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Integrating Inverse Reinforcement Learning and
Direct Policy Search for Modeling Multipurpose

Water Reservoir Systems
Matteo Giuliani and Andrea Castelletti

Abstract—System identification and optimal control
have always contributed to water resources systems
planning and management. Although water control
problems are commonly formulated as multi-objective
Markov Decision Processes, accurately modeling reser-
voir systems controlled by human operators remains
challenging due to the absence of a formal definition
of the objective function guiding their behavior. In this
letter, we introduce a mixed Reinforcement Learning
approach to model the dynamics of multipurpose reservoir
systems. Specifically, our method first uses Inverse
Reinforcement Learning to extract the tradeoff among
competing objectives from historical observations of
the reservoir system dynamics. The identified objective
function is then used in the formulation of an optimal
control problem returning a closed-loop policy which
allows the simulation of the observed dynamics of the
reservoir system. We demonstrate the potential of the
proposed method in a real-world application involving
the multipurpose regulation of Lake Como in northern
Italy. Results show that our approach effectively infers the
tradeoff between flood control and water supply adopted
in the observed system’s operation, and yields a control
policy that closely approximates the observed system
dynamics.

Index Terms—Inverse reinforcement learning, direct
policy search, machine learning, human-in-the-loop
control, control applications.

I. INTRODUCTION

SYSTEM identification and optimal control have
contributed to the design of efficient and sustainable water

system operations since the 1955 Harvard Water Program [1].
Yet, they remain a very active research field [2], [3] as most
water systems face several real-world challenges, making the
use of optimal control tools particularly complex, as discussed
in several review articles [4], [5], [6]. These challenges
include the increasing variability in hydroclimatic conditions
associated with climate change [7] as well as growing demands
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from multiple, often competing, sectors driven by population
growth and socio-economic development [8].

Traditionally, water control problems are formulated
as multi-objective Markov Decision Processes (MOMDP,
see [9]), where the state variables represent the storage of
water reservoirs and/or tanks and the water level in channels,
while the control decisions include all actions for the actuators
such as gates or pumps. The system then moves through a gen-
erally non-linear transition into a new state, influenced by the
control decisions and the stochastic disturbances (e.g., inflows,
rainfall, water demands), producing immediate rewards or
costs after the transition (e.g., hydropower production, flood
damages, water supply deficit).

A peculiar characteristic of reservoir systems with respect
to other water systems - e.g., urban water networks - is the
presence of a human operator in charge of implementing the
control action [10]. Although reservoir operators might have
access to a decision support system that recommends optimal
operational decisions, they often prefer to make decisions
largely based on their personal experience [11]. This tendency
often generates a discrepancy between observational data
and model-based experiments that simulate optimal control
decisions. While some studies attribute this discrepancy to
the non-rationality of human behaviors [12], we argue that
the main challenge is the lack of a formal definition of the
objective function driving the observed behavior of a human
operator. For example, most existing global hydrologic mod-
els represent reservoir systems distinguishing only between
irrigation and non-irrigation reservoirs, where the release of
the former is estimated as a function of their corresponding
water demand, while the release of the latter is their long-term
mean inflow [13]. Recently, [14] showed how the accuracy
of these global models improves when the reservoir dynamics
is simulated using optimal control policies that are specific
to the primary purpose of each reservoir. Yet, multipurpose
reservoir systems, which represent a large share of existing
water reservoirs (e.g., 40% of existing hydropower dams serve
multiple demands), add another challenge to the modeling
task as these systems also require defining a specific tradeoff
determining the relative importance assigned to the different
operating objectives, which is generally unknown.

In this letter, we contribute a mixed Reinforcement Learning
(RL) method to identify a simulation model able to reproduce
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the observed dynamics of existing multipurpose reservoir
systems. Specifically, we first use Inverse Reinforcement
Learning [15] to extract from the observed trajectory of
reservoir levels and release the tradeoff underlying the deci-
sions made by a human operator in the form of a weight
vector balancing the competing objectives; then, we design
via multi-objective Reinforcement Learning [16] an optimal
policy targeting the identified tradeoff to enable the simu-
lation of the observed reservoir dynamics. IRL falls within
the broader category of Imitation Learning algorithms [17],
aimed at learning from demonstrations. While IRL searches
for a reward function, other methods, such as Behavioral
Cloning [18], focus on generating an imitation policy obtained
through supervised learning. However, policies derived from
Behavioral Cloning are usually not adaptable to diverse envi-
ronments. In contrast, the reward function produced by an
IRL algorithm encapsulates the overarching intentions of an
expert and remains applicable even amidst changes in the envi-
ronment’s dynamics, thus making this approach particularly
attractive for modeling environmental systems that are exposed
to non-stationary evolving drivers such as climate change.
Additionally, this reward function can facilitate forward RL
within the original environment, and the resulting solutions
can be utilized in simulation models. Recently, [19] showed
the IRL potential in a few real-world applications, including
the identification of the tradeoff driving the multipurpose
operation of a water reservoir but the use of this information
in a forward RL problem has not been tested yet.

In the second phase of our analysis, we use the results of
the IRL problem to formulate the objective function of an
optimal control problem, whose resolution yields a closed-loop
policy which allows the simulation of the observed dynamics
of the reservoir system. Direct policy search (DPS, [20]) has
recently emerged as one of the most popular multi-objective
RL methods for solving complex MOMDP problems given its
applicability to diverse tasks, scalability to high-dimensional
state space, flexibility in using exogenous information via
data-driven controller tuning approaches, and potential for
broadening the scope and complexity of resolvable objec-
tives [21]. The policy optimized via DPS is finally simulated
to evaluate its accuracy in reproducing the observed data.

We illustrate our approach by applying it to the real-
world case study of Lake Como, a multipurpose regulated
lake located in Northern Italy. The water stored in the lake
is primarily used downstream to irrigate four agricultural
districts. The southwestern portion of Lake Como forms a
dead end, posing flood risks to the city of Como. However,
these flooding events can be mitigated by regulating the lake
to minimize the occurrence of high water levels.

II. METHODS

A. Problem Formulation

Control problems related to water reservoir systems involve
making sequential decisions, denoted as ut, regarding the
volume of water to release at specific time intervals. These
decisions are based on the current conditions of the system,
described by the state variable xt, which typically describes the

reservoir storage. The system’s state is subsequently modified
through a stochastic transition function, influenced by a vector
of stochastic external drivers denoted as εt+1, which may
represent variables like reservoir inflows, precipitation, and
evaporation losses. These systems can be effectively modeled
as multi-objective Markov Decision Processes as xt+1 =
ft(xt, ut, εt+1) with t = 0, 1, . . . , h − 1, assuming the state is
observable and the stochastic disturbance can be described by
a probability density function (i.e., εt+1 ∼ φt+1).

We model the human operator acting in the MOMDP using
a parametric differentiable policy πθ , where � is the policy
parameter space. The execution of a policy πθ in an MOMDP
generates the trajectory τ , which is a sequence of state-control
pairs over the time horizon [0, H]. This trajectory allows
evaluating the expected performance of πθ for a given cost
function as

J(πθ ) = Eε

[
H−1∑
t=0

g(xt, ut, εt+1) + G(xH)

]
(1)

where g(·) is the immediate cost function associated with the
time transition from t to t +1 and G(xH) is a penalty function
over the final state. The optimal control policy π∗

θ is then the
one maximizing the expected performance J(πθ ), i.e.,

π∗
θ = arg min

πθ

J(πθ ) with θ ∈ � (2)

When the operations of the reservoir system influence
various interests (e.g., hydropower production, water supply,
environmental protection), Problem (2) is formulated including
a q-dimensional objective function vector J = [J1, . . . , Jq]. The
multi-objective problem does not yield a single solution that
minimizes all q objectives, as such a solution generally does
not exist. It rather returns a set of Pareto optimal solutions P∗.

Definition 1: Policy π dominates policy π ′, denoted by
π ≺ π ′, if: ∀i ∈ {1, . . . , q}, Ji(π) ≤ Ji(π

′) ∧ ∃i ∈
{1, . . . , q}, Ji(π) < Ji(π

′).
Definition 2: If there is no policy π ′ such that π ′ ≺ π , the

policy π is Pareto optimal.
The traditional approach to solve such multi-objective

problem is to reformulate it as a series of single-objective
problems by combining the q objectives through a scalarization
function � : Rq → R, such as a convex combination of the
objectives ζ(πθ , ω) = J(πθ )ω using a weight vector ω ∈ R

q
≥0

and ‖ω‖1 = 1.

B. Gradient-Based Inverse Reinforcement Learning

In the IRL problem, we assume that there exists an expert’s
policy πE

θ which represents the policy describing the human
operator’s decisions who behaves optimally with respect to
some unknown cost functions. Our goal becomes finding a
scalarized cost function ζE such that πE

θ is an optimal policy.
When this optimality condition holds, the policy gradient
∇θ ζ(πE

θ , ωE) = ∇θJ(πE
θ )ωE must vanish and the weight

vector ωE associated to the cost function minimized by the
expert belongs to the null space of the Jacobian matrix, i.e.,

if πE
θ = arg min

πθ

ζ(πθ , ω
E)

then ωE ∈ null(∇θ J(πE
θ )) (3)
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where ∇θ J(πE
θ ) is the Jacobian matrix defined as ∇θ J(πE

θ ) =
[∇θJ1(π

E
θ )| . . . |∇θJq(π

E
θ )].

The computation of the Jacobian matrix requires a paramet-
ric representation of the expert’s policy that can be obtained
via Behavioral Cloning. The expert policy parameters can be
estimated from a dataset of observed trajectories D = {τi}n

i
using a Maximum Likelihood procedure. Then, given this
policy parameterization, we can obtain an unbiased estimate
of the Jacobian matrix using sample-based estimators for
conventional policy gradient methods (e.g., G(PO)MDP [22]).
The approximations introduced for the Jacobian estimation
prevent the use of eq. (3) because the estimated Jacobian might
result in full rank, although the true Jacobian has a rank
smaller than q, leading to a zero-dimensional null space.

The �-Gradient inverse reinforcement learning
(�-GIRL, [23]) addresses this issue by looking at the Jacobian
estimate ∇̂θ J(πθ ) as a noisy version of the true Jacobian
matrix, modeling it as a Gaussian random matrix N (M, 1

n�).
Using the Gaussian likelihood model, we reformulate the IRL
problem as the problem of finding the weights ω and the
new Jacobian M that jointly maximize the likelihood of the
estimated Jacobian. The IRL problem is then formulated as
follows:

ω∗ = arg min
ω∈Rq

≥0‖ω‖1=1

∥∥∇̂θJ(πθ )ω
∥∥2[

(ω⊗Iq)
T
�(ω⊗Iq)

]−1 (4)

where ⊗ denotes the Kronecker product and Iq is the identity
matrix of order q. More details about �-GIRL are available
in [23].

C. Direct Policy Search

Direct Policy Search represents an approximate dynamic
programming method that diverges from the conventional
Dynamic Programming policy design approach [24]. Rather
than seeking the value function within the objective space,
DPS directly searches for optimal control policies within an
infinite-dimensional space of parameterized functions. This
method offers the advantage of converting the challenge
of designing functional control policies into a non-linear
optimization problem. Finding an optimal parametric policy
π∗

θ is equivalent to discovering the corresponding optimal pol-
icy parameters θ∗, where θ ∈ �. Various DPS strategies have
emerged in the literature (refer to [20] for a comprehensive
review and associated references). Their effectiveness, namely
their ability to reveal high-quality solutions, is heavily based
on two main factors: the choice of parameterization for the
control policy [25], and the efficiency of the optimization algo-
rithm used to explore optimal control policy parameters [26].
Specifically, we use the evolutionary multi-objective direct
policy search (EMODPS, [25]) which combines DPS, nonlin-
ear approximating networks, and multi-objective evolutionary
algorithms to design Pareto-approximate closed-loop operating
policies for multipurpose water reservoir systems.

In our EMODPS formulation, we use Gaussian radial basis
functions (RBFs) to parameterize the control policy, as they
are capable of representing policies for a large class of

MOMDPs [27]. In this formulation, the control ut is defined
as:

ut = α +
A∑

i=1

⎡
⎣wi exp

⎛
⎝−

B∑
j=1

((xt)j − cj,i)
2

b2
j,i

⎞
⎠

⎤
⎦ (5)

where A is the number of RBFs, B the number of state
variables, ci and bi the B-dimensional center and radius vectors
of the i-th RBF, respectively, and wi the weight of the i-th RBF
which are nonnegative. The total number of policy parameters
is equal to A(2B + nu) + 1.

Searching the parameters of these nonlinear approximat-
ing networks entails navigating through high-dimensional
spaces that map to noisy and multimodal objective func-
tion values. MOEAs offer an efficient means for solving
this search. Although evolutionary strategies do not ensure
optimal solutions, they present a promising alternative to
gradient-based methods because evolving a set of candidate
solutions based on their ranking has been shown to handle
performance uncertainties more effectively than methods that
rely on estimating absolute performance or performance gra-
dients [28]. In particular, we solved Problem (2) using the
Borg MOEA [29], which has been shown to be highly robust
in solving multi-objective optimal control problems [26].
This algorithm incorporates epsilon-dominance archiving [30],
adaptive population sizing [31], a steady-state algorithm struc-
ture [32], and multiple variation operators. The probability of
selecting these operators changes adaptively during the search,
reflecting recent successes in generating new non-dominated
solutions. These characteristics address the challenge of tuning
the algorithm parameters to match the unique fitness landscape
of the problem. More details about EMODPS are available
in [21], [25].

III. REAL WORLD APPLICATION

Lake Como, located in Northern Italy, is a regulated lake
in the Adda River basin. The lake has a surface area of
145 km2, an active storage capacity of 246.5 Mm3, and its
catchment covers an area of 4552 km2 characterized by a
subalpine hydrological regime featuring dry periods in winter
and summer, and flow peaks in late spring and autumn fed by
snowmelt and rainfall, respectively.

The regulation of Lake Como serves two primary and
competing objectives: it provides flood protection to the city
center of Como and it supplies downstream water to support
the 1400 km2 irrigation district and nine run-of-river power
plants. In addition, local authorities recently started to consider
the regulation as a means for preventing extremely low lake
levels that negatively impact on navigation, tourism, and lake
ecosystems. However, how much this new target has impacted
the historical regulation is still unclear.

A. Model and Operating Objectives

The system is modeled as a discrete-time, periodic, non-
linear, stochastic MOMDP with the following features: a
continuous state variable xt representing the water volumes
stored in the lake (m3); a continuous control variable ut repre-
senting the daily release decision (m3/s); and a discrete-time,
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Fig. 1. Map of the Lake Como basin.

nonlinear state-transition function describing the mass balance
equation of the lake water storage affected by a stochastic
disturbances εt+1 representing the net inflow (i.e., inflow
minus evaporation losses) to the lake (m3/s), i.e.,

xt+1 = xt − R(xt, ut, εt+1) + εt+1 (6)

The adopted time step is 1 day, and the system is periodic
with a period T = 365 days. The nonlinear dynamics of the
system are due to the release function R(·), which determines
the actual release from the lake as a function of the control
ut. This release generally coincides with ut corrected, when
necessary, to respect physical and legal constraints specifying
the minimum and maximum volume that can be released
over the time interval [t, t + 1) by keeping all the dam’s
gates completely closed and completely open, respectively.
The Adda River is described by a plug-flow model, which
simulates the routing of the lake releases to the intake of the
irrigation canals.

The operating objectives involved in the Lake Como reg-
ulation and computed over the time horizon [0, H] are the
following:

• flood control: daily average excess of lake level above the
flooding threshold h̄ = 1.1m:

JF = 1

H

H−1∑
t=0

max
(
0, ht+1 − h̄

)
(7)

• water supply: daily average deficit between the lake
release and the cyclostationary daily water demand of
downstream users wt, subject to the minimum envi-
ronmental flow constraint qMEF = 22 m3/s to preserve
adequate environmental conditions in the river down-
stream the abstraction point of the irrigation canals:

JD = 1

H

H−1∑
t=0

(max(0, wτ − max(0, rt+1 − qMEF))) (8)

• low-level control: daily average lake level scarcity com-
pared to the low-level threshold h = −0.2m:

JL = − 1

H

H−1∑
t=0

min
(
0, ht+1 − h

)
(9)

B. Computational Experiments

Observational data on lake level, net inflow, and release
were provided by the regulating authority (i.e., Consorzio
dell’Adda) and are available from 1946 at a daily resolution.
The calculation of the total net inflow is derived from the
inversion of the mass balance eq. (6) to consider various
tributaries and evaporation losses. The time period considered
for the analysis is January 1st, 2000 to December 31st, 2019.
During this period the lake was regulated by a single human
operator.

The resolution of the IRL problem in eq. (4) returns
the 3-dimensional weight vector ω∗ = [ωF, ωD, ωL] that
balances the competing objectives of flood control, water
supply, and low-level control associated with the regula-
tion of Lake Como. The RBF policies πθ in eq. (5) are
parameterized using 5 Gaussian bases that return the control
decision ut as a function of a 3-dimensional state vector xt =
[sin(2π t/365), cos(2π t/365), ht], where the first two elements
account for the time dependence and cyclostationarity of the
system and, consequently, of the control policy. The total
number of parameters of the control policy is equal to 36.
The IRL Policy is then designed by solving Problem (2) using
a scalarized objective that aggregates the vector of operating
objectives J = [JF, JD, JL] using the weights ω∗ returned by
�-GIRL.

To demonstrate the value of our RL approach, we compared
the IRL Policy against four benchmarks:

• two state-of-the-art rules that are adopted in global
hydrologic models as in [13], i.e., HanasakiRule-I, which
considers Lake Como as an irrigation reservoir and sets
the release equal to the downstream water demand, and
HanasakiRule-F, which considers the lake as a non-
irrigation reservoir and its release equal to the long-term
mean inflow;

• two optimal control policies designed considering sepa-
rately the Lake Como water supply (JD Policy) and flood
control (JF Policy) objectives. These somehow maintain
the same principles of the rules proposed by [13], while
being optimized for the specific characteristics of the
considered case study.

Since the Borg MOEA has been demonstrated to be rel-
atively insensitive to the choice of parameters, we use the
default algorithm parameterization suggested by [29]. Each
optimization was run for 500,000 function evaluations. To
improve solution diversity and avoid dependence on random-
ness, the solution set from each formulation is the result
of 5 random optimization trials. In total, the EMODPS
optimization runs 2.5 million simulations and requires approx-
imately 68 hours on an Intel 440FX - 82441FX PMC [Natoma]
with twp 2.0 GHz CPUs and 8 GB Ram. The final set of
Pareto-optimal policies is defined as the set of non-dominated
solutions from the results of all the optimization trials.

IV. RESULTS

The human operator of Lake Como has a set of preferences
that are unknown. We started our analysis by estimating the
historical balance of the three competing objectives using the
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Fig. 2. Trajectories of observed and simulated lake levels (panel a) and
release (panel b) under the IRL control policy.

�-GIRL algorithm (see Section II-B). The resulting weight
vector ω∗ = [0.84, 0.16, 0.00] assigns a higher weight to
flood control than water supply interests, suggesting that flood
control is relatively more important than water supply (or that
it is easier to control floods than to minimize the water supply
deficit). This result is consistent with previous studies [33] that
found the performance of the historical regulation to be close
to the portion of the Pareto front that favors flood control while
accepting high water supply deficits. The low-level control is
instead assigned a null weight and is therefore not considered
in the next steps of the analysis. This result confirms how,
historically, this interest was marginally influencing the lake
regulation, becoming more relevant only in recent years as a
consequence of severe drought events such as the summer and
fall of 2022 (not included in our analysis).

In the second step of our analysis, we use the weights
determined by �-GIRL in the design of a control policy
optimized to target the identified tradeoff. The simulated lake
level and release trajectories under such IRL Policy (Figure 2)
provide a good approximation of the historical observations,
capturing both seasonal patterns and many anomalous events
such as the high lake levels in the first three years of the
simulation horizon or the low releases during the 2005-2006
drought period (i.e., days 2190-2920). The accuracy of the IRL
Policy in reproducing the historical dynamics of Lake Como
is confirmed by considering the coefficient of determination
(R2) between the simulated and observed trajectories (Table I).
Results show that the R2 values of the IRL Policy outperform

TABLE I
ACCURACY OF DIFFERENT CONTROL POLICIES IN REPRODUCING

THE HISTORICAL DYNAMICS OF LAKE COMO

TABLE II
ACCURACY OF DIFFERENT CONTROL POLICIES IN REPRODUCING THE

PERFORMANCE OF THE HISTORICAL REGULATION OF LAKE COMO

all benchmarks, registering average relative improvements
equal to 345% on lake levels and 10% on lake releases with
respect to the two Hanasaki rules, and 68% on lake levels and
5% on lake releases when compared to the JF and JD Policies.
These improvements are consistently larger in terms of the
accuracy of the lake level simulation than the lake release
one as reproducing the level dynamics is a more challenging
modeling task, as confirmed by the lower values of R2 than
those referring to the release trajectory. This difficulty can be
motivated by the direct impact of the stochastic disturbance’s
variability (i.e., inflow) on the level dynamics.

Lastly, we contrast the observed performance of the his-
torical system’s regulation against the simulated values of JF

and JD objectives. Table II shows that the two Hanasaki rules
and the JD Policy do not accurately reproduce the historical
performance, with large errors especially in terms of JF . The
simulated performance of the IRL and JF Policies is instead
closer to the historical one as both policies have similar weight
vectors that assign more importance to flood control over water
supply. Interestingly, the policy that most accurately simulates
the historical values of the operating objectives is the JF Policy
albeit it is not the most accurate one in simulating the observed
trajectories of lake level and release. This finding suggests the
existence of solutions that attain the same (or similar) level of
performance with a variety of diverse trajectories.

V. CONCLUSION

In this letter, we contribute a mixed method combining
Inverse Reinforcement Learning and Direct Policy Search for
modeling multipurpose water reservoir systems. The multi-
purpose regulation of Lake Como is used as a real-world
application to demonstrate the potential of our approach. The
numerical results show that the �-GIRL algorithm allows
the inference of the tradeoff underlying the operation of the
observed system, with a relative preference for flood control
against the water supply that is consistent with previous
research in the same case study. Moreover, the simulation of
the control policy optimized targeting the identified tradeoff
provides a good approximation of the observed lake dynamics.
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Ongoing research activities are focused on testing the potential
of the proposed methodology in other reservoir systems with
different, possibly more operating objectives. Moreover, we
will explore the scalability of the method to multi-reservoir
systems, where the unknown objective function can differ
across operators of the same system depending on the imple-
mented level of coordination.
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