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Elastic Tube Model Predictive Control
With Scaled Zonotopic Sets

Sabin Diaconescu , Florin Stoican , Member, IEEE, Bogdan D. Ciubotaru ,

and Sorin Olaru , Senior Member, IEEE

Abstract—A novel parameterization of the tube asso-
ciated with the Robust Model Predictive Control law
is proposed. The aim is to reduce the computational
complexity by describing the tube as a sequence
of elastically-scaled zonotopic sets. The developments
demonstrate the efficacy within the context of constrained
control of a system affected by additive and bounded
exogenous disturbances. The underlying set containment
conditions using zonotopic sets result in linear complexity.

Index Terms—Constrained control, predictive control for
linear systems, robust control.

I. INTRODUCTION

MODEL predictive control (MPC) is among the most pop-
ular control techniques and has been generally adopted

by both academic and industrial control communities [1], [2].
It provides a high degree of flexibility, for both performance
optimization and constraint handling, as well as an effective
way of negotiating the trade-off between computational com-
plexity and cost-function (sub)optimality [1], [3].

Models describing real systems rely on approximations and
rarely describe the underlying dynamics of the system to their
full extent. This issue is well-known [4] and has given rise to
avenues of research on robust and stochastic MPC [5]. Tube-
based MPC, a practical implementation of the former, tackles
model uncertainties and exogenous disturbances by employing
a sequence of sets ensuring that all future trajectories of the
system will be contained within (see [6]).

To obtain a numerically tractable optimization problem,
parameterizations of the sets employed in the tube’s definition
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must be used. The simplest one is called rigid tube MPC
and it employs fixed size set translations to construct the
tube [7]. Scaling the sets produces the so-called homothetic
tube MPC approaches [8]. Next, in the parameterized tube
MPC approach, the tube’s cross-sections are parameterized
via convex hulls described by a finite number of points [9],
resulting in a quadratic increase in the number of decision
variables w.r.t. the prediction horizon. Another idea is to
employ a fixed number of half-spaces in the set description,
via an elasticity parameter [10], [11] that controls each half-
space’s offset, thus, the elastic tube moniker. The main benefits
of the homothetic and elastic approaches are the enlarged
domain of attraction and improved performance.

The sets composing the tube are often polyhedral which
negatively affects the MPC problem’s size and implementa-
tion, due to the complexity of the set description. Ellipsoidal
sets [12] are an alternative, but they are relatively conservative
in representation and lead to quadratic constraints.

The main idea in the present work is to consider
zonotopes [13], which offer an excellent balance between
the flexibility of the representation and scalability. Recent
works have recognized their potential and embedded them
in applications ranging from set estimation [14] to fault
detection and isolation [15] and tube MPC construc-
tions [16], [17], [18], [19]. The latest three works use scaled
zonotopes [20], [21] to characterize the tube profile, with
the key differences from [8], [11] that the scaling factors
remain constant along the prediction horizon. Noteworthy, the
uncertainty sets in [17], [18], [19] are adjustable. The scaling
of zonotope generators is also used to optimize the size of
Robust Positive Invariant (RPI) sets [22]. Other approaches
aim to reduce the tube’s complexity by particular choices of
the feedback laws [23].

The main contribution of the present work lies in con-
sidering zonotopes, whose generators are independently
scaled along the prediction horizon, to implement an elastic
tube parameterization with reduced computational complexity
through linear set containment conditions. Proposition 3 han-
dles the zonotopic case, while Proposition 2 provides a link to
the polyhedral case. The approach improves the existing state-
of-the-art methods for tube computation and it is validated on
a system with parameterizable size (impractical to handle at
higher dimensions through the standard polyhedral variants).

This letter is organized as follows. Section II provides
the preliminaries on set operations and zonotopes. The back-
ground required for tube MPC along with the computational
difficulties associated with this approach are presented in

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0006-0310-2127
https://orcid.org/0000-0002-4550-9113
https://orcid.org/0000-0002-8234-6130
https://orcid.org/0000-0003-3256-9595


1344 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Section III. Section IV provides extensions for the polyhedral
variants of tube MPC and addresses the scaled zonotopic
tube parameterization facilitating reduced-complexity elastic
tube MPC implementations. Section V illustrates a practical
application of these techniques in the context of a system with
parameterizable size. Section VI summarizes this letter.

Notation: The set of integers residing in intervals [x1, x2] ⊂
R are denoted by I[x1,x2]. If x2 = ∞, the shortcut I≥x1 =
I[x1,∞] will be used. The term 1n denotes a vector of ones of
length n. For two sets P, Q ⊂ R

n, P ⊕ Q = {p + q : ∀p ∈
P,∀q ∈ Q} denotes their Minkowski sum and P 	 Q = {p ∈
P : {p} ⊕ Q ⊆ P} denotes their Pontryagin difference. The
term xm:n denotes the sequence {xm, . . . , xn} for some m, n ∈
I≥0. The notation Xi and X�

i denote the i-th column and the
i-th row of a matrix X, respectively. The symbol ⊥ denotes
orthogonality between two vectors.

II. PRELIMINARIES

Polyhedral sets have a dual representation [13]:
1) half-space description, given by

X = {x ∈ R
n : F�x ≤ θ}, (1)

where F ∈ R
n×q and θ ∈ R

q, with q denoting the
number of constraints (the “half-spaces”);

2) vertex description, given by

X = {x ∈ R
n : x = Vα, α�1ν = 1, α ∈ R

ν
≥0}, (2)

where V ∈ R
n×ν gathers as its columns the vertices used

in the convex sum description.
This dual representation is one of the reasons for the pervasive-
ness of polyhedral sets in control applications. In particular,
for two sets X, Y ⊂ R

n, given in half-space (1) and vertex (2)
forms, the inclusion X ⊆ Y is equivalent with

F�
j Vi ≤ θj, j ∈ I[1,q], i ∈ I[1,ν]. (3)

A zonotope [13] is a centrally symmetric polytope which
can be described as a Minkowski sum of line segments. In its
generator representation, it is given by

Z = 〈c, G〉 = {x ∈ R
n : x = c + Gξ, ‖ξ‖∞ ≤ 1}, (4)

where c ∈ R
n denotes its center and G ∈ R

n×D its generator
matrix. The zonotopes are [13]:

1) closed under affine transformations

r ⊕ R〈c, G〉 = 〈r + Rc, RG〉, (5)

for any pair r, R of admissible dimensions;
2) closed under Minkowski sum

〈c1, G1〉 ⊕ 〈c2, G2〉 = 〈c1 + c2,
[
G1 G2

]〉; (6)

3) symmetric: −〈c, G〉 = 〈−c, G〉, up to their center.
A natural extension is the notion of scaled zono-

tope [20], [21] obtained by denoting G = G�, where � =
diag(δ). The rationale for this construction is that parameter
δ ∈ R

D≥0 allows to define an “elastic” boundary for the
set but it retains enough structure to keep its description
‘simple’.

The process of checking the inclusion of Z in (4) or of its
scaled counterpart Z(c, δ) = 〈c, G�〉 into X is given by the
necessary and sufficient condition [24]

〈c, G�〉 ⊆ X ⇔

F�
i c +

D∑

j=1

∣∣∣F�
i Gj

∣∣∣δj ≤ θi, i ∈ I[1,q]. (7)

Note that the parameter δ propagates linearly through the
above inclusion and that the idea is equivalent to checking the
intersection between a zonotope and a half-space [22].

III. ROBUST MPC BACKGROUND

Consider the linear time-invariant (LTI) system

xk+1 = Axk + Buk + ωk (8)

where xk, xk+1 ∈ X ⊂ R
n denote the current and successor

state, uk ∈ U ⊂ R
m the control input, and ωk ∈ W ⊂ R

mω

the exogenous disturbance; the matrices A ∈ R
n×n, B ∈ R

n×m

are the known state and input matrices, while U , X and W
denote the sets bounding their associated signals. For the input
sequence uN = {u0, u1, . . . , uN−1}, the trajectories of (8), with
the initial state x0 ∈ X0, lie in the feedforward reachable set
sequence

Rk+1(x0, uk) = {Axk + Buk + ωk, (9)

xk ∈ Rk(x0, uk−1), ωk ∈ W}
for k ∈ I[0,N−1], R0(x0,∅) = X0, and uk an admissible
sequence of inputs.

Owing to the superposition property of linear dynamics, (8)
can be decomposed into its ‘nominal’ dynamics,

x̄k+1 = Ax̄k + Būk, (10)

and its state tracking error dynamics (zk = xk − x̄k),

zk+1 = Azk + Bvk + ωk, (11)

linked through the control action uk = ūk + vk, whose compo-
nents may be seen as a combination of feedforward action (ūk),
which steers (10), and feedback action (vk), which ensures
the stability and disturbance rejection of (11). This allows to
recast the set recurrence, in the parlance of [25], [26], into
nominal and disturbance-affected components Rk(x0, uk) =
{x̄k} ⊕ Rk(z0, vk).

To do so, consider the bounding sets 	k,Vk verifying set
inclusions

zk ∈ Rk(z0, vk) ⊆ 	k, vk ∈ Vk, ∀k ∈ I[0,N]. (12)

Then, the tube MPC problem is given by [27]

ū

N = arg min

ūN
x̄�

N Px̄N+
N−1∑

k=0

(
x̄�

k Qx̄k + ū�
k Rūk

)
, (13a)

s.t. x̄k+1 = Ax̄k + Būk, k ∈ I[0,N−1], (13b)

{x̄k} ⊕ 	k ⊆ X , k ∈ I[0,N−1], (13c)

{ūk} ⊕ Vk ⊆ U , k ∈ I[0,N−1], (13d)

{x̄N} ⊕ 	N ⊆ T . (13e)

Along a prediction horizon of length N, the nominal state
is updated in (13b), stage state and inputs are bounded by
the tightened constraints (13c) and (13d), and the terminal
state is bounded by a tightened terminal set (13e), with the
standard control invariant properties. The cost is quadratic and
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it is defined in (13a) by matrices Q ∈ R
n×n, R ∈ R

m×m and
P ∈ R

n×n, which are positive (semi-)definite and symmetric,
i.e., Q = Q� � 0, R = R� � 0, P = P� � 0. The term
uk, applied to the system (8), is obtained by selecting the first
element of the optimal control sequence ū


N ∈ R
Nm, to which

the feedback term vk is appended.
The linchpin of the formulation (13) is the nature and the

computational aspect of the sets 	k,Vk from (12), which
tighten the constraints (13c)–(13e). At first glance, this allows
the definition of 	k = Rk(Z0, vk) as the feedforward
reachable set of dynamics (11). Unfortunately, the complexity
of 	k quickly becomes unmanageable and various over-
approximations have to be used. The choices range from the
simple initial rigid tube approach of [7] to the more recent
homothetic [8] and elastic [10], [11] tube ones, which allow
changes in the tube’s profile along the prediction horizon. In
any case, the admissibility condition that has to be verified
becomes

{Azk + Bπ(zk) : zk ∈ 	k} ⊕ W ⊆ 	k+1, (14)

with vk = π(zk), an a priori fixed feedback control policy.
When, vk = Kzk, with K a static feedback gain ensuring closed
loop stability for dynamics (11), (14) becomes

(A + BK)	k ⊕ W ⊆ 	k+1, (15)

and, furthermore, Vk = {π(zk) : zk ∈ 	k} = K	k.
Some of the aforementioned tube MPC variants consider

either polyhedral sets, with clear limitations on the com-
plexity and the fragility of their ancillary algorithms [13],
or ellipsoidal sets, which have robust algorithms but are
conservative w.r.t. the set description. Our goal is to adapt
the pioneering and state of the art work of the elastic tube
parameterization approach [11] to the scaled zonotopic case.
The next section paves the way.

IV. ROBUST MPC WITH SCALED ZONOTOPIC SETS

This section recalls the polyhedral approach from [11] and
uses it to introduce the elastic zonotopic approach for which
further constructive and computational aspects are presented.

A. Extensions for the Polyhedral Elastic Tube
Let us consider polyhedral sets P, Q ⊂ R

n given in half-
space form (1) and a vector d̄ ∈ R

n. Classically, inclusion
P ⊕ {d̄} ⊆ Q holds iff

max
x∈P

FQx + FQd̄ ≤ θQ (16)

holds element-wise. Unfortunately, checking (16) requires the
vertex description of the inner polytope P. Among many
others, [28] makes use of a necessary and sufficient condition
which involves only the half-space representation of the
polytopes, as illustrated in the following lemma.

Lemma 1: Inclusion P ⊕ {d̄} ⊆ Q holds iff it exists H ∈
R

nP×nQ
≥0 which verifies

H ≥ 0, HFP = FQ, HθP + FQd̄ ≤ θQ. (17)

Remark 1: Note that as long as P and Q are fixed, rela-
tions (17) are linear in matrix H.

For further use we recall next a slight variation of the
polytopic elastic tube MPC presented in [11].

Proposition 1: Considering the parameterized polyhedral
set

S(a) = {x ∈ R
n : FSx ≤ a} (18)

with a ∈ R
qS
≥0, and denoting 	k = S(ak), Vk = KS(ak), the

MPC problem (13) becomes

ū

N = arg min

ūN ,a1,...,aN
x̄�

N Px̄N +
N−1∑

k=0

(
x̄�

k Qx̄k + ū�
k Rūk

)
,

(19a)

s.t. x̄k+1 = Ax̄k + Būk, k ∈ I[0,N−1], (19b)

HS ≥ 0, HSFS(A + BK) = FS, (19c)

HSak + ω̄ ≤ ak+1, k ∈ I[0,N−1], (19d)

HX ≥ 0, HXFS = FX, (19e)

HXak + FXx̄k ≤ θX, k ∈ I[0,N−1], (19f)

HU ≥ 0, HUFS = FUK, (19g)

HUak + FUūk ≤ θU, k ∈ I[0,N−1], (19h)

HT ≥ 0, HTFS = FU, (19i)

HTak + FTx̄N ≤ θT , (19j)

with shorthand ω̄ = maxω∈W FSω.
Proof: To derive (19), we need to express, via Lemma 1, the

set inclusions from (13) and (15), modified to use the elastic
sets S(ak) defined in (18). In the case of (15), and noticing
	k = S(ak), the set inclusion becomes (A + BK)S(ak) ⊕
W ⊆ S(ak+1), which, via Lemma 1, is equivalent with
checking (19c)–(19d). The set inclusions (13c) and (13e) can
be reformulated similarly and correspond to the group of
constraints (19e)–(19h) and (19i)–(19j).

Remark 2: While matrices H{S,X,U,T} and vector ω̄ may
be part of the optimization problem, in the case of (19)
they are computed before the first call of the MPC problem.
The caveat is that H{S,X,U,T} matrices are not unique and
a priori fixing them may lead to a sub-optimal solution. A
simpler formulation is presented in [11] but it is mainly
required because the gain K is allowed to vary along the
prediction horizon. Here, a static gain has been chosen to
carry computations offline and the only additional variables
introduced in the original MPC problem are the scaling factors
{ak}k=1:N .

Remark 3: The introduction of scaling factors in (19) may
lead to an infeasible problem, as (19d) imposes a relation
between successive values ak, ak+1 which may make infeasible
the constraints (19f), (19h) or (19j).

Imposing a particular structure on the elements of the
scaling vector ak allows to describe either the homothetic case,
where ak = ak · 1, with ak ∈ R≥0, or the elastic case, where
each element of ak is an independent variable.

B. The Scaled Zonotope Variation
Recalling the definition of a scaled zonotope, one can use

it to replace (18) in Section IV-A by

Z(c, δ) = 〈c, G�〉 (20)

with G ∈ R
n×D, δ ∈ R

D≥0. The ultimate goal is to work directly
with the generator representation (4). In order to do so, the
polyhedral representation of the zonotopic set is used to show
that (20) maybe be brought into the form of (18).
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Proposition 2: Any scaled zonotope (20) may be equiva-
lently written as a polyhedral set (18) with the scaling factor

a =
[

F�c
−F�c

]
+

[
��
��

]
δ, (21)

where each pair (Fi,�i) ∈ R
n ×R

D≥0, i ∈ I[1,q], comes from

Fi verifying Fi⊥Gj ,∀j ∈ {j1 . . . jn−1}, (22a)

��
i δ =

∑

j /∈{j1...jn−1}

∣
∣∣F�

i Gj

∣
∣∣δj , (22b)

with the j-th entry of �i ∈ R
D≥0 equal to |F�

i Gj | if j /∈
{j1 . . . jn−1} and 0, otherwise.

Proof: For the scaled zonotope (20), each sequence of n−1
generators 1 ≤ j1 < . . . < jn−1 ≤ D, has a corresponding pair
(Fi,�

�
i δ) ∈ R

n × R [29]. Adding the center c, we arrive at
the half-space representation

〈c, G�〉 =
⋂

j∈I[1,D]

{x ∈ R
n :

∣∣∣F�
i (x − c)

∣∣∣ ≤ ��
i δ}, i ∈ I[1,q],

=
{

x ∈ R
n :

[
F�

−F�
]

x ≤
[

F�c
−F�c

]
+

[
��
��

]
δ

}
, (23)

which directly leads to (21).
The result may be used for any of the set containment

constraints from (19), whenever the sets considered are scaled
zonotopes (20), the elastic term is replaced with (21).

Naturally, one would like to avoid altogether the half-
space representation of Z(c, δ) when enforcing the set
inclusions (13c)–(13e) and (15). The set containment con-
ditions which involve zonotopic sets are firstly recalled
(see [17], [28]).

Lemma 2: For a pair of zonotopes Z{1,2} = 〈c{1,2}, G{1,2}〉,
with c{1,2} ∈ R

n, G{1,2} ∈ R
n×D{1,2} , and a polytope P =

{x : FPx ≤ θP}, with FP ∈ R
qP×d, θP ∈ R

qP , we have that:
1) a sufficient condition to verify the inclusion Z1 ⊆ Z2 is

the existence of �, γ s.t.

G1 = G2�, c1 − c2 = G2γ, |�|1D1 + |γ | ≤ 1D1;
(24)

2) a necessary and sufficient condition to verify the inclu-
sion Z1 ⊆ P is

FPc1 + |FPG1|1D1 ≤ θP. (25)

Next, set inclusion conditions are provided for the
case with time-varying scaling factors, extending the result
from [17, Th. 4], which handles constant scaling factors.

Proposition 3: For the scaled zonotope Z(ck, δk), taking
x̄k ∈ Z(ck, δk) and ūk ∈ KZ(ck, δk), set inclusions (13c)–(13e)
and (15) are verified by the sufficient conditions

FX(ck + x̄k) + |FXG|δk ≤ θX, (26a)

FU(Kck + ūk) + |FUKG|δk ≤ θU, (26b)

FT(cN + x̄N) + |FTG|δN ≤ θT , (26c)

(ck+cω)−ck+1 = Gγk, |γk|+|�|(δk + δω) ≤ δk+1, (26d)

for all k ∈ I[0,N−1] and with � ∈ R
D×D verifying AKG = G�,

AK = A + BK and where W ⊆ 〈cw, AkG�ω〉, with �ω =
diag(δω).

Proof: Using Z(ck, δk) = 〈ck, G�k〉, defined in (20),
inclusions (13c)–(13e) and (15) become

〈ck + x̄k, G�k〉 ⊆ X , (27a)

〈Kck + ūk, KG�k〉 ⊆ U , (27b)

〈cN + x̄N, G�N〉 ⊆ T , (27c)

〈ck, AKG�k〉 ⊕ W ⊆ 〈ck+1, G�k+1〉, (27d)

for all k ∈ I[0,N−1]. Inclusions (27a)–(27b) fall under (25)
and may be immediately put into the form (26a)–(26c) once
we note that |�k| = �k and that �k1D = δk. In the case
of (27d), some preliminaries are needed. First, using W ⊆
〈cω, AKG�ω〉, we upper bound the left-hand side of (27d) as
〈ck + cω, AKG(�k + �ω)〉, which brings it now into the form
of (24). Second, recall AKG = G� assumed in the initial
statement and take γk which verifies (ck + cω) − ck+1 = Gγk.
These relations may be put into the form

AKG(�k + �ω) = G�k+1 · �−1
k+1�(�k + �ω), (28a)

(ck + cω) − ck+1 = G�k+1 · �−1
k+1γk. (28b)

Introducing � = �−1
k+1�(�k + �ω) and γ = �−1

k+1γk in (24),
we obtain |�−1

k+1γk| + |�−1
k+1�(�k + �ω)|1D ≤ 1D as a

sufficiency test for inclusion (27d). Left multiplying with the
element-wise positive �k+1 brings us to |γk| + |�|(�k +
�ω)1D ≤ �k+11D and noting that �{k,k+1,ω}1D = δ{k,k+1,ω}
leads to (26d), thus concluding the proof.

Centering the state and input tubes (taking ck = 0) in the
nominal values x̄k, ūk reduces the complexity, since x̄k and ūk
are already within the sets and it is no longer necessary to
explicitly constrain them.

The recursive feasibility and stability topics in the context
of tube MPC are described in more detail in [7], [11], [17],
[30]. Since the presented approach is using a different tube
parameterization all the robustness and stability guarantees
provided by the elastic approach [11] are being preserved.

Remark 4: Pre-computing � makes all inequalities in (26)
linear and easy to embed into the larger MPC problem.
For further use, we take it as the result of the following
minimization problem, similar to [11, Sec III.A],

� = arg min
X,γ

‖X‖F

s.t. cω = Gγ, AKG = GX, |γ | + |X|1D ≤ 1D. (29)

The apparent non-linearity induced by the module disappears
if we reformulate (26d) as

|γk| ≤ δk+1 − |�|(δk + δω), (30)

and note its equivalence with the inclusion

γk ∈ CRD · (δk+1 − |�|(δk + δω)), (31)

where CRD denotes the unit cross-polytope from R
D (the polar

set of the hypercube [13]).
Remark 5: Note that the number of inequalities in (23) is

significantly smaller when using the generator representation
rather than when using the half-space representation.

Remark 6: Proposition 3 reduces to the homothetic case by
enforcing all components of the scaling vector to be equal,
δ{k,ω} = δ{k,ω} · 1D for k ∈ I[0,N−1] in (26).

Since the mRPI is the result of an infinite set recurrence,
we provide a zonotopic ‘one-step RPI’ approximation in the
next proposition (extended from [28, Th. 6] and [17, Th. 2]).
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The choice of the seed generator matrix G and center c is not
unique, but the shape of the set 〈c, G〉 should be chosen to
ensure feasibility of the linear constraints used to enforce the
RPI set containment condition for the closed-loop dynamics
xk+1 = AKxk + ω, with ω ∈ W .

Proposition 4: Let W ⊆ 〈c0, G0〉 and construct Ḡ =[
I AK . . . As

K

]
G0 ∈ R

n×D for some fixed positive integer s.
Then, minimizing the linear program

min
c,δ,�1,�2,β,α1,...,αD

1�
Dδ (32a)

s.t. δ ≥ 0, (32b)

AKḠ · diag(δ) = Ḡ�1, G0 = Ḡ�2 (32c)

(I − AK)c − c0 = Ḡβ, (32d)

αi ≥ 0, 1�
Dαi ≤ δi, ∀i ∈ I[1,D], (32e)

[
I − I

]
αi = [

�1,i �2,i βi
]�

, ∀i ∈ I[1,D], (32f)

provides the center c and the scaling factor δ such that the
zonotopic set 〈c, G = Ḡδ〉 is RPI under the dynamics xk+1 =
AKxk + ω, with ω ∈ W . Index i in �1,i, �2,i, βi denotes the
i-th row from matrices �1, �2 and vector β.

Proof: The proposition builds upon [22, Th. 6], where the
inclusion test |�1|1D + |�2|1D + |β| ≤ δ, similar with (24),
is replaced with (32e)–(32f), checking the inclusion of a
vector inside the cross-polytope, as discussed in Remark 4 and
implemented in [31].

V. SIMULATION AND RESULTS

The proposed implementation is illustrated for the double
integrator used in [11] and the CSE1 example given in [32].
The optimization problems are solved in MATLAB, using
YALMIP [33] and MOSEK [34], on a computer with a 2.1GHz
i7 Intel processor with 12 cores and 32GB RAM, while the
zonotopic and polyhedral sets are implemented in CORA [29]
and MPT3 [35].

A. Double Integrator [11]
We revisit the example from [11] applying our zonotopic

constructions in 1 for all three tube variants: rigid from
Proposition 4 ( ), homothetic from Remark 6 ( ),
and elastic from Proposition 3 ( ).

In a common MPC setting, Q = I, R = 0.01, N = 12,
X = [−10, 10] × [−10, 2], U = [−1, 1], T = {0}, W =
[−0.1, 0.1] × [−0.1, 0.1], all tube variants provide feasible
solutions.

B. Coupled Spring Experiment - ‘CSE1’ [32]
While helpful for illustration purposes, the double integrator

cannot provide sufficient insights for computational effort
quantification. To assess the influence of the problem size,
we consider the continuous-time ‘CSE’ dynamics, given in
COMPleib [32], which describe a system combining coupled
springs, dampers and masses. The mass positions and veloc-
ities define the system’s states. Its inputs are the two forces
exerted at the ends of the coupled springs chain [32]. The
parameter  denotes the number of springs and governs the
model’s size (2), given by

ẋ =
[

0 I
−M−1

c Kc − M−1
c Lc

]

︸ ︷︷ ︸
A∈R2×2

x +
[

0
M−1

c Dc

]

︸ ︷︷ ︸
B∈R2×2

u, (33)

Fig. 1. One finite horizon optimal state sequence.

where

Kc = k

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

1 − 1 · · · 0 0

−1 − 2
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . − 2 − 1

0 0 · · · − 1 1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

, Dc =

⎡

⎢
⎢⎢⎢
⎣

1 0
0 0
...

...

0 0
0 − 1

⎤

⎥
⎥⎥⎥
⎦

,

and Mc = μI, Lc = δI. The parameter values are μ =
4, δ = 1, k = 1 and the system is discretized with
the forward Euler method for a sampling time of 1 sec.
The state and input constraints are X = [−1, 1]2, U =
[−1, 1]2, W = [−0.01, 0.01]2, while the MPC parameters
are Q = I2, R = 0.01I2, N = 25. Several conclusions can be
drawn:

• all tube polyhedral set implementations fail around  ≥ 3,
by exceeding a computational time limit, a maximum
allowed number of iterations or by not finding a solution,
whereas the zonotopic ones work over the entire param-
eter range considered, until  = 10;

• clearly the nominal case is the most efficient implemen-
tation but it does not provide any robustness guarantees;

• the underlying set containment conditions using zono-
topic sets result in linear complexity;

• all tube methods are greatly affected by the choice of
the initial set Z(c, δ0 = 1); finding an optimal balance
between the accuracy of the minimal RPI set approxima-
tion and the difficulty of solving the MPC problem is, in
the authors’ opinion, still an open question.

VI. CONCLUSION

The usage of elastically-scaled zonotopes employed in the
elastic-tube MPC optimization problem provides significant
computational advantages, while reducing the execution time
and dimension-related difficulties. The applicability of the
procedure is proven on a couple of benchmark models, one
of them corresponding to a system with parameterizable
size, demonstrating the effectiveness of handling bounded
additive disturbances on challenging design frameworks. A
comparison between several tube parameterizations and set
types along with their associated execution times is given
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Fig. 2. Comparison of execution times with different tube profiles and set types.

in Fig. 2. Future work will focus on reducing the com-
plexity of the initial RPI set through dynamic controller
synthesis.
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