 + 1, where i is the iteration index. We stop,

whenever (30) is satisfied, say, in the interval [λ(i∗)
1 , λ

(i∗)
2 ] and

λ
(i∗)
2 < λ

(i∗)
1 + ε, for an appropriately chosen tolerance ε > 0.

Next, we compute the thresholds η̄
λ

(i∗)
1

and η̄
λ

(i∗)
2

by rounding

up to the nearest integer values. Let b1 and b2 be the budgets
utilized by the policies corresponding to the thresholds η̄

λ
(i∗)
1

and η̄
λ

(i∗)
2

, which are computed by solving (29) using λ
(i∗)
1

and λ
(i∗)
2 , respectively. The discussion on the optimal sensing

strategy can then be summarized in the following proposition.
Proposition 2: The optimal sensing policy is randomized in

general, and has the form

δ∗
k = I

[
�k ≥ ϑη̄

λ
(i∗)
1

+ (1 − ϑ)η̄
λ
(i∗)
2

]
(31)

where ϑ ∼ Bernoulli((b−b2)/(b1−b2)).

V. NUMERICAL SIMULATIONS

In this section, we validate through simulations the theoret-
ical findings of the previous sections. For all simulations, we
consider a scalar system (i.e., nx = 1 in (1)), for which the
system parameters are given as: A = 0.5, Q = 4, B1 = 1,

B2 = 0.5, R1 = 1, R2 = 0.5. We first study the effect of the
discretization carried out in Section IV-B. We plot the varia-
tion of the closed-loop cost J̄h(μS

r ) versus the discretization
parameter h for a given budget of 0.4 in Figure 1. From that
figure, we observe that a lower h (mostly) leads to a lower cost
J̄h(μS

r ). This is because we get a better approximation of the
continuous time system with a lower h. Thus, by choosing h
judiciously, one can trade off computation resources required
for sensing and the system performance.
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Fig. 1. Variation of the closed-loop cost J̄h(μS
r ) vs h.

Fig. 2. Variation of the closed-loop cost J̄h(μS
r ) vs b.

Next, we plot (in Figure 2) the variation of the closed-loop
cost J̄h(μS) under the randomized policy μS

r versus the sensing
budget b, for the discretization parameter h = 0.1. From this
plot we observe that as more and more sensing budget b is
allowed to P1, its performance improves, as one would expect.
Further results on the evolution of the state and control inputs
are available in [25].

VI. CONCLUSION

In this letter, we considered a two-player LQ-ZSDG, where
one of the players (maximizer) can continuously sense the
state of the system to compute its control inputs, whereas the
other player (minimizer) has a sensing budget, which forces
it to sense only intermittently and maintain a state estimate
between these instants. We addressed the problem of joint
control-sensor design for the minimizing player while the
maximizing player is restricted to its saddle-point policy of
the perfect information game. We first showed that the control
and sensor designs can be decoupled (in a particular order).
Then, by converting the resulting optimization problem into an
(approximate) countable state MDP, we were able to explicitly
compute the sensing instants of the optimal (stationary) ran-
domized sensing policy. Finally, using numerical simulations,
we observed that the performance of the minimizing player
improves with decreasing step-size and increasing sensing
budget, as expected.

We also note that it is still an open question to find (saddle-
point) equilibrium strategies for the players, for not only the
case of asymmetric information as considered here, but also
for the case where there is a sensing budget for both players.
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