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Stabilization of a Limit Cycle for Discrete-Time
Switched Nonlinear Systems

Grace S. Deaecto , Member, IEEE, and Alessandro Astolfi , Fellow, IEEE

Abstract—This letter studies global exponential sta-
bilisation of a limit cycle of interest for discrete-time
switched nonlinear systems, in which the subsystems may
have different equilibria. As a first step, a set of candi-
date limit cycles is determined according to a criterion
related to the steady-state behavior of the system trajec-
tories. Afterwards, a state-dependent switching function,
based on sufficient conditions derived from a time-periodic
Lyapunov function, is proposed to ensure global exponen-
tial stability of the limit cycle and a guaranteed performance
level for the overall system. A class of polynomial switched
systems is used to illustrate the main results. For this
class, new LMI conditions are obtained that ensure local
exponential stability of the limit cycle, inside a polyhedral
set given by the designer. An ellipsoidal set of maximum
volume is determined such that any trajectory starting
inside it does not leave the polyhedron. The main features
of this methodology are illustrated by academic examples.

Index Terms—Switched nonlinear systems, discrete-time
domain, limit cycles, global exponential stability.

I. INTRODUCTION

SWITCHED systems are formed by a finite set of subsys-
tems and a switching function (or rule) responsible for

activating one of them at each instant of time. It characterizes
a subclass of hybrid systems, where each subsystem represents
a continuous dynamic that interacts with a discrete dynamic
represented by the switching rule. This rule may lead the
system to behave differently from the isolated subsystems.
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The intrinsic characteristics of this subclass of hybrid systems
have been explored in several areas of science and are
responsible for phenomena not encountered in non-switched
systems, [14]. For instance, the switching function can be
designed to ensure stability and suitable performance for the
overall system, even when all subsystems are unstable, or to
govern the state trajectories to an equilibrium point that is not
common to any of the subsystems. See [1], [4], [12] for some
practical application examples in the area of power electronics
and [14], [16], [21] for some basic references on switched and
hybrid systems.

Naturally, switched linear systems are simpler and have
attracted the attention of the scientific community. For this
class of systems, there exist several results dealing with
asymptotic stability of the origin, see, e.g., [3], [10], [13].
However, the generalization of these results to cope with
switched affine systems is not immediate. These differ from
linear systems by the presence of affine terms in their dynamic
equation allowing the subsystems to have distinct equilibria.
Generally, the equilibrium point of interest is not common to
any of the subsystems, which requires the implementation of
an arbitrarily fast switching frequency to ensure asymptotic
stability. References [18], [19] deal with global asymptotic
stability of an equilibrium for switched affine systems in the
continuous-time domain.

However, when the switching frequency is constrained to
respect some upper bound, asymptotic stability is not always
possible to attain. This is the case for discrete-time systems
in which the switching frequency is upper bounded by the
sampling rate. In this case, the literature provides sufficient
conditions to ensure practical stability, whereby the state
trajectories are driven to an attractive set containing the
equilibrium point of interest (see [8], [17]) or to a limit cycle,
see [2], [9], [20]. The advantage of the limit cycle approach is
that the steady-state is well-defined by the asymptotic stability
of the chosen limit cycle, whilst in the case of practical
stability, there is no information on the state trajectories
when they are inside the residual set, making the steady-state
bounded but completely unknown.

For the general class of switched nonlinear systems there are
only a few results dealing with the control design of a stabiliz-
ing switching rule. Making an analogy with the two previously
mentioned classes, we can split switched nonlinear systems
into two important subclasses. In the first, the origin is the
equilibrium point of interest, common to all the subsystems. In
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the second, the subsystems may have distinct equilibria, which
generally do not coincide with the desired equilibrium. For
the first subclass, [6] and, more recently, [7] have proposed
sufficient conditions for global asymptotic stability of the
origin and a guaranteed cost of performance for continuous
and discrete-time switched nonlinear systems, respectively. To
the best of the authors’ knowledge, the study of the second
subclass is still open.

In this letter our goal is to study this second subclass
by dealing with the asymptotic stabilisation of a desired
limit cycle for discrete-time switched nonlinear systems, thus
providing a generalization of [9] that treats switched affine
systems, exclusively. As a first step, a set of candidate
limit cycles, that satisfies the criterion of interest related to
the steady-state response, is determined. Afterwards, a state-
dependent switching function is proposed to guarantee global
exponential stability of a limit cycle, within the family of
candidates, and a desired level of performance. These results
are then particularized to cope with a class of polynomial
switched systems and sufficient conditions expressed in terms
of linear matrix inequalities (LMIs) are obtained that ensure
local exponential stability of the desired limit cycle, inside
a polyhedral set defined by the designer. This LMI-based
methodology has been inspired by the recent results proposed
in [7]. An ellipsoidal set of maximum volume is also deter-
mined, such that any state trajectory starting inside it does
not leave the polyhedron of interest. The main features of
the proposed theory are illustrated through two academic
examples.

Notation: The notation used throughout is standard. For real
vectors or matrices ′ denotes their transpose. For symmetric
matrices • denotes each of their symmetric blocks. The sets of
real and natural numbers, including zero, are denoted by R and
N, respectively. The set K = {1, . . . , N} is composed of the N
first positive natural numbers. For any symmetric matrix, X >

(resp.,<) 0 denotes a positive (resp., negative) definite matrix.
The square L2 norm of z[n], n ∈ N, is ‖z‖2

2 = ∑
n∈N ‖z[n]‖2,

where ‖z‖2 = z′z is the square of the Euclidean norm. The
modulo operator is defined by c = a mod b, where c is the
remainder of the Euclidean division between the integers a
and b. For a positive κ ∈ N, the function k(n) = n mod κ .
For a sequence x[n], the one step ahead operator is x+ =
x[n + 1], ∀n ∈ N.

II. PROBLEM STATEMENT

Consider the discrete-time switched nonlinear system
described by the equation

x+ = fσ (x), x[0] = x0 (1)

where x ∈ R
nx is the state vector, and σ : N → K is the

switching function that selects at each instant of time one of
the N available subsystems fσ ∈ {f1, . . . , fN}. In our context,
fi, ∀i ∈ K, are continuous functions and the associated
subsystems may have distinct equilibrium points xei, ∀i ∈ K,

such that

xei = fi(xei), (2)

and xei �= xej for some j �= i ∈ K. Moreover, each subsystem
may have multiple equilibria. In general, they do not coincide
with the point of interest chosen by the designer. This problem
is clearly more intricate than the stabilisation problem for the
case in which all subsystems share a common equilibrium as
in [7] and, in this sense, this letter is a generalization of [7].

Making a parallel with the switched affine system x+ =
Aσ x+bσ , which is a particular case of (1), observe that expo-
nential stability of a desired equilibrium point that does not
coincide with those equilibria of the subsystems is impossible
to ensure, since it would require an arbitrarily high switching
frequency, which does not occur in the discrete-time domain,
because it is always upper bounded by the sampling rate,
see [8] and [17] for detail. This is not the case for switched
linear systems, where bi = 0, ∀i ∈ K, since the origin is a
common equilibrium point for all subsystems.

For switched affine systems the literature studies this
problem by considering different attractors, instead of a single
point, for instance, invariant sets (see [8], [15]), or limit
cycles (see [9], [20]). The advantage of dealing with limit
cycles in comparison with invariant sets is the possibility of
ensuring exponential stability of the cycle, and guaranteed
performance indexes. If an invariant set is considered, only
practical stability is taken into account, whereby the state
trajectories are driven to an attractive set, as small as possible,
but nothing can be concluded about these trajectories when
they are inside such a set.

Assume that the system (1) admits a periodic solution xe

with period κ > 0, associated to a periodic switching function
σ [n] = c[k(n)] ∈ K, n ∈ N, where {c[n]}κ−1

n=0 is a sequence
of length κ denoted simply by c. The corresponding candidate
limit cycle is given as

Xe(c) = {xe[k(n)] : n ∈ N}, (3)

where the fundamental period {xe[n]}κ−1
n=0 satisfies

xe[1] = fc[0](xe[0]),

xe[2] = fc[1](xe[1]),
...

xe[0] = fc[κ−1](xe[κ − 1]). (4)

Therefore, we suppose that the system of nonlinear equa-
tions (4), to be solved by an appropriate nonlinear equation
solver, provides a candidate limit cycle associated to the
periodic switching sequence c. See [20] for a discussion on this
matter in the particular framework of switched affine systems.

For each κ > 0, define the set C(κ) = K
κ obtained from the

Cartesian product of K with itself κ times. This set contains
Nκ sequences c = {c[n]}κ−1

n=0 , that allow obtaining a family of
candidate limit cycles:

X = {Xe(c) : c ∈ C(κ)}. (5)

Let the subset Xs ⊂ X be formed by the candidates (5) that
satisfy some criterion for the steady-state trajectories, as for
instance, a maximum ripple criterion. In this case, given a
reference point x∗, we have

Xs =
{

Xe ∈ X : max
n∈[0,κ)

‖�(xe[n] − x∗)‖ ≤ 1

}

, (6)
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where � is selected by the designer. As an example, choosing
� = (1/r)I, with r > 0, this subset contains all the limit
cycles whose ripple values, related to the reference point
x∗, do not exceed the magnitude r, see [9] for detail. For
completeness, Cs ⊂ C(κ) is the corresponding subset of
sequences c associated to Xs.

Adopting the auxiliary state variable ξ = x − xe with xe ∈
Xe(c) given in (3), we obtain from (1) the equivalent switched
nonlinear system given by

ξ+ = gc[k(n)]σ (ξ), ξ [0] = ξ0, (7)

z = hσ (ξ), (8)

where the function gc[k(n)]σ is defined as

gc[k(n)]σ (ξ) = fσ (ξ + xe) − fc[k(n)](xe), (9)

since, from (3)-(4), x+
e = fc[k(n)](xe). Moreover, z ∈ R

nz is
the controlled output, such that hi(0) = 0, ∀i ∈ K, which is
used to establish a guaranteed level of performance for the
overall system. Note that global exponential stability of the
origin ξ = 0 of (7) implies the same for the associated limit
cycle Xe(c) of (1), since ξ → 0 whenever x[n] → xe[k(n)].

Our main goal is to determine a state-dependent switching
function σ [n] = u(ξ, n):Rnx × N → K to ensure global
exponential stability of a limit cycle Xe(c) of interest and a
suitable upper bound for the L2 norm of the controlled output
‖z‖2

2. The next section provides our main results.

III. MAIN RESULTS

Consider the time-varying Lyapunov function candidate

v(ξ, n) = V(ξ, k(n)), (10)

for all n ∈ N, where V is a time-periodic, radially unbounded,
and positive definite function, such that V(0, k(n)) = 0 and
V(ξ, 0) = V(ξ, κ). The next theorem provides, for a given
sequence c ∈ C(κ), conditions that ensure global exponential
stability of the limit cycle Xe(c) ∈ Xs and a guaranteed cost
of performance.

Theorem 1: Let a sequence c ∈ Cs associated to the
limit cycle Xe(c) ∈ Xs of period κ > 0 be given. Define
qi(ξ) = hi(ξ)′hi(ξ) and assume that there exists a time-
periodic, radially unbounded, and positive definite function V ,
as well as positive scalars a and b satisfying, for all ξ ∈ R

nx

and n ∈ [0, κ), the inequalities

a‖ξ‖2 ≤ V(ξ, k(n)) ≤ b‖ξ‖2 (11)

and, for all ξ �= 0 and n ∈ [0, κ), the inequalities

V
(
gc[n]c[n](ξ), k(n + 1)

) − V(ξ, k(n)) + qc[n](ξ) < −εV(ξ, k(n)),(12)

with ε > 0 and arbitrarily small. Then, the state-dependent switching

function σ [n] = u(ξ, n) with

u(ξ, n) = arg min
i∈K V

(
gc[k(n)]i(ξ), k(n + 1)

) + qi(ξ) (13)

ensures global exponential stability of the origin ξ = 0 of the system (7)-

(8) or, equivalently, global exponential stability of the limit cycle Xe(c)

of the system (1). Moreover, the inequality

‖z‖2
2 < V(ξ [0], 0) (14)

holds for ξ [0] �= 0.

Proof: Assume that inequalities (11)-(12) are satisfied.
Using the switching function σ [n] = u(ξ, n) given in (13) and
the Lyapunov function (10), along an arbitrary trajectory of
the system, we have, for all n ∈ [0, κ) and ξ �= 0,

�v = V
(
ξ+, k(n + 1)

) − V(ξ, k(n)) + qσ (ξ) − z′z
= min

i∈K
(
V

(
gc[n]i(ξ), k(n + 1)

) + qi(ξ)
) − V(ξ, k(n)) − z′z

≤ V
(
gc[n]c[n](ξ), k(n + 1)

) − V(ξ, k(n)) + qc[n](ξ) − z′z
< −z′z, (15)

where the second equality is due to the switching func-
tion (13) and the first inequality is a consequence of the
minimum operator. The last inequality is due to (12). The
time-periodicity of the Lyapunov function v(ξ, n) = V(ξ, k(n))

guarantees that �v(ξ, n) < 0 for all n ∈ N and ξ �= 0, as
a consequence of (15). Hence, with ε > 0, arbitrarily small,
together with (11), we have

‖ξ [n]‖2 ≤ (b/a)μn‖ξ [0]‖2 (16)

where μ = 1 − ε ∈ (0, 1), indicating that the origin ξ = 0 is
globally exponentially stable. Now calculating the telescoping
sum of both sides of �v < −z′z for all n ∈ N we obtain (14),
which concludes the proof.

Note that using Theorem 1 we can guarantee a suitable level
of performance for the steady-state and the transient response.
Indeed, the steady-state requirements are accomplished when
the subset of candidate limit cycles Xs is determined. For
a given limit cycle Xe(c) ∈ Xs the transient response is
optimized by minimizing the right-hand side of (14). We
can also choose the limit cycle inside Xs that provides the
best guaranteed performance. In this case, the switching rule
σ [n] = u(ξ, n) of Theorem 1 must be determined by solving,
for a given initial condition ξ [0], the optimization problem

min
c∈Cs

inf
V>0

V(ξ [0], 0) (17)

subject to (11)-(12). The resulting limit cycle Xe(c∗) is the
one, among the family Xs, that provides the best guaranteed
performance. Observe that, in this context, uniqueness of
solution of (4) is not an important issue whenever the stability
conditions of Theorem 1 are fulfilled.

Although Theorem 1 provides conditions for global expo-
nential stability of ξ = 0, they may be satisfied only in a
pre-specified domain ξ ∈ X containing the origin, leading to
a local stability result. This is the case for the polynomial
switched systems to be treated in the next subsection, where
conditions expressed in terms of LMIs are provided to ensure
local exponential stability of a limit cycle Xe(c) ∈ Xs.

A. Degree Two Polynomial Systems

In this subsection our main result is applied to the class of
degree two polynomial systems. Consider the system (1) with
the structure

fσ (x) = Fσ (x) x + bσ (18)

where the matrix functions Fi(x), ∀i ∈ K, are affine with
respect to the state variable x, that is:

Fi(x) = F0i +
nx∑

j=1

Fjixj, (19)
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where xj is the j-th component of the vector x and Fji ∈ R
nx×nx

are constant matrices for all j ∈ [0, nx] and i ∈ K. Note
that the system (1) with (18)-(19) is a polynomial system,
having the state of dimension nx, with dynamics described by
polynomials of degree two.

We can define a controlled output z and apply the change
of variable ξ = x − xe to obtain the equivalent system (7)-(8)
with

gc[k(n)]σ (ξ) = Aσ (ξ, xe)ξ + �c[k(n)]σ (xe), (20)

hσ (ξ) = Cσ (ξ)ξ, (21)

in which

Ai(ξ, xe) = Mi(xe) + F0i +
nx∑

j=1

Fji
(
ξj + xej

)
, (22)

with Mi(xe) = [F1ixe · · · Fnxixe], and

Ci(ξ) = C0i +
nx∑

j=1

Cjiξj, (23)

�si(xe) = fi(xe) − fs(xe), (24)

where ξj and xej are the j-th components of ξ and xe,
respectively, and (i, s) ∈ K × K.

Inspired by the numerical method developed in [7], our
goal is to ensure local exponential stability of a limit cycle
Xe(c) ∈ Xs of interest, considering that the state variable ξ

is constrained to a convex polyhedral set, provided by the
designer. This set is defined by the convex combination of
Nv vertices ξr, that is X = co{ξr}Nv

r=1, and can be rewritten,
alternatively, as

X = {ξ | a′
mξ ≤ 1, m ∈ [1, 2nx]} (25)

in which am defines the m-th hyperplane, see [5, Section 8.4.2].
Adopting the Lyapunov function (10) with

V(ξ, k(n)) = ξ ′P[k(n)]ξ (26)

for n ∈ N and P[k(n)] > 0, the next corollary particularizes
Theorem 1 to cope with this class of nonlinear systems and
provides sufficient conditions for local exponential stability, as
well as an ellipsoidal set E0 ⊂ X of maximum volume, such
that for all ξ0 ∈ E0, we have that ξ [n] ∈ X for any n ∈ N.

Corollary 1: Let a sequence c ∈ Cs associated to the limit
cycle Xe(c) ∈ Xs of period κ > 0 be given, as well as
vectors am, ∀m ∈ [1, 2nx], that define the convex polyhedral
set X in (25). The solution of the convex optimization
problem

min
S[n]>0

log det S[0]−1 (27)

subject to

a′
mS[n]am < 1 (28)

⎡

⎣
S[k(n)] • •

Ac[n](ξr, xe[n])S[k(n)] S[k(n + 1)] •
Cc[n](ξr)S[k(n)] 0 I

⎤

⎦ > 0 (29)

for all m ∈ [1, 2nx], r ∈ [1, Nv], and n ∈ [0, κ), ensures that
the state-dependent switching function σ [n] = u(ξ, n) with

u(ξ, n) = arg min
i∈K

[
ξ

1

]′[A′
iP

+Ai + Qi •
�′

c[k(n)]iP
+Ai ρc[k(n)]i

][
ξ

1

]′
(30)

in which matrices Ai = Ai(ξ, xe[k(n)]), P[k(n)] = S[k(n)]−1,
P+ = P[k(n + 1)], Qi = Ci(ξ)′Ci(ξ) and the scalar ρc[k(n)]i =
�′

c[k(n)]iP
+�c[k(n)]i, makes the origin ξ = 0 of system (7)-(8),

defined by the functions (20)-(21), locally exponentially stable
or, equivalently, the limit cycle Xe(c) ∈ X of the system (1)
defined by (18)-(19) locally exponentially stable. Moreover,
the set

E0 = {ξ | ξ ′S[0]−1ξ ≤ 1} (31)

inscribed in X is the ellipsoid with maximum volume with the
property that for all ξ [0] ∈ E0, we have ξ [n] ∈ X for all n ∈ N

and the inequality ‖z‖2
2 < ξ [0]′P[0]ξ [0] holds.

Proof: The first part of the proof consists in showing that the
conditions of this corollary ensure that the ones of Theorem 1
are valid for all ξ ∈ X. Firstly, note that the choice of
the Lyapunov function (10) with the time-periodic quadratic
function (26) implies that the inequalities (11) are satisfied.
Moreover, for this class of systems, inequality (12) becomes,
for ξ �= 0:

ξ ′(Ac[n](ξ, xe)
′P[k( n + 1)]Ac[n](ξ, xe)

− P[k(n)] + Qc[n]

)
ξ < 0. (32)

This inequality is always satisfied if the term inside the
parentheses is negative definite for all ξ ∈ X. This is
accomplished if there exist matrices S[k(n)] = P[k(n)]−1 > 0
satisfying

⎡

⎣
S[k(n)] • •

Ac[n](ξ, xe)S[k(n)] S[k(n + 1)] •
Cc[n](ξ)S[k(n)] 0 I

⎤

⎦ > 0, (33)

for all ξ �= 0, such that ξ ∈ X for all n ∈ [0, κ). Indeed,
multiplying both sides of (33) by diag(S[k(n)]−1, I, I) and
performing the Schur Complement with respect to the two last
rows and columns, we obtain the term inside the parentheses
in (32). Since the matrices Ai and Ci are affine with respect
to ξ (see (22) and (23)), to check the feasibility of (33) for all
ξ ∈ X is equivalent to check feasibility at the Nv vertices of X,
leading to (29). The switching function (30) follows directly
from (13).

The last part of the proof consists in showing that for all
ξ [0] ∈ E0, we have that ξ [n] ∈ X for all n ∈ N. Indeed, note
that according to [5, Sec. 8.4.2], the inequality (28) ensures
that the level sets of the Lyapunov function are inside the
polyhedron X defined in (25), that is {ξ | ξ ′P[n]ξ ≤ 1} ⊂ X

for all n ∈ N. Moreover, the optimization problem (27)-(29)
maximizes the volume of the ellipsoid E0 inscribed in X.
Hence, the fact that ξ [n] ∈ {ξ | ξ ′P[n]ξ ≤ 1} and �v < 0
implies that ξ [n + 1] ∈ {ξ | ξ ′P[n + 1]ξ ≤ 1} and as a
consequence ξ [n + 1] ∈ X for all n ∈ N, indicating that once
ξ [0] ∈ E0, the trajectory ξ [n] does not leave the set X for all
n ∈ N as stated. The proof is complete.
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This corollary provides a state-dependent switching function
based on conditions expressed in terms of LMIs. The objective
function is nonlinear, but is convex, and well-suited to be
optimized via the Frank-Wolfe algorithm [11]. As before,
instead of providing a given sequence c ∈ Cs, we can
determine the one that optimizes the objective function

min
c∈Cs

min
S[n]>0

log det S[0]−1, (34)

subject to (28)-(29). Moreover, note that these conditions take
into account the guaranteed cost ‖z‖2

2 < ξ [0]′P[0]ξ [0] valid
for ξ [0] �= 0 and, therefore, a larger set E0 may be obtained
by considering only stability by setting Ci(ξ) = εI, ∀i ∈ K,
with ε > 0 arbitrarily small.

IV. ILLUSTRATIVE EXAMPLES

This subsection provides two academic examples inspired
by [7, Examples 4 and 5]. All the calculations have been
performed in MATLAB - R2017a using the LMI Solver
routines in an Apple computer with operating system MAC
OS version 10.13.6.

Example 1: Consider the second order switched nonlinear
system (1) given by

f1(x) =
[

1.3x1 − 0.8x2 − 0.02x2
1 + 1

0.4x1 + 0.8x2 + 1

]

, (35)

f2(x) =
[

x1 + 0.2x2 − 1
0.4x1 + 0.2x2 + 0.02x2

2 − 1

]

, (36)

which has the structure of (18)-(19). Note that the equilibrium
points of the first and second subsystems are x1

eq = [ −
2.40 0.21]′ and x2

eq = [11.25 5.00]′, respectively. Our goal is
to drive the trajectory of the first state component to a value
around 4 with a maximum ripple of 1, that is, x1 ∈ [3, 5]. This
value is not close to the equilibrium of any of the subsystems.
For κ = 6, we have considered the criterion (6) with � =
[1 0] and x∗ = [4 ?]′, where the symbol “?” indicates that the
second component is not important, and solving (4), we have
obtained 6 candidate limit cycles composing the set Xs ⊂ X.
Defining the controlled output (21), with h1(ξ) = h2(ξ) = εξ

and ε = 0.001, and taking into account the region ξ ∈ X =
[−5 5] ×[−5 5], which is alternatively defined in (25) by the
hyperplanes a′

1 = [ − 0.2 0], a′
2 = [0.2 0], a′

3 = [0 − 0.2] and
a′

4 = [0 0.2], we have solved the optimization problem (34),
subject to the conditions (28)-(29) of Corollary 1, and obtained

P[0] =
[

0.0565 0.0070
0.0070 0.0409

]

(37)

associated to c = {2, 2, 1, 1, 2, 1} and the limit cycle

{xe[n]}5
n=0 =

{[
3.8912
3.9839

]

,

[
3.6879
1.6707

]

,

[
3.0221
0.8651

]

,

[
4.0539
2.9009

]

,

[
3.6207
4.9423

]

,

[
3.6091
1.9253

]}

. (38)

The top plot in Figure 1 displays the state trajectory ξ evolving
from ξ0 = [−2.95 −3]′ ∈ E0, where it is possible to note
that ξ ∈ X for all n ∈ N. Finally, the bottom plot shows
the corresponding switching function. Note that it does not
coincide with the periodic switching sequence σ [n] = c[k(n)].

Fig. 1. State trajectory ξ (top); switching function (bottom).

Example 2: Consider the third order switched nonlinear
system defined as

f1(x) =
⎡

⎣
1.2x1 + 0.02x2

1−0.2
−x1 + 0.8x2−0.1x2

2 + 1.3
0.5x3 + 1

⎤

⎦, (39)

f2(x) =
⎡

⎣
0.7x1 + 0.5

−0.6x2−2x3−0.02x2
3 + 7

−1.2x3 + 0.02x1x2 + 4

⎤

⎦. (40)

The equilibrium points of the isolated subsystems are x1
eq =

[0.92 1.20 2.00]′ and x2
eq = [1.67 2.02 1.85]′, respectively. We

have considered the criterion (6) with � = [0 0 1] and x∗ =
[? ? 1.5]′ to drive the third component of the state inside the
interval x3 ∈ [0.5, 2.5] in steady-state. For κ = 5, solving (4),
we have obtained 17 candidate limit cycles composing the set
Xs ⊂ X. Moreover, considering the region X ≡ [−5 5] ×
[−5 5] × [−5 5], and h1(ξ) = h2(ξ) = h3(ξ) = εξ with ε =
0.001, the solution of the optimization problem (34), subject
to (28)-(29), has provided

P[0] =
⎡

⎣
0.2241 −0.0221 0.0321

−0.0221 0.0434 −0.0108
0.0321 −0.0108 0.1301

⎤

⎦ (41)

associated to c = {1, 2, 1, 2, 2} and the limit cycle

{xe[n]}4
n=0 =

⎧
⎨

⎩

⎡

⎣
2.0632
1.5138
1.9249

⎤

⎦,

⎡

⎣
2.3610
0.2187
1.9625

⎤

⎦,

⎡

⎣
2.1527
2.8669
1.6554

⎤

⎦,

⎡

⎣
2.4759
0.6189
1.8277

⎤

⎦,

⎡

⎣
2.2331
2.9064
1.8374

⎤

⎦

⎫
⎬

⎭
. (42)

The top of Figure 2 displays the state trajectory ξ evolving
from ξ0 = [−0.7 1.4 2.5]′ ∈ E0. Note that this trajectory does
not leave X and converges to the origin ξ = 0. The middle
plot shows x3, indicating that the steady-state response belongs
to the interval [0.5, 2.5]. Finally the bottom plot shows the
ellipsoid E0 expressed in terms of x, the state trajectory x and
the corresponding limit cycle.
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Fig. 2. State trajectory ξ (top); state x3 (middle); ellipsoid E0 expressed
in terms of x, as well as the trajectory x together with the corresponding
limit cycle (bottom).

V. CONCLUSION

In this letter we have studied the stabilization of a limit
cycle of interest for discrete-time switched nonlinear systems.
After determining the set of candidate limit cycles, by means
of a criterion related to the steady-state response, we have
provided sufficient conditions for the design of a state-
dependent switching function able to ensure global exponential
stability of the desired limit cycle. For a particular class
of switched polynomial systems we have derived a new
control methodology based on LMI conditions to guarantee
local exponential stability of the limit cycle. Two academic
examples shown the validity of the proposed theory. An
interesting and challenging subject for future work is to deal
with robust asymptotic stabilisation of limit cycles for discrete-
time switched nonlinear systems, when the dynamic matrix is
subject to polytopic uncertainties. This theme is a challenge
even for switched affine systems that have a simpler structure.
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