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Sequential-Quadratic-Hamiltonian Optimal
Control of Epidemic Models With an Arbitrary

Number of Infected and Non-Infected
Compartments
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Abstract—For a general class of epidemiological mod-
els with an arbitrary number of infected and non-infected
compartments, we formulate an optimal vaccination control
problem to minimize the number of infections and the
cost of vaccination. We show that the problem can be
solved efficiently with the sequential quadratic Hamiltonian
(SQH) scheme, which we apply to the optimal control of
epidemics for the first time and for which we prove rigorous
global convergence guarantees in the case of a smooth
cost functional. Our numerical simulations show that SQH
outperforms the current state-of-the-art numerical scheme
in mathematical epidemiology: its convergence can be
guaranteed regardless of the initialization, it is faster and it
is also applicable when the cost functional is non-smooth.

Index Terms—Epidemic model, vaccination, optimal con-
trol, Pontryagin minimum principle.

I. INTRODUCTION

MATHEMATICAL models have supported the analysis
and the control of epidemics [1], [2], [3], [4], [5] since

the introduction of the seminal SIR model [6], which considers
three stages of infection: susceptible, infected and recov-
ered. SIR-like mean-field compartmental models, describing
the spread of an infectious disease in a large, well-mixed
population, have been developed by adding increasingly more
compartments, aimed at capturing the evolution of specific
diseases with different infected (e.g., distinguishing between
exposed but not yet infectious individuals, asymptomatic and
symptomatic, undetected, diagnosed, quarantined) and non-
infected (e.g., susceptible, recovered, vaccinated) categories,
with several recent developments during the COVID-19 pan-
demic [7], [8], [9], [10], [11]. Optimal control theory is a
powerful tool to design interventions aimed at curbing the
contagion [12], [13], [14], [15], [16], [17].
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Here, to formulate an optimal epidemic control problem
so that our results can have the broadest possible scope and
validity, we consider a very general class of epidemiological
models (Section II), similar to that in [18], with an arbitrary
number of infected and non-infected compartments, which can
seamlessly include vaccination, as well as waning immunity
and the possibility of (re)infection for both recovered and
vaccinated. In Section III, we formulate and analyze an
optimal vaccination control problem aimed at minimizing the
fraction of infected and the cost of vaccine rollout. We prove
the existence of a solution and we derive the related optimal-
ity system in the Pontryagin-minimum-principle framework.
Then, we propose to numerically solve the problem by using
the sequential quadratic Hamiltonian (SQH) method [19], [20],
[21], [22], recently developed to solve both smooth and non-
smooth optimal control problems. We apply the SQH method
to epidemiological control problems for the first time, and
we prove global convergence guarantees for SQH that hold
for the whole considered class of systems, with smooth cost
functionals. As shown in Section IV, the proposed methodol-
ogy outperforms the state-of-the-art forward-backward sweep
(FBS) method used to solve optimal control problems in
epidemiology and systems biology [12], [23], which is known
to suffer from convergence issues [23], [24]. Differently from
FBS, the SQH method can also be applied with non-smooth
cost functionals. In our numerical experiments, we consider
an extension of the SIDARTHE-V model [9], to demonstrate
that the approach can easily handle complex and large-scale
dynamics; a full version of our work that includes a richer set
of examples and numerical simulations is available online [25].

II. THE CLASS OF EPIDEMIC MODELS

We consider a class of compartmental models of the form{
ẋ(t) = Fx(t)+ b w(t)�Cx(t)
ẇ(t) = Gw(t)− diag(Cx(t))w(t)+ Dx(t)+ a

(1)

where x(t), b ∈ R
n1≥0, w(t), a ∈ R

n2≥0. The variables
{xi(t)}n1

i=1 represent the population fractions in different
infected compartments, while the variables {wi(t)}n2

i=1 represent
the population fractions in non-infected (e.g., susceptible,
recovered, vaccinated) compartments.

Matrices F ∈ R
n1×n1 , describing the flows among infected

compartments along with recovery, and G ∈ R
n2×n2 , which
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contains parameters related to vaccination and waning of
immunity that drive the flows among non-infected compart-
ments, are both Metzler and Hurwitz. The infection matrix C ∈
R

n2×n1≥0 includes the contagion parameters, while D ∈ R
n2×n1≥0

includes the recovery parameters. Vector a represents natality
in the population, while F and G also include mortality rates.
When formulating an epidemic control problem, the control
parameters can be included in G = G(u), when planning
a vaccination campaign, or in C = C(u), when planning
non-pharmaceutical interventions (e.g., physical distancing,
use of protective equipment, mobility restrictions). The total
population is assumed constant over a finite time horizon T >
0 (meaning that natality and mortality compensate for each
other): for all t ∈ [0,T],

∑n1
i=1 xi(t) + ∑n2

j=1 wj(t) = 1.
This implicitly enforces appropriate assumptions on the system
matrices. Subject to these assumptions, the initial value
problem (1) with initial conditions x(0) = x0 and w(0) =
w0, such that

∑n1
i=1 x0,i +∑n2

j=1 w0,j = 1, is well-posed and
admits a unique solution (x(t),w(t)). The system is positive:
if x0,w0 ≥ 0, then x(t),w(t) ≥ 0 for all t ≥ 0.

The model (1) admits a disease-free equilibrium (0, w̄), with
w̄i ≥ 0 and at least one w̄j > 0, i, j = 1, . . . , n2, to which we
want to drive our system.

We can define the control reproduction number [18] as
Rc

.= λ(−bw̄�CF−1), where λ(·) is the matrix spectral radius.
In the absence of control, Rc is the basic reproduction number.
The disease-free equilibrium is locally asymptotically stable if
Rc < 1 and unstable if Rc > 1.

Example 1 (Extended SIDARTHE-V Model): In the model
in [9], with five infected compartments (I,D,A,R,T), we
introduce waning immunity with rates σi and (re)infection
probabilities θi ∈ [0, 1] for recovered and vaccinated, as well
as a birth rate ψ and non-COVID-related mortality rates μi,
and we denote by u the vaccination rate:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = ψ − S(αI + βD+ γA+ δR) − uS+ σ1H + σ2V − μSS
İ = S(αI + βD+ γA+ δR) − (ε + ζ + λ)I + θ1αHI
+θ2αVI + θ3βHD+ θ4βVD+ θ5γHA+ θ6γVA
+θ7δHR+ θ8δVR− μI I

Ḋ = εI − (η + ρ)D− μDD
Ȧ = ζ I − (θ + μ+ κ)A− μAA
Ṙ = ηD+ θA− (ν + ξ + τ1)R− μRR
Ṫ = μA+ νR− (σ + τ2)T − μT T
Ḣ = λI + ρD+ κA+ ξR+ σT − σ1H − θ1αHI
−θ3βHD− θ5γHA− θ7δHR− μHH

Ė = τ1R+ τ2T
V̇ = uS− σ2V − θ2αVI − θ4βVD− θ6γVA− θ8δVR− μV V

The parameters α, β, γ and δ denote transmission rates; ε
and θ diagnosis rates; ζ and η symptom onset rates; μ and
ν aggravation rates; τ1 and τ2 COVID-related mortality rates;
λ, κ , ξ , ρ and σ recovery rates. The system can be written as
in (1) with x = [I D A R T]�, where I denotes asymptomatic
undetected infected, D asymptomatic diagnosed infected, A
symptomatic undetected infected, R symptomatic diagnosed
infected, T diagnosed infected with life-threatening symptoms,
and w = [S H E V]�, where S denotes susceptible, H recov-
ered, E deceased, and V vaccinated individuals, by taking F =⎡
⎣
−(ε+ζ+λ+μI ) 0 0 0 0

ε −(η+ρ+μD) 0 0 0
ζ 0 −(θ+μ+κ+μA) 0 0
0 η θ −(ν+ξ+τ1+μR) 0
0 0 μ ν −(σ+τ2+μT )

⎤
⎦, C =

⎡
⎢⎣
α β γ δ 0
θ1α θ3β θ5γ θ7δ 0
0 0 0 0 0
θ2α θ4β θ6γ θ8δ 0

⎤
⎥⎦, D =

⎡
⎢⎣

0 0 0 0 0
λ ρ κ ξ σ
0 0 0 τ1 τ2
0 0 0 0 0

⎤
⎥⎦,

G =
⎡
⎢⎣
−u− μS σ1 0 σ2

0 − σ1 − μH 0 0
0 0 0 0
u 0 0 − σ2 − μV

⎤
⎥⎦, a =

[ψ 0 0 0 0]�, b = [1 0 0 0 0]�. The disease-free equilibrium is
[ ψ(σ2+μV )

uμV+σ2μS+μSμV
0 0 0 0 0 0 Ē ψu

uμV+σ2μS+μSμV
]�. The control

reproduction number is Rc = ψ(σ2+μV )
uμV+σ2μS+μSμV

[ (1+uθ2)α
ε+ζ+λ+μI

+
(1+uθ4)βε

(η+ρ+μD)(ε+ζ+λ+μI)
+ (1+uθ6)γ ζ

(θ+μ+κ+μA)(ε+ζ+λ+μI)
+

(1+uθ8)δ(ηεκ+ηεμ+ηεμA+ηεθ+θζη+θζμD+θζρ)
(ν+ξ+τ1+μR)(η+ρ+μD)(ε+ζ+λ+μI)(θ+μ+κ+μA)

].

III. OPTIMAL VACCINATION CONTROL PROBLEM

Problem formulation: We consider an optimal vaccination
control problem to minimize both the total fraction of infected
and the vaccination effort u = u(t), during the time interval
[0,T]. The controlled vaccination rate u is contained in matrix
G, which we assume is linear in u, i.e., G = G(u) = G1u +
G2, with Gi ∈ R

n2×n2 . We also assume that u is a Lebesgue
measurable function on [0,T], belonging to the admissible
set Uad

.= {u : u(t) ∈ Kad}, where Kad = [0, umax]. The cost
functional is

J(u, x,w)
.=

∫ T

0
�(x(t),w(t), u(t))dt,

�(x(t),w(t), u(t))
.= [

N� 0
][x(t)

w(t)

]
+ α1u(t)2 + α2u(t), (2)

with α1 > 0, α2 ≥ 0 and N ∈ (0,∞)n1 . The cost includes both
a quadratic control component, which is the simplest and most
common choice in mathematical epidemiology [13], [14] to
capture the non-linear increase of the cost at high intervention
levels, and a linear control component, which alone may lead
to discontinuous optimal profiles, e.g., bang-bang and singular
controls [17], but is widely used for its ability to promote
sparsity of control variables.

Introducing the control-to-state map u �→ (x(u),w(u)), we
can define the reduced cost J̃(u)

.= J(u, x(u),w(u)). Then, we
look for an optimal control u∗ ∈ Uad such that

u∗ ∈ arg min
u∈Uad

J̃(u) (3)

subject to the dynamics (1).
We prove an important property of the cost functional.
Proposition 1: Consider the non-negative cost functional

in (2) and let (un)n∈N0 ⊆ Uad be any sequence of admissible
controls such that J̃max

.= supn∈N0
J̃(un) < ∞. Then, there

is a subsequence (unk)n∈N0 converging weakly to ũ ∈ Uad.
Moreover, lim infk→∞ J̃(unk) ≥ J̃(ũ).

Proof: Denote by (xn,wn) the solution to (1) with the control
un. Since xn(t) ∈ [0,∞)n1 ∀t ≥ 0 and N ∈ (0,∞)n, under
our assumptions, and with the cost in (2), we have ‖un‖2

L2 ≤
α−1

1 J̃(un) ≤ α−1
1 J̃max. Since L2(0,T) is a Hilbert space

(whence reflexive), by the Banach-Alaoglu theorem [26] there
exists a weakly convergent subsequence (unk)k∈N0 , i.e., there is
some ũ ∈ L2(0,T) such that, for all v ∈ L2(0,T), limk→∞ <
unk , v >= <ũ, v>, where < ·, · > is the inner product on
L2(0,T). Moreover, by the Banach-Saks theorem [26], v ∈
Uad. Setting v ≡ α2 above, we get (i) limk→∞ α2‖unk‖L1 =
α2‖ũ‖L1 . Also, by weak lower-semicontinuity of the norm,
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we have (ii) lim infk→∞ α1‖unk‖L2 ≥ α1‖ũ‖L2 . Finally, since
system (1) is smooth and affine in controls, by [27, Section
II-H], we get (iii) limk→∞(‖xnk − x̃‖L∞ + ‖wnk − w̃‖L∞) =
0, where (x̃, w̃) is the solution to (1) corresponding to
the control ũ. By combining (i), (ii) and (iii), we obtain
lim infk→∞ J̃(unk) ≥ J̃(ũ).

Since J̃ is nonnegative, if we take a sequence (un)n∈N0 ⊆
Uad such that limn→∞ J̃(un) = infu∈Uad J̃(u), Proposition 1
shows the existence of an optimal control u∗ ∈ Uad,
whence (3) is well defined.

Augmented Hamiltonian: We define the Hamiltonian as

H(t, x,w, u, p)
.= p�

[ (
F + bw�C

)
x

G(u)w− diag(Cx)w+ Dx+ a

]
+ �(x,w, u), (4)

where the co-state p(t)
.= [px(t)� pw(t)�]� ∈ R

n1+n2 is the
unique solution to the adjoint system

−
[

ṗx
ṗw

]
=

[
F + bw�C bx�C�

D− diag(w)C G(u)− diag(Cx)

]�[
px
pw

]
,

+
[

N
0

][
px
pw

]
(T) = 0. (5)

To shorten the notations, we suppress the dependence on t.
Based on (4), we introduce the augmented Hamiltonian

Kε(t, x,w, u, p, v)
.= H(t, x,w, u, p)+ ε(u− v)2, (6)

where ε > 0 and v ∈ Uad.
Numerical solution via SQH: We propose to numeri-

cally solve our optimal control problem with the sequential
quadratic Hamiltonian (SQH) method [19], which is formu-
lated in the framework of the Pontryagin minimum principle
and represents an efficient and robust extension of the succes-
sive approximations strategy to solve general optimal control
problems. The SQH approach, described in Algorithm 1, relies
on a sequential point-wise optimization of the augmented
Hamiltonian function (6), and generates a sequence of iterates
un ∈ Uad, where at each step un+1(t) is obtained by minimiz-
ing the augmented Hamiltonian Kε(t, xn,wn, v, pn, un), where
(xn,wn) are the solutions to (1) corresponding to the previous
iterate un.

Since (i) the maps x �→ N�x and (x,w) �→ f (t, x,w, u)
.=[

(F + bw�C)x
G(u)w− diag(Cx)w+ Dx+ a

]
are twice continuously dif-

ferentiable for every u ∈ Kad and t ∈ [0,T], (ii) function f
and its first and second derivatives with respect to the state
variables x,w are continuous in all their arguments, (iii) the
state variables x(t),w(t) are bounded on t ∈ [0,T], uniformly
in u ∈ Uad, and (iv) function f and its first derivatives with
respect to the state variables x,w are Lipschitz for u ∈ Kad,
uniformly in t ∈ [0,T] and in (x,w) in the state space, the
framework in [21] can be applied to solve the optimal control
problem (3) with dynamics (1). Let us define the projection
operator PKad : R→ Kad as PKad (ξ) = min(max(0, ξ), umax).
First, we show that Algorithm 1 is well-defined.

Proposition 2: Let un ∈ L2(0,T), wn, pn ∈ H1(0,T). Then
the update un+1 provided by Algorithm 1 is in Uad.

Proof: Recalling (4) and (6) and computing

∂Kε
∂u

(
t, xn,wn, u, pn, un)

= (
pn

w

)�
G1wn + 2α1u+ 2ε

(
u− un)+ α2 = 0,

Algorithm 1 SQH Method
1: Choose ε > 0, τ̄ > 0, ω > 1, φ ∈ (0, 1), χ ∈ (0,∞) and

initial guess u0; compute x0,w0, p0; set n = 0.
2: Solve ũ(t) = arg minv∈Kad

Kε(t, xn,wn, v, pn, un) for all t ∈
[0,T].

3: Compute x̃, w̃ corresponding to ũ, and τ
.= ‖ũ− un‖2

L2 .
4: IF J(ũ, x̃) − J(un, xn) ≤ −χτ , THEN assign ε ← φε,

xn+1 ← x̃, wn+1 ← w̃, un+1 ← ũ; compute pn+1

corresponding to xn+1,wn+1 and un+1. Set n← n+ 1.
ELSE: keep xn, wn and un, and assign ε ← ωε.

5: IF τ < τ̄ , THEN STOP and return un. ELSE go to 2.

we obtain the following unconstrained minimizer of Kε :

un+1
temp =

ε

α1 + ε un − 1

2(α1 + ε)
(
pn

w

)�
G1wn − α2

2(α1 + ε) . (7)

From the measurability of un, wn, pn it follows the measur-
ability of un+1(t) = PKad (u

n+1
temp(t)). Since un+1(t) ∈ [0, umax],

we obtain that un+1 ∈ Uad.
Note that for the sequence of iterates (un)n∈N0 ⊆ Uad in

Algorithm 1, the sequence (J̃(un))n∈N0 is non-negative and
non-increasing. Hence, Proposition 1 implies that (un)n∈N0 has
a weak accumulation point ũ in Uad.

We now show that, for our considered class of problems, any
strong accumulation point ũ of the SQH method satisfies the
first-order optimality conditions. For this purpose, as in [21],
we prove the following result.

Proposition 3: There exists some r > 0 such that, for any
iterate un, n ∈ N0, and for any ε > 0 in Algorithm 1,

Kε
(
t, xn,wn, z, pn, un)−Kε

(
t, xn,wn, un+1, pn, un

)

≥ r
(

z− un+1
)2
, (8)

for all z ∈ Kad ⊆ [0,∞) and for all t ∈ [0,T].
Proof: Assume that un+1

temp ∈ (0, umax), whence un+1 = un+1
temp.

Given z ∈ Kad, we have

Kε
(
t, xn,wn, z, pn, un)−Kε

(
t, xn,wn, un+1, pn, un

)

=
(

z− un+1
)(

pn
w

)�
G1wn + (α1 + ε)

(
z− un+1

)(
z+ un+1

)

− 2
(

z− un+1
)
εun + α2

(
z− un+1

)

= (α1 + ε)
(

z− un+1
)2
,

where the second equality is obtained by substituting εun =
(α1+ ε)un+1+α2/2+ (pn

w)
�G1wn/2 from (7) and performing

algebraic manipulations. Hence, (8) holds with r = α1. Next,
assume that un+1

temp ≤ 0, whence un+1 = 0. Then, since R �
un+1 �→ Kε(t, xn,wn, un+1, pn, un) is quadratic, it must hold
that

∂Kε
∂un+1

(
t, xn,wn, 0, pn, un) = (

pn
w

)�
G1wn − 2εun + α2 ≥ 0.

Therefore, for z ∈ Kad,

Kε
(
t, xn,wn, z, pn, un)−Kε

(
t, xn,wn, 0, pn, un)

= z
[(

pn
w

)�
G1wn − 2εun + α2

]
+ (α1 + ε)z2 ≥ α1z2,
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and again (8) holds with r = α1. Finally, assume that un+1
temp ≥

umax, whence un+1 = umax. Then, it must hold that

∂Kε
∂un+1

(
t, xn,wn, umax, pn, un)

= (
pn

w

)�
G1wn + 2(α1 + ε)umax − 2εun + α2 ≤ 0,

whence (pn
w)
�G1wn−2εun ≤ −2(α1+ε)umax−α2. Therefore,

for z ∈ Kad, since z− umax ≤ 0,

Kε
(
t, xn,wn, z, pn, un)−Kε

(
t, xn,wn, umax, pn, un)

= (z− umax)
{[(

pn
w

)�
G1wn − 2εun

]
+ (α1 + ε)(z+ umax)+ α2

}

≥ (α1 + ε)(z− umax)
2,

and once again (8) holds with r = α1.
Then, our main result follows from Proposition 3

and [21][Theorem 3.1].
Theorem 1: Consider the optimal control problem (3) sub-

ject to the dynamics (1) and let the sequence (un)n∈N0
be generated by Algorithm 1, Steps 2-4. Then, for any
subsequence (uk)k∈K , K ⊆ N0, such that limk→∞ uk(t) =
ũ(t) for almost all t ∈ (0,T), it holds that ũ ∈ Uad and
H(t, x̃, w̃, ũ, p̃) = minz∈Kad H(t, x̃, w̃, z, p̃) for almost all t ∈
(0,T), where x̃, w̃ solve (1) with the control ũ and p̃ is the
corresponding co-state solving (5) for x̃, w̃ and ũ.

Remark 1: In fact, by [21, Corollary 3.1], it follows that
for any ς > 0 and ϕ ∈ (0,T), there exists some N ∈ N for
which uN is (ς, ϕ)-suboptimal, i.e., H(t, xN,wN, uN, pN) ≤
H(t, xN,wN, z, pN)+ς holds for all z ∈ Kab, a.e. outside a set
in (0,T) of measure less than ϕ.

IV. THE SQH APPROACH TO VACCINATION CONTROL

We perform thorough numerical experiments by solving
the optimal vaccination control problem (3), subject to the
dynamics of the extended SIDARTHE-V model in Example 1,
with the SQH scheme. We also compare the performance of
SQH and FBS [12], [23].

In the full version that is available online [25], we also
consider numerical simulations for an extended SIRV and an
extended SEIRV model, along with a sensitivity analysis.

A. Extended SIDARTHE-V: Optimal Vaccination Control
For the extended SIDARTHE-V model, the running cost

in (2) becomes �(x(t),w(t), u(t))
.= η1I+ η2D+ η3A+ η4R+

η5T + α1u(t)2 + α2u(t), where ηi > 0 for i = 1, 2, 3, 4, 5,
α1 > 0 and α2 ≥ 0.

Given the parameter values in Fig. 1, the threshold uthr such
that Rc < 1 if u > uthr can be computed analytically from the
expression of Rc in Example 1. Since any control satisfying
inft∈[0,T] u(t) > 3.5 · 10−3 ensures Rc < 1, we choose umax =
0.1 > uthr for our simulations, so as to guarantee that the
control objective is feasible.

We first conduct a comparative analysis between the SQH
and the FBS methods, with a horizon of T = 350 days,
while varying the weight selections within the cost functional.
The FBS procedure is applied until either convergence or a
maximum iteration limit (set at 10000 iterations) is reached.
Thus, the absence of convergence indicates the exhaustion
of the maximum iteration count. With ηi = 103 for all i,
α1 = 1 and α2 = 0, both methods converge; FBS requires
1.03 s of CPU time, while SQH only takes 0.74 s (however,
SQH is much faster than FBS, by a factor of 20, when other

Fig. 1. Optimal vaccination with SIDARTHE-V dynamics, with param-
eters α = 0.3567, β = 0.0053, γ = 0.1485, δ = 0.005, ε = 0.2988,
ζ = 0.0025, λ = 0.1128, η = 0.0015, ρ = 0.032, θ = 0.37, μ = 0.12,
κ = 0.02, τ1 = 0.005, τ2 = 0.17, ν = 0.02, ξ = 0.022, σ = 0.024 [9];
σ1 = 1/500, σ2 = 1/500, ψ = 2.91 · 10−5, μI = 6.25 · 10−4 and
μj = 2.9 · 10−5 for j �= I [10], [11]; θ1 = 0.0013, θ2 = 0.0021 [28]. Initial
conditions are I0 = 10−6, D0 = A0 = R0 = T0 = H0 = E0 = V0 = 0,
S0 = 1− I0. Optimal vaccination rate and system dynamics at optimality
with FBS (dashed) and SQH (solid); uncontrolled dynamics (dotted).
The cost weights are ηi = 103, α1 = 1 and α2 = 0. The evolution of Rc
remains below the critical value 1 until vaccination ceases.

numerical examples are considered, see [25]). Fig. 1 shows the
solutions obtained by both methods, which are in agreement,
and also captures the system evolution in the absence of a
control policy, showcasing how the implementation of vacci-
nation reduces the peak of infectiousness across all infected
compartments, and significantly reduces deaths, by one order
of magnitude, in the considered horizon.

If the L2 weight is reduced to α1 = 0.1, the control effort
increases, reaching umax in the first days, and the number of
infected and deceased is further reduced, as shown in Fig. 2.
Both methods converge to the same solution, SQH in 0.98 s
(6 iterations) and FBS in 1.13 s (10 iterations).

With ηi = 103 for all i and α1 = 1, we now consider the L1

control term with weight (i) α2 = 0.1, (ii) α2 = 0.3, and (iii)
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Fig. 2. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and cost functional weights ηi = 103, α1 = 0.1, α2 =
0. The optimal vaccination profile and the system evolution are shown
alongside the evolution of Rc .

Fig. 3. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and cost functional weights ηi = 103, α1 = 1, α2 = 0.1.
The optimal vaccination profile and the system evolution are shown
alongside the evolution of Rc .

Fig. 4. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and cost functional weights ηi = 103, α1 = 1, α2 = 0.3.
The optimal vaccination profile and the system evolution are shown
alongside the evolution of Rc .

α2 = 1. In all these cases, FBS fails to converge after 10000
iterations, while SQH achieves convergence within 1.21 s
(20 iterations), providing the results shown in Fig. 3, Fig. 4
and Fig. 5, respectively. Increasing α2 leads to a sparser
control, which causes more infections and deaths, as Rc > 1
for most of the horizon; for α2 = 1, we obtain a bang-bang
control with switching time after approximately 5 days.

Optimal vaccination control with non-smooth cost: To fur-
ther showcase the potential of the SQH method, we consider an
optimal vaccination problem with a non-smooth term, which
cannot be handled by FBS. For our case study, we consider
the extended SIDARTHE-V model with the same parameter
values as before, and the running cost

�1(x(t),w(t), u(t))
.= �(x(t),w(t), u(t))+ α3g(u),

with α3 > 0 and

g(u) =
{ |u− ū| if |u− ū| > s̄

0 otherwise

where s̄ is a given threshold and ū is a desired piecewise-
constant vaccination profile. We consider a profile ū that

Fig. 5. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and cost functional weights ηi = 103, α1 = 1, α2 =
1. The optimal vaccination profile and the system evolution are shown
alongside the evolution of Rc .

Fig. 6. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and non-smooth cost functional with weights ηi = 103,
α1 = 1, α2 = 1, α3 = 1. The optimal vaccination profile and the system
evolution are shown alongside the evolution of Rc .

Fig. 7. Optimal vaccination with SIDARTHE-V dynamics (parameters
as in Fig. 1) and non-smooth cost functional with weights ηi = 103,
α1 = 1, α2 = 1, α3 = 10. The optimal vaccination profile and the system
evolution are shown alongside the evolution of Rc .

divides the time horizon T = 350 (approximately one year)
into four seasons, starting from autumn. A flu vaccine is usu-
ally highly recommended at the beginning of the autumn, also
administered during the winter, but typically not administered
during spring and summer. Thus, we set

ū(t) =
{

0.09 if t ∈ [0,T/4]
0.02 if t ∈ (T/4,T/2]
0 if t ∈ [T/2,T]

Also, we set s̄ = 10−4. The parameter values are the same
as those in Fig. 1. The cost functional weights ηi = 103

for all i, α1 = 1, α2 = 1, α3 = 1 lead to the results
in Fig. 6: the obtained optimal control tries to track ū as
much as possible, but the other cost components prevail. If
we increase the weight to α3 = 10, the optimal vaccination
rate adheres to the desired profile ū, as shown in Fig. 7. For a
comparison, Fig. 5 shows the optimal solution without the non-
smooth term, showing its significant effect on the vaccination
campaign.
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V. CONCLUDING DISCUSSION

We have introduced a general class of mathematical models
describing disease spreading dynamics through an arbitrary
number of infected and non-infected compartments, and for-
mulated the related optimal control problem for vaccination
planning. To numerically solve the problem, we have adopted
the recently proposed SQH method [19], [20], [21], [22],
for the first time in an epidemiological context, and we
have proved rigorous global convergence guarantees. A vast
campaign of numerical experiments (see also [25]) has suc-
cessfully validated our theoretical results.

Thanks to its ability to handle complex large-scale models and
its straightforward implementation (based on a similar concept to
that of FBS [12]), SQH enjoys the same scalability and simplicity
of implementation that make FBS the algorithm of choice for
optimal control in systems biology and epidemiology [23].
However, we have shown that SQH surpasses FBS in numerical
performance: it converges faster, it converges even when
FBS does not, and, unlike FBS, it is applicable even when
handling non-smooth cost functionals. Most importantly, we
have demonstrated rigorous global convergence guarantees
for the SQH method for any initialization, which hold, in
the case of smooth cost functionals, for a very general
class of (epidemiological) systems. The existence of such
convergence guarantees is of primary importance, while their
lack is a fundamental limitation of the FBS method. In
fact, FBS suffers from numerous challenges, as evidenced
in [23], [24]. Its convergence rate (and even lack of convergence)
poses a significant numerical issue, only partially mitigated
by incorporating acceleration methods [23], while theoretical
guarantees for FBS are limited to local convergence to a
controller-state trajectory pair (u∗, x∗) that satisfies first-order
optimality conditions. Hence, the initial guess of the controller-
state pair needs to be sufficiently close to (u∗, x∗), but no
explicit bounds on the required proximity are available in
the literature [24]. Not only the convergence of FBS is not
guaranteed in general and is influenced by the choice of the
initial guess, but also, as demonstrated in [24, Remark 4.1],
even a minor change in the parameter values of a toy model
may lead to an optimal control problem for which FBS does
not converge at all.

In view of its generality, straightforward implementation,
theoretical convergence guarantees for smooth cost functions,
and improved numerical performance with respect to the state
of the art, including the possibility to handle non-smooth
cost functions, we believe that our proposed method has
the potential to become a benchmark for optimal control in
systems biology and mathematical epidemiology.

ACKNOWLEDGMENT

Work funded by the European Union. Views and opinions
expressed are however those of the authors only and do not
necessarily reflect those of the EU, the European Research
Executive Agency or the European Research Council. Neither
the EU nor the granting authority can be held responsible for
them.

REFERENCES

[1] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology
of Infectious Diseases: Model Building, Analysis and Interpretation.
Hoboken, NJ, USA: Wiley, 2000.

[2] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,
vol. 42, no. 2, pp. 599–653, 2000.

[3] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population
Biology and Epidemiology, 2nd ed. New York, NY, USA: Springer, 2012.

[4] T. Alamo, D. G. Reina, P. M. Gata, V. M. Preciado, and G. Giordano,
“Data-driven methods for present and future pandemics: Monitoring,
modelling and managing,” Ann. Rev. Control, vol. 52, pp. 448–464,
Dec. 2021.

[5] E. Hernandez-Vargas, A. González, C. Beck, X. Bi, F. Calà Campana,
and G. Giordano, “Modelling and control of epidemics across scales,”
in Proc. IEEE Conf. Decision Control (CDC), 2022, pp. 4963–4980.

[6] W. Kermack and A. McKendrick, “A contribution to the mathematical
theory of epidemics,” Proc. Roy. Soc. London, vol. 115, no. 772,
pp. 700–721, 1927.

[7] A. B. Gumel et al., “Modelling strategies for controlling SARS out-
breaks,” Proc. R. Soc. B, Biol. Sci., vol. 271, no. 1554, pp. 2223–32,
2004.

[8] G. Giordano et al., “Modelling the COVID-19 epidemic and implemen-
tation of population-wide interventions in Italy,” Nat. Med., vol. 26,
pp. 855–860, Apr. 2020.

[9] G. Giordano et al., “Modeling vaccination rollouts, SARS-CoV-2 vari-
ants and the requirement for non-pharmaceutical interventions in Italy,”
Nat. Med., vol. 27, pp. 993–998, Apr. 2021.

[10] B. Buonomo, R. Della Marca, A. d’Onofrio, and M. Groppi, “A
behavioural modelling approach to assess the impact of COVID-19
vaccine hesitancy,” J. Theor. Biol., vol. 534, Feb. 2022, Art. no. 110973.

[11] T. Krueger et al., “Risk assessment of COVID-19 epidemic resurgence
in relation to SARS-CoV-2 variants and vaccination passes,” Commun.
Med., vol. 2, p. 23, Mar. 2022.

[12] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological
Models. Atlanta, GA, USA: Chapman Hall, 2007.

[13] O. Sharomi and T. Malik, “Optimal control in epidemiology,” Ann. Oper.
Res., vol. 251, pp. 55–71, Apr. 2017.

[14] B. Buonomo, P. Manfredi, and A. d’Onofrio, “Optimal time-profiles of
public health intervention to shape voluntary vaccination for childhood
diseases,” J. Math. Biol., vol. 78, pp. 1089–1113, Mar. 2019.

[15] J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, and F. Allgöwer,
“Robust and optimal predictive control of the COVID-19 outbreak,” Ann.
Rev. Control, vol. 51, pp. 525–539, Jun. 2021.

[16] F. Blanchini, P. Bolzern, P. Colaneri, G. D. Nicolao, and G. Giordano,
“Generalized epidemiological compartmental models: Guaranteed
bounds via optimal control,” in Proc. IEEE Conf. Dec. Control (CDC),
2021, pp. 3532–3537.

[17] L. Freddi, “Optimal control of the transmission rate in compartmental
epidemics,” Math. Control Relat. Fields, vol. 12, no. 1, pp. 201–223,
2022.

[18] J. Arino, F. Brauer, P. van den Driessche, J. Watmough, and J. Wu, “A
final size relation for epidemic models,” Math. Biosc. Eng., vol. 4, no. 2,
p. 159, 2007.

[19] A. Borzì, The Sequential Quadratic Hamiltonian Method: Solving
Optimal Control Problems. Atlanta, GA, USA: Chapman Hall, 2023.

[20] T. Breitenbach, “A sequential quadratic hamiltonian scheme for solving
optimal control problems with non-smooth cost functionals,” Ph.D.
dissertation, Dept. Math., Univ. Würzburg, Würzburg, Germany, 2019.

[21] T. Breitenbach and A. Borzì, “A sequential quadratic hamiltonian
scheme for solving non-smooth quantum control problems with spar-
sity,” J. Comput. Appl. Math., vol. 369, May 2020, Art. no. 112583.

[22] F. Calà Campana and A. Borzì, “On the SQH method for solving
differential Nash games,” J. Dyn. Control Syst., vol. 28, pp. 739–755,
Oct. 2022.

[23] J. A. Sharp, K. Burrage, and M. J. Simpson, “Implementation and
acceleration of optimal control for systems biology,” J. Roy. Soc.
Interface, vol. 18, no. 181, 2021, Art. no. 20210241.

[24] M. McAsey, L. Mou, and W. Han, “Convergence of the forward-
backward sweep method in optimal control,” Comput. Optim. Appl.,
vol. 53, pp. 207–226, Sep. 2012.

[25] F. Calà Campana, R. Katz, and G. Giordano. “Sequential-quadratic-
hamiltonian optimal control of epidemic models with an arbitrary
number of infected and non-infected compartments.” 2024. [Online].
Available: https://giuliagiordano.dii.unitn.it/docs/SQHepid2024.pdf

[26] R. E. Megginson, An Introduction to Banach Space Theory (Graduate
texts in Mathematics), vol. 183, New York, NY, USA: Springer, 2012.

[27] E. D. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems (Texts in Applied Mathematics), vol. 6, New York,
NY, USA: Springer, 2013.

[28] V. Hall et al., “Protection against SARS-CoV-2 after COVID-19 vac-
cination and previous infection,” New Eng. J. Med., vol. 386, no. 13,
pp. 1207–1220, 2022.

Open Access funding provided by “Università degli Studi di Trento” within the CRUI CARE Agreement



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


