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Abstract—We address economic dispatch of power gen-
erators with prohibited operating zones. The problem can
be formulated as an optimization program with a quadratic
cost, non-convex local operating constraints, and a scalar
quadratic coupling constraint accounting for load demand
and power losses. A duality-based resolution approach
integrating a bisection iterative scheme is proposed to
reduce computational complexity while guaranteeing finite
time feasibility of the primal iterates and a cost improve-
ment throughout iterations. Extensive simulations show
that the approach outperforms state-of-the-art competitors
and consistently computes feasible primal solutions with a
close-to-zero optimality gap at a low computational cost.

Index Terms—Energy systems, large-scale systems,
optimization algorithms.

I. INTRODUCTION

UNIT Commitment (UC) and Economic Dispatch (ED) are
crucial for power systems operation. UC [1] determines

the generating units that will be possibly activated to produce
the forecasted electricity demand along some reference time
horizon, while ED [2] allocates the demand in each time
slot by defining the actual amount of power that each of the
committed generators has to produce in that time slot. The ED
problem can be solved after the UC problem or jointly, in an
integrated manner.

The ED problem admits several formulations (see [3, Ch. 7]
and [4] for an overview), that can differ for the objective func-
tion (e.g., reduction of fuel costs and emissions of greenhouse
gases), the adoption of multiple objectives, the characteristics
of the generators (e.g., multiple fuel options, presence of
prohibited operating regions), etc. Many of these formulations
involve discrete decision variables, which make the resulting
optimization problem combinatorial, with a complexity that
grows exponentially in the number of generators.
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State-of-the-art methods for ED resort to a wide gamut of
paradigms, ranging from stochastic (possibly hybrid) heuristic
methods [5], [6], [7], to exact resolution schemes based on
implicit enumeration [8], and linearization of quadratic and
nonlinear terms [9]. Although their performance depends on
the chosen problem formulation, they typically either lack
convergence guarantees or do not scale with the size of the
problem, thus becoming prohibitive in practice.

In this letter, we consider an ED problem where we aim at
minimizing the cost to supply the required energy demand via
generators with prohibited operating regions. Following [6],
we formulate the problem as an optimization program with
continuous and binary decision variables, quadratic cost, non-
convex local constraints, and a scalar quadratic coupling
constraint taking into account power losses. The intrinsic
combinatorial nature of the problem that is hidden in the
non-convex constraints makes it hard to solve and calls for
suitable resolution schemes. Here, we propose a duality-based
approach integrating the bisection iterative scheme in [10]
to tackle computational complexity, while guaranteeing finite
time feasibility of the primal iterates and a cost that is not
increasing throughout iterations.

Resolution strategies for similar ED programs have been
proposed in the literature using linear approximation, direct
search and stochastic optimization methods. In [9], [11] the
nonlinear terms in the constraints (and, possibly, the cost)
are linearized or approximated via piece-wise affine func-
tions to obtain a mixed-integer linear formulation of the
problem. Such reformulation, however, typically includes sev-
eral additional binary variables, that ultimately increase the
combinatorial complexity of the problem. In [5] and [12],
the optimal solution is searched in the (non-convex) fea-
sibility set of the problem via a Genetic Algorithm (GA),
using different selection and recombination strategies. Parallel
streams of work investigated the use of spatial Particle
Swarm Optimization (PSO) and Evolutionary Programming
(EP) methods, see [6], [13], and [14]. A distributed approach
combining flooding-based consensus and a differential evo-
lution algorithm was proposed in [15]. All these strategies
use a stochastic approach to tackle the non-convexity of the
optimization program and are not too complex to implement.
However, they typically lack finite-time convergence guar-
antees to a feasible solution and their performance highly
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depends on their initialization, thus requiring multiple runs
to find good-quality solutions. A deterministic two-level
Branch-and-Bound method is, instead, proposed in [8] to gain
efficiency by exploiting the problem structure. However, the
resulting method is only partly effective since it shares all the
critical aspects of standard Branch-and-Bound approaches and
does not scale with the size of the problem.

Our approach exploits duality to gain in computational
efficiency. Note that duality is also used in [16] but to solve
a multi-objective ED problem without considering generators
with prohibited operating regions. A weighted sum method is
used to recast the multi-objective cost as a single-objective
cost, using a bisection-based heuristic to determine the value of
the weights in the sum for which the Pareto front is smooth and
uniform. Duality allows to take advantage of the structure of
the resulting problem and formulate it as a quadratic program,
which is easy to solve.

The remainder of this letter is structured as follows.
Section II provides the formulation for the ED problem
based on [6], whilst the proposed approach is introduced in
Section III and tested via numerical simulations in Section IV.
Finally, Section V concludes this letter.

II. PROBLEM FORMULATION

Consider an Economic Dispatch Problem (EDP) with m
generator units, each producing a power Pi ≥ 0, which is zero
if the generator i does not participate in the energy provision
at the considered time slot and is positive otherwise. The
problem is modeled according to the widely-adopted mixed-
integer quadratic formulation proposed in [6]. Generators are
assumed to use a single type of fuel and the cost Ji for unit
i to produce an amount of power Pi is given by the quadratic
cost function

Ji(Pi) = ωi0 + ωi1Pi + ωi2P2
i , (1)

where ωi0, ωi1 and ωi2 are positive scalar coefficients specific
for generator i, i = 1, . . . , m.

Generators can have prohibited zones within their domain
of operation, due to physical limitations of individual power
plant components [17]. This is the case, for example, for
the vibrations in a shaft bearing that are amplified at certain
operating regimes [5], which should then be avoided. This is
modeled by associating to each generator i a set of operating
regions {[Pi,j, P̄i,j], j = 1, . . . , Ni} such that Pi,1 = Pmin

i > 0,
P̄i,Ni = Pmax

i > Pmin
i , Pi,j < P̄i,j, and P̄i,j−1 < Pi,j.

The power Pi produced by generator i will then satisfy
(only) one of the following conditions

Pi = 0, (2a)

Pi,j ≤ Pi ≤ P̄i,j for some j ∈ {1, . . . , Ni}. (2b)

The operation of a generator may also be subject to ramp
limits with the purpose of avoiding abrupt variations in the
power output between the previous time slot and the current
one. If we denote as Pi,0 the power provided by generator i in
the previous time slot, ramp limits can be enforced requiring

−�i ≤ Pi − Pi,0 ≤ �̄i, (3)

with �̄i > 0 and �i > 0 denoting the maximum power
increase and decrease, respectively, that generator i can allow.

In order to satisfy a certain power demand Pd ≥ 0, the
power of all generators should be set so as to satisfy the
following (scalar) constraint

m∑

i=1

Pi − P�

(�P) ≥ Pd, (4)

that accounts also for the power losses P�(�P), with �P =
[P1 · · · Pm]�, which can be computed using Kron’s loss
formula [3, Sec. 7.6] as

P�

(�P) =
m∑

i=1

m∑

j=1

bijPiPj +
m∑

i=1

bi0Pi + b00, (5)

with bij, bi0, b00, i, j = 1, . . . , m, being suitable coefficients.
Let Pi be the set

Pi =
[
Pi,0 −�i, Pi,0 + �̄i

] ∩
(
{0} ∪Ni

j=1

[
Pi,j, P̄i,j

])
(6)

defining the feasible power output values for generator i and
denote with P̃max

i its maximum admissible power output, i.e.,
P̃max

i = maxPi∈Pi Pi ≤ Pmax
i . Clearly, for (4) to be admissible,

the power demand Pd shall be less than the maximum power
that can be produced by all generators minus the corresponding
losses, i.e., Pd <

∑m
i=1 P̃max

i − P�(
�̃Pmax), with �̃Pmax =

[P̃max
1 · · · P̃max

m ]�.
Then, the EDP for a demand Pd can be formalized as

min
P1,...,Pm

m∑
i=1

Ji(Pi) (7a)

subject to:
m∑

i=1
Pi − P�

(�P) ≥ Pd (7b)

Pi ∈ Pii = 1, . . . , m, (7c)

with Ji(Pi), P�(�P), and Pi respectively defined in (1), (5),
and (6). Problem (7) has a quadratic cost (7a), a quadratic
global constraint (7b) involving the decision variables of
all generators, and m local constraints (7c) each involving
the power of a single generator. Since the local set Pi is
the intersection between an interval and a union of disjoint
intervals arising from commission/decommission and prohib-
ited zones, (7) is a non-convex problem, which is difficult to
solve.

In this letter, we leverage Lagrangian duality along with
the scalar nature of the coupling constraint and propose a
computationally efficient bisection-based algorithm to provide
a feasible (possibly suboptimal) solution to (7).

III. PROPOSED APPROACH

Upon a close inspection of (7), it is clear that penalizing
the violation of constraint (7b) instead of enforcing it as
a constraint would turn the problem from a quadratically
constrained non-convex program into a program that is still
non-convex but with a quadratic cost function only. Moreover,
in such a case, the Pi’s would be independently constrained
by the sets Pi and would be coupled through the (quadratic)
cost function only. This is the typical situation in which
Lagrangian duality can help in dealing with the complicating
constraint (7b). Let us therefore lift (7b) to the cost function
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through a (single) Lagrange multiplier λ ≥ 0, define the
Lagrangian function

L(�P, λ
) =

m∑

i=1

Ji(Pi)+ λ
(

Pd + P�

(�P)−
m∑

i=1

Pi

)
, (8)

construct the dual function1

ϕ(λ) = min
{Pi∈Pi}mi=1

L(�P, λ
)
, (9)

and pose the dual problem

max
λ≥0

ϕ(λ). (10)

The dual problem in (10) is convex, despite (7) is non-
convex, and its optimal cost ϕ� provides a lower bound to the
optimal cost J� of (7), see e.g., [18, Sec. 5.1.3]. Moreover,
the scalar nature of constraint (7b) makes the dual function
ϕ(λ) one-dimensional and, thus, easy to maximize, as the
optimal value λ� can be found by looking for a zero of the
sub-differential map of the dual function. One could thus
compute an optimal dual solution λ�, and, then, recover a
primal solution by minimizing the Lagrangian at λ = λ�:

[
P1

(
λ�

) · · · Pm
(
λ�

)]� = arg min
{Pi∈Pi}mi=1

L(�P, λ�
)
. (11)

Such a solution, however, is not guaranteed to satisfy the
aggregate power demand since the dualized constraint (7b) is
not directly enforced in (11).

The approach proposed in this letter overcomes such limita-
tion, resorting to the dual bisection method introduced in [10]
for general non-convex problems with a single complicating
constraint. The procedure is guaranteed to either converge to
an optimal primal solution in a finite number of iterations or
generate a sequence of feasible primal solutions with non-
increasing cost. We will first describe the proposed scheme
(reported in Algorithm 1) and its properties, which will then
be theoretically discussed in the next subsection.

The bisection procedure starts with an interval [λ, λ̄] =
[0, λstart] (cf. Steps 1 and 2), where

λstart =
∑m

i=1

(
Ji

(
P̃max

i

)−minPi∈Pi Ji(Pi)
)

∑m
i=1 P̃max

i − P�(
�̃Pmax)− Pd

(12)

is selected to ensure that λ� ∈ [0, λstart], as later discussed
in Section III-A. Note that λstart is not difficult to compute
as the numerator is the difference between the production
costs associated to the maximum admissible power generation
and the costs associated to the minimum power generation
irrespectively of demand satisfaction summed across all gen-
erators, while the denominator is the difference between the
maximum admissible power generation (minus losses) and the
actual power demand. Then, a first feasible power allocation
�P is computed by minimizing the Lagrangian in (8) with a
penalization coefficient for constraint (7b) equal to λ = λ̄ =
λstart (cf. Step 3). If such allocation matches the demand Pd
exactly (cf. Step 4), then it is also optimal and is readily
returned in Step 5, otherwise is saved as the current best

1Note that function ϕ(·) is well defined since the sets Pi, i = 1, . . . , m are
closed and bounded, and functions Ji(·) and P�(·) are continuous.

Algorithm 1 Bisect EDP
1: λ← 0
2: λ̄← λstart in (12)
3: �P← arg min{Pi∈Pi}mi=1

L(�P, λ̄)

4: if
∑m

i=1 Pi − P�(�P) = Pd then
5: return �P
6: end if
7: �Pbest ← �P
8: repeat
9: λ̂← 1

2

(
λ̄+ λ

)

10: �P← arg min{Pi∈Pi}mi=1
L(�P, λ̂)

11: if
∑m

i=1 Pi − P�(�P) = Pd then
12: return �P
13: else if

∑m
i=1 Pi − P�(�P) > Pd then

14: �Pbest ← �P
15: λ̄← λ̂

16: else if
∑m

i=1 Pi − P�(�P) < Pd then
17: λ← λ̂

18: end if
19: until some stopping criterion is met
20: return �Pbest

allocation �Pbest in Step 7 and the algorithm proceeds to the
bisection loop (cf. Steps 8-19).

At the beginning of each bisection iteration the midpoint
λ̂ of the interval [λ, λ̄] is computed (cf. Step 9) and a new
allocation �P is obtained by minimizing the Lagrangian in (8)
with a penalization coefficient for constraint (7b) equal to λ =
λ̂ (cf. Step 10). If such allocation matches the demand Pd
exactly (cf. Step 11), then it is also optimal and is readily
returned in Step 12. If, instead, �P strictly satisfies the demand
(cf. Step 13), then it is feasible for (7) and its cost is no-
worse than that of the current �Pbest, since λ̂ < λ̄ and, hence,
constraint (7b) has been penalized less in favor of a better cost.
Therefore, �P is selected as the new best allocation and saved
into �Pbest in Step 14. At the same time, since we are producing
strictly more than the demand Pd, it may be that we are still
over-penalizing constraint (7b), and, hence, λ̂ is selected as
the new upper extreme of the bisection interval in Step 15. If,
instead, �P is not enough to satisfy the demand (cf. Step 16),
then it is infeasible for (7) and it is discarded. Accordingly,
since we are producing strictly less than the demand Pd, we are
under-penalizing constraint (7b), and, hence, λ̂ is selected as
the new lower extreme of the bisection interval in Step 17. The
loop continues until some stopping criterion is met, like when
a maximum number of iterations is reached or when the length
of the interval [λ, λ̄] falls below a certain threshold. Whenever
the loop stops, the algorithm returns the best allocation found
�Pbest (cf. Step 20).

A. Theoretical Discussion

In this section we show that problem (7) fits the framework
proposed in [10] and, hence, the DualBi algorithm proposed
in [10] can be applied and it actually reduces to Algorithm 1
when applied to problem (7). Any claim made in the previous
section will thus be justified by the corresponding claim
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in [10]. Let us start by noting that problem (7) has the structure

min
x∈X

f (x) (13a)

subject to: v(x) ≤ 0 (13b)

of [10, P] simply defining the x, f (x), v(x), and X quantities
in [10] as

x = �P (14a)

f (x) =
m∑

i=1

Ji(Pi), (14b)

v(x) = Pd + P�

(�P)−
m∑

i=1

Pi, (14c)

X = P1 × · · · × Pm. (14d)

The Lagrangian in (8) can be equivalently expressed as
L(x, λ) = f (x) + λv(x) and the dual function as ϕ(λ) =
minx∈X L(x, λ).

As we discussed in the previous section, v(x) ≤ 0 (i.e., (7b))
is indeed a complicating constraint and is also a support
constraint, as the demand Pd will not be satisfied by setting
the generators at their minimum admissible power. Since the
sets Pi, i = 1, . . . , m are all compact, X is compact too.
Moreover, since Ji(Pi) is quadratic in Pi for all i = 1, . . . , m
and P�(�P) is quadratic in P1, . . . , Pm, both f (x) and v(x) are
scalar continuous functions of x ∈ X.

Since we assumed Pd <
∑m

i=1 P̃max
i − P�(

�̃Pmax), this is

equivalent to know that there exists an x̃ = �̃Pmax such that
v(x̃) < 0, meaning that

ϕ(λ) = min
x∈X

L(x, λ) = min
x∈X

f (x)+ λv(x) ≤ f (x̃)+ λv(x̃).

This implies that lim supλ→+∞ ϕ(λ) = −∞ and, since ϕ(·)
is concave, that the level sets of ϕ(λ) are compact, which,
together with continuity, ensures that an optimal dual solution
λ� exists and, hence, [10, Assumption 1] is satisfied. Moreover,
according to [10, Th. 2], setting

λstart = ϕ(0)− f (x̃)

v(x̃)
= minx∈X L(x, 0)− f (x̃)

v(x̃)

(14)≡ (12),

results in DualBi skipping [10, Steps 4–10 in Algorithm 1]
and executing only [10, Steps 1–3 and Steps 11–30
in Algorithm 1], which are equivalent to the proposed
Algorithm 1 given the identifications in (14). Therefore,
by [10, Th. 1], Algorithm 1 either returns an optimal solution
to (7) after a finite number of iterations or refines its power
allocation �Pbest by progressively reducing its overall cost.

B. Implementation

Running Algorithm 1 requires solving problem (9) at dif-
ferent values of the dual variable λ. Despite being simpler
than (7), it still requires minimizing a quadratic cost function
over a non-convex set. Luckily each Pi is independently
constrained to belong to a union of intervals, which can be
easily reformulated as mixed-integer linear constraints.

For each generator i, let σi,j ∈ {0, 1}, j = 1, . . . , Ni
be additional binary decision variables encoding whether Pi
belongs to the j-th allowed power interval (σi,j = 1) or not
(σi,j = 0).

Then, the mutually exclusive conditions in (2) can be
equivalently reformulated as

Ni∑

j=1

σi,jPi,j ≤ Pi ≤
Ni∑

j=1

σi,jP̄i,j (15a)

Ni∑

j=1

σi,j ≤ 1, (15b)

where (15b) constrain Pi to belong to at most one interval,
while (15a) specifies the interval extremes based on the values
of σi,1, . . . , σi,Ni (cf. (2b)). When σi,1 = · · · = σi,Ni = 0,
which is allowed by (15b), constraint (15a) enforces Pi = 0
(cf. (2a)).

This shows that each local set Pi can be reformulated as

Pi = {Pi ∈ R: ∃ σi,1, . . . , σi,Ni ∈ {0, 1}: (3) ∧ (15)},
which is a mixed-integer set described by linear inequalities,
easily handled by off-the-shelf solvers. Moreover, this also
shows that problem (7) can be posed as a Mixed-Integer
Quadratically Constrained Quadratic Program (MIQCQP),
whereas the problem solved at each iteration of Algorithm 1
is (9), which can be posed as a significantly simpler Mixed-
Integer Quadratic Program (MIQP).

C. Computational Complexity

The MIQCQP (7) has a combinatorial complexity that scales
exponentially in the number m of generators and depends on
the number K of disjoint convex sets in P1×· · ·×Pm, which
is given by K = ∏m

i=1 nPi , with nPi ≤ Ni + 1 number of
disjoint intervals in Pi in (6). To solve (7), one could, in
principle, proceed via enumeration by fixing a power interval
in Pi for each generator i, solving the resulting (convex)
Quadratically Constrained Quadratic Program (QCQP), and
then choosing the best among the obtained K solutions. By
lifting the quadratic constraint to the cost, the approach in
this letter requires solving the MIQP (9), instead of the
MIQCQP (7), at each iteration of Algorithm 1. Admittedly, (9)
has the same combinatorial nature of (7). However, its solution
by enumeration would involve K (much simpler) quadratic
programs with box constraints instead of K QCQPs and, as
m grows, this balances the fact that it needs to be solved
repeatedly (see the results reported in Section IV).

IV. NUMERICAL SIMULATIONS

We now assess the efficacy of the proposed approach on
two benchmark EDPs described in [6, Section V-A], and then
test its scalability on randomly generated problem instances
of different dimensions. All tests are performed on a laptop
equipped with an Intel Core i7-9750HF CPU @2.60GHz and
16GB of RAM. Algorithm 1 is implemented in MATLAB
R2020b and uses CPLEX v12.10 to solve the MIQP obtained
at each iteration by lifting the complicating constraint. In each
test, we let Algorithm 1 run until the length of the interval
[λ, λ̄] falls below 10−8.

We measure the quality of a solution �P of (7) based on its
normalized excess of production

E
(�P) =

∑m
i=1 Pi − P�

(�P)− Pd

Pd
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TABLE I
IEEE BENCHMARK 1: COMPARISON OF THE SOLUTION OBTAINED VIA ALGORITHM 1 WITH THOSE OBTAINED BY ALTERNATIVE RESOLUTION
METHODS IN THE LITERATURE. THE SOLUTION MARKED WITH ∗ VIOLATES THE AGGREGATE DEMAND CONSTRAINT AND IS SUPER-OPTIMAL

and its relative optimality gap

�J
(�P) = J

(�P)− J�

J�
(16)

where J(�P) = ∑m
i=1 J(Pi) and J� is the optimal cost,

determined by solving problem (7) via Gurobi, setting its
optimality and feasibility tolerances to 10−8.

A. Benchmark Examples

The first benchmark problem considers an IEEE case-study
introduced in [6] with m = 6 generators that must satisfy
a demand of 1263 MW. The parameters of the system and
loss coefficients are reported in [6, Table I-II and Appendix]
and are omitted for the sake of conciseness. Table I compares
the best feasible solution �Pbest obtained by Algorithm 1 with
the solutions computed by the Genetic Algorithm in [5],
the Particle Swarm Optimization method in [6], the bi-level
Branch-and-Bound approach in [8], and the decentralized
scheme in [15]. Note that the solution obtained via the scheme
in [8] has a negative relative optimality gap and a negative
normalized excess of production. This means that it is super-
optimal but unfeasible. Indeed, it results in a power loss of
12.47 MW (as opposed to the 12.44 reported in [8]) and
in a power production that does not satisfy the total power
demand. The solution is marked with an ∗ in the table and
is excluded from the discussion in the sequel. Results show
that Algorithm 1 outperforms its competitors. The normalized
excess of production E(�P) is of the order of 10−9, which
implies that the allocation practically satisfies (7) with equality.
In addition, the relative optimality gap of the solution �Pbest is
at least five orders of magnitude below the one achieved by
the other methods and is smaller than the optimality tolerance
chosen for the Gurobi solver, meaning that the obtained
solution is also optimal.

The second benchmark test is another IEEE case study
first addressed in [6] comprising a larger number of generator
units (15 instead of 6) to satisfy a power demand equal
to 2630 MW. Only 4 of the generators present prohib-
ited operating zones (see [6, Tables V-VI and Appendix]
for the parameters). Also in this case Algorithm 1 finds
an optimal solution given that its relative optimality gap
is equal to 2.42 · 10−10, with an excess of production
of 1.08 · 10−6.

Fig. 1. EDP with m = 50 generators: relative optimality gap of the
solution computed by Algorithm 1 as a function of the iteration number.

B. Artificially Generated EDPs

We now assess the effectiveness of the proposed procedure
on randomly generated yet realistic instances of (7) (see the
protocol in the Appendix).

Figure 1 shows the evolution of the relative optimality gap
of the solution �Pbest computed by Algorithm 1 throughout
the iterations for an instance of the EDP (7) with m = 50
generators. As expected, the performance attained by �Pbest
improves throughout the iterations, and tends monotonically
to 0 as the number of iterations grows.

If we run Algorithm 1 on 100 instances of problem (7)
with m = 50 generators and different parameter sets, then,
it successfully computes a feasible solution for each test
and in 76% of the cases the relative optimality gap �J is
below the optimality tolerance of 10−8 chosen for the solver,
meaning that the obtained solution is also optimal for (7).
In the remaining tests, the average relative optimality gap is
3.73 ·10−3 and, thus, the obtained solution is still close to the
optimum.

We now consider instances of problem (7) with an increas-
ing number m of generators. The first two columns of Table II
report the normalized excess of production and the relative
optimality gap attained by the solution �Pbest computed by
Algorithm 1 for different values of m. The relative optimality
gap never exceeds 0.031% of the optimal cost and the extra-
production is always below 0.029% of the power demand.

The third and fourth columns of Table II compare the
execution time of Gurobi and Algorithm 1, respectively. As
the number of generators m increases, both algorithms exhibit
a rise in the computational time, reflecting an increase of the
problem complexity. However, the proposed approach scales
better with the size of the problem and is able to find feasible
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TABLE II
PERFORMANCE OF ALGORITHM 1 AS A FUNCTION OF m: RELATIVE
OPTIMALITY GAP, NORMALIZED EXCESS OF PRODUCTION, TIME

REQUIRED TO COMPUTE THE OPTIMAL SOLUTION, EXECUTION TIME

solutions for instances with up to m = 2000 generators in less
than 3 hours using the available computing resources.

Conversely, for instances with m ≥ 1000 Gurobi is not
able to compute an optimal solution within 5 hours. For all
those instances, the relative optimality gap �J achieved by
Algorithm 1 is computed using in (16) the optimal dual cost
ϕ� in place of J�, which increases the index value since ϕ� is
a lower bound of J�.

V. CONCLUSION

We addressed economic dispatch problems accounting for
power losses and prohibited operating zones. We proposed a
duality-based approach that recovers computational tractability
by dualizing the aggregate power demand constraint and
computes a feasible solution via a dual bisection iterative
algorithm. Simulations on benchmark examples showcase the
superiority of the approach with respect to state-of-the-art
competitors, which provide solutions that either yield a higher
production cost or do not meet the aggregate power demand.
Tests on randomly generated EDP instances with increasing
size show that the proposed approach is scalable and able to
compute near-optimal solutions.

APPENDIX

GENERATION OF AN EDP WITH m UNITS

The minimum and maximum power Pmin
i , Pmax

i of each
generator are multiples of 5 MW selected at random in the
interval [10, 300] MW and [1.1Pmin

i , 1.6Pmin
i ], respectively.

We set the number of generators characterized by prohibited
power zones to �0.2m�. For each of these generators, the
number of operating zones, their length and position within
the allowed power production range are selected at random so
that the different zones do not intersect and keep the problem
feasible. The upper and lower ramp limits �i and �̄i are
multiple of 5 MW randomly extracted from [0, Pmax

i − Pmin
i ].

The power Pi,0 produced in the previous time slot is selected
uniformly within one of the feasible intervals [Pi,j0 , P̄i,j0 ] for
some j0 extracted uniformly from {1, . . . , Ni}. To ensure that
the m×m matrix containing the loss coefficients bij is positive
definite and, thus, defines an actual power loss, we set it
equal to the sample covariance matrix of nvec realizations of
an m-dimensional multivariate normal random variable vector

with unitary mean and variance equal to 10−4. The number of
observations nvec is set to 100 and is doubled until the smallest
(positive) eigenvalue of the resulting covariance matrix is
larger than 10−5. The coefficients bi0 and b00 are extracted
uniformly from the intervals [10−8, 10−5] and [10−4, 10−2],
respectively. The cost coefficients are selected at random
within the following intervals ωi0 ∈ [0, 550], ωi1 ∈ [5, 15]
and ωi2 ∈ [0, 4 · 10−3]. The total power demand Pd is set
equal to a percentage ρ of the maximum output power that
the aggregate can produce, with ρ extracted uniformly from
the interval [20%, 80%]. Unfeasible instances are discarded
and replaced by feasible ones. This protocol allows to create
parameter sets comparable to the IEEE benchmark examples
in [6] and, thus, reasonable for a real application.
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