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Pinning Control in Networks of Nonidentical
Systems With Many-Body Interactions

Roberto Rizzello and Pietro De Lellis

Abstract—We study the problem of controlling an
ensemble of nonidentical dynamical units to a desired
trajectory set by the pinner in the presence of multi-body
interactions across the units. We provide sufficient con-
ditions for local bounded convergence, and estimate the
convergence bound as a function of the parameter mis-
match between the units, and of the directed hypergraph
describing their interacting topology. Numerical examples
demonstrate the robustness of the approach.

Index Terms—Pinning control, higher-order interactions,
directed hypergraphs, opinion dynamics, networks.

I. INTRODUCTION

IN THE last decades, the control of network systems
has attracted a wide and interdisciplinary research

effort [1], [2]. Namely, the control mechanisms that induce
the emergence of collective behaviours, such as consensus and
synchronization [3], [4], have been investigated. For instance,
swarms of drones with limited computational abilities need
distributed strategies to coordinate their motion [5], and leader-
follower schemes are employed to drive fleets of unmanned
vehicles [6]. Control applications are also in socioeconomics,
when studying herding in opinion dynamics [7], or the design
of optimal policies to regulate migration dynamics [8].

Graph theory has been effectively combined with dynamical
systems to explain how pairwise interactions between the
units of a network system enable the propagation of control
signals [1]. An effective strategy is pinning control, where a
pinner node, which can be viewed as the network leader, steers
the trajectory of the network through a feedback action exerted
on a small fraction of the follower nodes [9]. The dynamics
of the i-th unit in a pinning controlled network is

ẋi = f (xi)+
∑

j∈Ni

σijg
(
yj − yi

) + qikig(yN+1 − yi)

yi = γ (xi), i = 1, . . . ,N (1a)
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ẋN+1 = f (xN+1), yN+1 = γ (xN+1) (1b)

where f : Rn → R
n describes the individual dynamics of each

node, g : Rm → R
n is the inner coupling function such that

g(0) = 0, Ni is the set of in-neighbors of node i, σij > 0 is the
coupling strength associated to the pair (i, j), γ : Rn → R

m

is the output function, and yi ∈ R
m is the output of node

i; the pinner, node N + 1, sets the reference trajectory and
injects a control action that is proportional to the output error,
with control gain ki; the binary variable qi is 1 if node i is
pinned (i.e., receives the input), whereas it is 0 otherwise. In
the literature, conditions for successfully pinning control of
network systems coupled over digraphs have been obtained
when the individual dynamics are one-sided Lipschitz, the
coupling and control gains are large enough, and a control
signal is injected into at least a node for each root strongly
connected component of the graph [10].

However, in control problems one needs to account for
the unavoidable parametric mismatches that arise in appli-
cations, where the units can only be nominally identical,
and the function f in (1) has different parameters for each
node. In this context, proportional control actions as in (1)
can only enforce bounded synchronization onto the desired,
nominal trajectory [11], [12], [13]. In addition, limitation
on sensing and actuation may render the coupling protocol
in (1) unfeasible, thus requiring the use of hypergraph mod-
els [14], [15]. For instance, in microbial consortia feedback
control is exerted based on fluorescence [16]. However, only
an aggregated measurement of the fluorescence of a group
of cells is available. Therefore, the control signal will be
represented as an hyperedge from a virtual node (the tail
of the hyperedge) setting the reference fluorescence, to the
nodes of which we measure the aggregated fluorescence (the
heads of the hyperedge). Additionally, hypergraphs are also
needed to capture interaction protocols that involve more
than two nodes. This is the case, for instance, of the study
of battery charges, whereby the equalizers are viewed as
hyperedges connecting more than two nodes, that is, more than
two battery cells [17]. In such cases, the standard feedback
protocol (1) cannot be implemented, and feedback mechanisms
based on aggregated measurements of groups of nodes can be
interpreted as many-body interactions and modeled through
directed hypergraphs [18], [19], [20], see Fig. 1.

Albeit strongly motivated by applications, existing results
on networks of heterogeneous systems with many-body inter-
actions are only limited to special dynamics, such as for
instance the Kuramoto model, where it was shown that
richer transitions to synchronization emerge in the presence
of higher-order interactions, see, e.g., [21]. In this letter,
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Fig. 1. Pinning control over a directed hypergraph H (left) and a
digraph G (right). Each hyperedge is composed by a set of tails and a
set of heads. For instance, T (ε2) = {p, q} and H(ε2) = {l,m,n}. The
pinner (leader) is the sole tail of the hyperedge ε1 and only measures an
aggregated output yijk = (β̃ε )i yi + (β̃ε )j yj + (β̃ε )k yk of the head nodes
i, j , and k, and will inject a signal g(yN+1 − yijk ) function of the state
of all 4 nodes of the hyperedge ε1. g will be in general nonlinear, and
therefore not decomposable as sum of pairwise interactions. Differently,
a standard edge has only one tail and one head, and the pinner in the
right panel will be able to individually measure the state of i, j , and k.
For instance, it will inject the signal g(yN+1 − yi ) at node i through the
standard edge e1.

we are the first to provide, for general nonlinear dynamics,
convergence results for pinning control of networks of non-
identical systems in the presence of higher order interactions.
Specifically, we provide i) analytical conditions on the hyper-
graphs that describes the many-body interactions, on the set of
pinned nodes, and on the coupling and control gains to attain
local bounded pinning controllability, ii) a convergence bound
that is rigorously valid for infinitesimal perturbations with
respect to the reference trajectory and nominal parameters,
and iii) numerical evidence that this bound is robust to the
presence of large perturbations.

Notation: Given n ∈ Z
+, In is the identity matrix of size

n, and 1n and 0n the vectors of all ones and zeros in R
n,

respectively. Given a vector v ∈ R
n, diag(v) ∈ R

n×n is
the diagonal matrix whose i-th diagonal element is the i-th
entry of v. Given v1, . . . , vp ∈ R

n, we denote [v1, . . . , vp]
and [v1; . . . ; vp] their horizontal and vertical concatenations.
Given a matrix A ∈ R

n×m, AT is its transpose, and ‖A‖F
its Frobenius norm. If A is square (n = m), spec(A) is its
spectrum, λi(A) ∈ spec(A) its i-th eigenvalues, λmin(A) and
λmax(A) its eigenvalues with smallest and largest real part,
respectively, and σi(A) and σ(A) its i-th and smallest singular
value, respectively. Given A ∈ R

a×b, B ∈ R
c×d, (A ⊗ B) ∈

R
ac×bd and (A⊕B) ∈ R

ac×bd are their Kronecker product and
sum [22], respectively. Given a vector field ϕ(z,w) : R

a ×
R

b → R
n, Dzϕ ∈ R

n×a and Dwϕ ∈ R
n×b are its Jacobian

matrices with respect to z and w, respectively.

II. DIRECTED HYPERGRAPHS

A directed hypergraph H is a pair (V, E), with V the set of
its nodes and E the set of its hyperedges. A hyperedge is a pair
of ordered, disjoint subsets of V . The first subset contains the
tails, and the second its heads [18]. We call T (ε) and H(ε)
the tail and head sets of the hyperedge ε, respectively, and
indicate their cardinality with |T (ε)| and |H(ε)|. Given two
subsets V1 and V2 of V , EV1,V2 is {ε ∈ E : V1 ⊆ T (ε)∧V2 ⊆
H(ε)}. If one of the two subsets is a singleton, we use the
notation E j,V2 , where j is the index related to the unique node

of V in V1. Finally, E∗,j = {ε ∈ E : vj ∈ H(ε)} is the subset
of E having vj as a head. Note that the main difference with
standard graphs is that a hyperedge may have multiple tails
and multiple edges, whereas in digraphs edges only have a
single tail and a single head, as illustrated in Fig. 1.

III. PROBLEM FORMULATION

Let us consider a controlled network of N + 1 nonidentical
dynamical systems coupled through a directed hypergraph
H = {V, E}, with node N + 1 being the pinner that sets
the reference trajectory for the network. The hyperedge set
can be decomposed as E = Euc ∪ Ep, where Euc contains
the hyperedges connecting the first N (controlled) nodes, and
Ep contains the pinning hyperedges, whose sole tail is the
pinner. Considering higher-order interactions and parameter
mismatches, the classical equation (1) generalizes to

ẋi = f (xi, μi)+
∑

ε∈E∗,i
uc

σεg
(

yτε αε − yh
εβε

)

+
∑

ε∈E∗,i
p

kεg
(

yN+1 − yh
εβε

)
, i = 1, . . . ,N, (2a)

yi = γ (xi), i = 1, . . . ,N, (2b)

ẋN+1 = f (xN+1, μ̄), yN+1 = γ (xN+1) (2c)

where vectors αε and βε stack the weights of the tails
and heads of hyperedge ε, respectively, and are such that
αT
ε 1|T (ε)| = βT

ε 1|H(ε)| = 1; this implies αε = 1 for all
ε ∈ Ep as the pinner is the sole tail of the hyperedges it
belongs to; yτε ∈ R

m×|T (ε)| and yh
ε ∈ R

m×|H(ε)| are matrices
whose columns are vectors containing the outputs of the nodes
that are tails and heads of hyperedge ε, respectively; for a
hyperedge ε ∈ Euc, σε is its coupling strength, and for ε ∈
Ep, kε is the control gain of the associated feedback control
action. Note that this model has several key differences with
the classical model in (1). Indeed, as in [18], [19], [20]

1) The interactions take place within groups of nodes, and
not only between pairs;

2) for any hyperedge ε ∈ E , a signal is transmitted from
each tail to each head in ε; this signal will be a function
of the difference between a convex combination of the
outputs of the tails and a convex combination of the
outputs of the heads.

Moreover, differently from the model in [18], [19], [20],
3) the individual dynamics differ from node to node for a

vector of p parameters, which in (2) is denoted μi and
will be the second argument of vector field f : R

n ×
R

p → R
n associated to node i;

4) the pinner node will not only define the reference
trajectory, but will also be endowed with the nominal
vector of parameters μ̄.

We define the trajectories error variables and parametric error
variables with respect to the references set by the pinner:

ei = xi − xN+1, δμi = μi − μ̄. (3)

Introducing the stacks e = [e1; . . . ; eN] and δμ = [δμ1; . . . ;
δμN], we can now provide the following definition:

Definition 1: The controlled network (2) is locally bounded
pinning controlled if there is a c ≥ 0 such that
a) for each ε > c, there are scalars �x

1(ε), �
μ
1 (ε) such that

‖e(t)‖ < ε, ∀t ≥ 0
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for ‖e(0)‖ < �x
1(ε), ‖δμ‖ < �

μ
1 (ε); and

b) there are scalar constants �x
2, �μ2 such that

lim sup
t→+∞

‖e(t)‖ ≤ c

for ‖e(0)‖ < �x
2, ‖δμ‖ < �

μ
2 .

Problem statement. We seek for sufficient conditions guar-
anteeing that the network (2) is locally bounded pinning
controlled. Moreover, we will also seek for an estimate c̃
of the bound c that is in principle valid only for local
perturbations. Finally, we will test robustness of this estimate
through numerical simulations for increasing values of the
parameter mismatch vector δμ.

IV. MAIN RESULTS

A. Linearization and Block Diagonalization
Lemma 1 [18]: Given any hyperedge ε ∈ E , we have

yτε αε − yh
εβε =

∑

j∈T (ε)
(α̃ε)j

(
yj − yi

) −
∑

j∈H(ε)

(
β̃ε

)

j

(
yj − yi

)

(4)

where the jth entry of α̃ε (β̃ε) is 0 if node j is not a tail
(head), whereas it is equal to the weight associated to the
corresponding tail (head), otherwise.

By leveraging Lemma 1, we substitute (4) into (2a), and,
from the definition of ei in (3), obtain

ėi = f (xi, μi)− f (xN+1, μ̄)+
∑

ε∈E∗,i
uc

σεg

⎛

⎝
∑

j∈T (ε)
(α̃ε)j

(
γ (xj)

− γ (xi)
)

−
∑

j∈H(ε)

(
β̃ε

)

j

(
γ (xj)− γ (xi)

)
⎞

⎠

+
∑

ε∈E∗,i
p

kεg

(
γ (xN+1)− γ (xi)−

∑

j∈H(ε)

(
β̃ε

)

j

(
γ (xj)− γ (xi)

))
. (5)

Using that xi = xN+1+ei and μi = μ̄+δμi, we linearize eq. (5)
around the synchronization manifold x1 = . . . = xN = xN+1
and the nominal parameter values μ̄. Considering the first-
order expansion of f around (xN+1, μ̄), of γ around xN+1, and
of g around 0, and using the symbol ẽ to denote the linearized
error dynamics, one obtains

˙̃ei = Dxf
(
xN+1, μ̄

)
ẽi +

∑

ε∈E∗,i
uc

σεH
(
xN+1

)

⎛

⎝
∑

j∈T (ε)
(α̃ε)j

(
ẽj − ẽi

) −
∑

j∈H(ε)

(
β̃ε

)

j

(
ẽj − ẽi

)
⎞

⎠

+
∑

ε∈E∗,i
p

kεH
(
xN+1

)
⎛

⎝−ẽi −
∑

j∈H(ε)

(
β̃ε

)

j

(
ẽj − ẽi

)
⎞

⎠

+Dμf
(
xN+1, μ̄

)
δμi, (6)

where H(xN+1) = Dxg(0)Dxγ (xN+1), and we considered that
g(0) = 0. Next, we rewrite (6) as

˙̃ei = Dxf (xN+1, μ̄)ẽi + H(xN+1)⎛

⎜⎝
N∑

j=1

sij
(
ẽj − ẽi

) −
∑

ε∈EN+1,i
p

kε ẽi

⎞

⎟⎠

+Dμf (xN+1, μ̄)δμi (7)

where

sij =
∑

ε∈E j,i
uc

(α̃ε)jσε −
∑

ε∈E∗,{i,j}
uc

(
β̃ε

)

j
σε −

∑

ε∈EN+1,{i,j}
p

(
β̃ε

)

j
kε

(8)

for all i, j = 1, . . . ,N. The scalar sij can be viewed as the entry
ij of the adjacency matrix S associated to a signed graphs,
as from (8) sij can also be negative. The Laplacian matrix
associated to S will be L = diag(S1N) − S, and is then zero
row-sum, thereby having a zero eigenvalue with associated
eigenvector 1N , but, unlike Laplacians of positively weighted
digraphs, may also have negative real-part eigenvalues [23].
We then introduce matrix M whose ij-th entry mij is equal to
lij + ∑

ε∈EN+1,i
p

kε if i = j, and it is equal to lij otherwise. As
we assume that the set of pinning hyperedges Ep is not empty,
M will not be zero row-sum, and therefore, differently from L,
will not be endowed with the eigenpair (0,1N). We can then
rewrite eq. (7) as

˙̃ei = Dxf (xN+1, μ̄)ẽi − H(xN+1)

N∑

j=1

mijẽj

+Dμf (xN+1, μ̄)δμi (9)

and describe the dynamics of ẽ = [ẽ1; . . . ; ẽN] as

˙̃e = [
IN ⊗ Dxf − M ⊗ H

]
ẽ + (

IN ⊗ Dμf
)
δμ. (10)

Next, consider the real Jordan transformation matrix Tr such
that M = TrJrT−1

r , where Jr is a block diagonal matrix, with
each diagonal block associated to a real eigenvalue of M, or
to a pair of complex eigenvalues of M. For a generic pair
of complex conjugate eigenvalues αi ± ıωi in spec(M), the
corresponding diagonal block (Jr)i ∈ R

2bi×2bi of Jr, with bi
being the size of the Jordan block associated to λi, is

(Jr)i =

⎡

⎢⎢⎢⎢⎣

Si 02×2
I2 Si 02×2

. . .
. . .

. . .

I2 Si 02×2
I2 Si

⎤

⎥⎥⎥⎥⎦
, (11)

where the diagonal sub-block Si = [αi, ωi;−ωi, αi] is repeated
bi times. If, instead, λi is real, then (Jr) ∈ R

bi×bi and coincides
with the Jordan block associated to λi, that is,

(Jr)i =

⎡

⎢⎢⎢⎢⎣

λi 0

1
. . .

. . .

. . .
. . . 0
1 λi

⎤

⎥⎥⎥⎥⎦
(12)

We denote with ζ the number of diagonal blocks of Jr, and,
without loss of generality, choose Tr so that the first r blocks
will be associated with real eigenvalues, whereas the last ζ−r
will be associated to a pair of complex conjugate eigenvalues.

We now define the following time-varying matrices:

Ai(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dxf − λi(M)H, i = 1, . . . , r,
[

Dxf − αiH −ωiH

ωiH Dxf − αiH

]
,

i = r + 1, . . . , ζ,

(13)
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where we note that the dependency on time of Ai stands in the
dependence of both Dxf and H on xN+1(t), which we omitted
for brevity. By assuming that the eigenvalues of Ai(t) have
negative real-part for all t ≥ 0, we can define the positive
symmetric time-varying matrix Pi(t) that is the solution of the
Lyapunov equation

Ai(t)
TPi(t)+ Pi(t)Ai(t) = −Qi, ∀t ≥ 0 (14)

where Qi is a constant and positive definite matrix. Next,

H̃i =
{

H, i = 1, . . . , r,
I2 ⊗ H, i = r + 1, . . . , ζ, (15)

the time-varying matrix

Bi(t) =
{

Dμf (xN+1(t), μ̄), i = 1, . . . , r,
I2 ⊗ Dμf (xN+1(t), μ̄), i = r + 1, . . . , ζ, (16)

and, for all j = 1, . . . , bi,

uij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑N
k=1 τ(li+j−1)kδμk, i = 1, . . . , r,[∑N

k=1 τ(li+2j−2)kδμk;∑N
k=1 τ(li+2j−1)kδμk

]
,

i = r + 1, . . . , ζ,

(17)

where τij is the ij-th entry of T−1
r , li = 1 + ∑i−1

j=1 γj, with γj
being the size of the j-th block of Jr (γj = bj if the j-th block is
associated to a real eigenvalue, whereas γj = 2bj, otherwise).
By applying the change of variables η = (T−1

r ⊗ In)ẽ, from
eq. (10) we obtain

η̇ = [
IN ⊗ Dxf − Jr ⊗ H

]
η +

(
T−1

r ⊗ Dμf
)
δμ (18)

Proving boundedness of η is equivalent to prove that
network (2) is locally bounded pinning controlled. We
can write η = [η1; . . . ; ηr; ηr+1, . . . , ηζ ], where ηi =
[ηi1; . . . ; ηibi ] is associated to the i-th block of Jr, with ηij ∈
R

n if the i-th block is associated to a real eigenvalue (i ≤ r),
and ηij ∈ R

2n otherwise (i > r). For all i = 1, . . . , ζ , the
dynamics of ηi can be written as

η̇i1 = Ai(t)ηi1 + Bi(t)ui1,

η̇i2 = Ai(t)ηi2 − H̃iηi1 + Bi(t)ui2,

...

η̇ibi = Ai(t)ηibi − H̃iηi(bi−1) + Bi(t)uibi . (19)

Finally, assuming that Pi(t) in (14), H̃i in (15), and Bi(t) in (16)
are uniformly bounded in norm, and given scalars ς1, . . . , ςζ
in the open interval ]0, 1[, we can define the following scalars,
which, for all i = 1, . . . , ζ , can be simultaneously computed as

ai1 = 2Pi
maxBi1

max,

κi = (1 − ςi)σ (Qi), cij = aij/κi, j = 1, . . . , bi,

aij = 2Pi
maxBij

max + ci,(j−1)H̃
i
max, j = 2, . . . , bi (20)

where Qi is the positive definite matrix in (14), and

Pi
max = lim sup

t→+∞
‖Pi(t)‖,Bij

max = lim sup
t→+∞

‖Bi(t)uij‖,
H̃i

max = lim sup
t→+∞

‖H̃i(t)‖.

B. Local Bounded Pinning Controllability
Theorem 1: If, for all i = 1, . . . , ζ ,

(H1) �(λk(Ai(t))) < 0, for all t ≥ 0, i = 1, . . . , q, and k =
1, . . . , |spec(Ai(t))|,

(H2) Ai(t) is differentiable and uniformly bounded in norm,
(H3) there exist a positive definite matrix Qi with the same

size as Ai(t), and a positive scalar ςi < 1 such that

‖Ȧi(t)‖ ≤ ςiσ
2(Ai(t)⊕ Ai(t))σ (Qi)

2‖Qi‖F
(21)

(H4) Bi(t) is uniformly bounded in norm,
then the controlled network (2) over a directed hypergraph H
is locally bounded pinning controlled. Additionally,

lim sup
t→+∞

‖ẽ‖ ≤ c̃ = ‖Tr‖
∥∥[c1, . . . , cζ

]∥∥ (22)

with ci = ‖[ci1, . . . , cibi ]‖, for all i = 1, . . . , ζ .
Proof: We show bounded convergence of each ηi, i =

1, . . . , ζ . As the dynamic matrix for ηi is block-triangular, we
can study its bounded convergence algorithmically, by first
deriving a bound on ηi1, to then derive the bound for ηij as a
function of the bound for ηi(j−1), for all j = 2, . . . , bi. Hence,
we start with ηi1 and consider the following Lyapunov function
candidate with time-varying kernel:

V(ηi1) = ηT
i1Pi(t)ηi1 (23)

where Pi(t) is the solution of (14), which exists from H1. By
omitting the explicit dependence on time, we have

V̇(ηi1) = [(
ηT

i1AT
i + uT

i1BT
i

)
Pi + ηT

i1Ṗi
]
ηi1

+ηT
i1Pi(Aiηi1 + Biui1) (24)

From (14), and bounding Ṗi with ||Ṗi||In, we obtain

V̇(ηi1) = −ηT
i1

(
Qi − Ṗi

)
ηi1 + 2ηT

i1PiBiui1

≤ −(
σ(Qi)− ‖Ṗi‖

)‖ηi1‖2 + 2ηT
i1PiBiui1. (25)

From [24] we know that

‖Ṗi(t)‖ ≤ 2‖Ȧi(t)‖‖Qi‖F

σ 2(Ai(t)⊕ Ai(t))
(26)

From H2, Ai(t) is uniformly bounded, and then the right-
end side of (26) will also be bounded, thereby implying that
there exists a scalar Pi

max = lim supt→∞ ‖Ṗi(t)‖. Moreover, by
combining (25) and (26), using the properties of vector and
matrix 2-norms, and from hypothesis H3-H4, we obtain

V̇(ηi1) ≤ −(1 − ςi)σ (Qi)‖ηi1‖2 + 2Pi
maxBi1

max‖ηi1‖. (27)

We note that V̇(ηi1) < 0 for all ηi1 such that ‖ηi1‖ > ai1/κi,
thereby implying that

lim sup
t→+∞

‖ηi1‖ ≤ ai1/κi = ci1 (28)

where ai1, κi, and ci1 are defined in (20).
The bound (28) is used to trigger an algorithmic procedure

that computes all the bounds for ηi2, . . . , ηibi . Namely, we
assume to have already computed a bound for ‖ηi(j−1)‖, so
lim supt→+∞ ‖ηi(j−1)‖ ≤ ci(j−1), and then use it to compute
the bound for ‖ηij‖. Then, we proceed with the same Lyapunov
function candidate V(ηij) = ηT

ij Pi(t)ηij as in (23). By deriving
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Fig. 2. (a) Dynamics of the error norm when community C4 is pinned,
and (b) linear fit of the estimated bound c̃ versus the actual one from
simulations c, computed when each of the 15 communities are pinned.
Correlation between c̃ and c is 0.99, with p-value smaller than 10−3.

it with respect to time, the same line of argument as for V̇(ηi1),
and the bound on ηi,(j−1), yield

V̇
(
ηij
) ≤ −κi‖ηij‖2 + aij‖ηij‖, j = 2, . . . , bi (29)

where aij and κi are defined in (20).
By combining (27) and (29), one finally obtains that

lim sup
t→+∞

‖ηi‖ ≤ ci (30)

where ci = ‖[ci1; . . . ; cibi ]‖. Since (30) holds for all i =
1, . . . , ζ , we then obtain

lim sup
t→+∞

‖η‖ ≤ ∥∥[c1, . . . , cζ
]∥∥. (31)

Since ẽ = (Tr ⊗ In)η, we then obtain (22). This implies local
boundedness of (5) and, in turn, that (2) is locally bounded
pinning controlled.

Remark 1: The assumption of Theorem 1 are mild:
from (13) and (16), H2 and H4 are always fulfilled if f , γ and
h are sufficiently smooth, as both Ai and Bi are evaluated at
a bounded solution xN+1(t) of the nominal dynamics, i.e., the
reference trajectory set by the pinner. Sufficient smoothness
of f and γ also guarantees boundedness of ‖Ȧi(t)‖, thereby
favoring the fulfilment of H3. Finally, H1 requires finding the
right coupling and control gains to make A1, . . . ,Aζ Hurwitz,
and in the next corollary we will see a condition when the
gains can be easily designed.

When the output and inner coupling functions are the
identity, and all coupling and control gains are equal (σε =
σ for all ε ∈ Euc, and kε = k for all ε ∈ Ep), we
define a backbone signed adjacency matrix S̃ (with associated
backbone Laplacian L̃) whose entry ij can be obtained by
dividing the right-end side of (8) by σ . A (non-zero row-sum)
backbone matrix M̃ is obtained by adding

∑
ε∈EN+1,i

p
χ to its

diagonal entry ii, for i = 1, . . . ,N, with χ = k/σ .
Corollary 1: If H2, H3, and H4 hold, and

(H1b) σε = σ for all ε ∈ Euc, kε = k for all ε ∈ Ep,
�(λmin(M̃)) > 0, γ and g are the identity function,

σ >
lim supt→+∞ �(λmax(Dxf (xN+1(t), μ̄))

)

�(λmin(M̃)
) (32)

the controlled network (2) over a directed hypergraph H is
locally bounded pinning controlled and bound (22) holds.

Proof: We use the change of variable η = (T−1 ⊗ In)ẽ,
with T such M = TJT−1, η = [η1, . . . , ηb], J the Jordan
matrix associated to M, and b the number of its blocks.
The dynamic matrix of the first n variables of each ηi will
be Dxf (xN+1(t), μ̄) − σλi(M̃)In. From norm equivalences,
and from H2, lim supt→+∞ �(λmax(Dxf (xN+1(t), μ̄))) is finite,
thus the right-end side of (32) is also finite. Hence, for all σ
satisfying (32), H1 of Theorem 1 is fulfilled.

V. NUMERICAL EXAMPLES

1) Opinion Dynamics: we consider a network of N = 150
people that need to form an opinion on a two-option choice
(e.g., a referendum) influenced by an opinion leader, the
pinner [25]. Each person has its own opinion xi, with xi = 0
corresponding to a neutral opinion, and xi > 0 and xi < 0
to an agent leaning toward option 1 or option 2, respectively.
The larger |xi| the more extreme will be the opinion of agent
i. The individual dynamics of each agent are f (xi, μi) =
−3xi + μitanh(xi), where the parameter μi > 3 describes the
extremism of agent i. Indeed, for μi > 3, individual dynamics
have an unstable equilibrium in 0 and two stable equilibria in
±x̄i, with x̄i being more extreme the larger μi is. The initial
opinions of each agent are uniformly drawn in [− x̄max, x̄max],
where x̄max = maxi x̄i.

Coupling term: we extracted the topology from the hyper-
graph of social interactions in [26], where each hyperedge
represents a group interaction between individuals, and we set
σε = 1 for all ε ∈ Euc. Moreover, each edge or tail has the
same importance, (αε)i = 1/|T (ε)| and (βε)i = 1/|H(ε)|
in (2) for all i, and γ (xi) = xi and g(xi) = xi. The 150
followers are grouped in 15 communities C1, . . . ,C15 of 10
nodes each, with few cross-community links.

Parameter mismatches: μi is drawn from a uniform distri-
bution in [3.2, 4.8], and represents different extremism levels.

Pinning control: the pinner is the opinion leader, with
μN+1 = 4, that tries to steer the opinions of the followers
towards its reference opinion. Having limited resources, it is
constrained to pin (influence) only one community. We choose
to pin community C4 as, according to Theorem 1, this yields
the smallest bound estimate c̃, which is a good approximation
of the numerical one, see Fig. 2(a). The accuracy of the
estimation is testified by the strong correlation coefficient
between c̃ and c, see Fig. 2(b).

2) Network of N = 100 Rössler Systems: the individual
dynamics are f (xi, μi) = [−xi2 − xi3; xi1 + μi1xi2;μi2 +
xi3(xi1 − μi3)], with the nominal parameter values being μ̄ =
[0.2; 0.2; 5.6], and initial conditions taken randomly in the
chaotic attractor. Furthermore, the output and inner coupling
function are γ (xi) = xi and g(xi) = xi.

Coupling hypergraph. We couple the nodes through an
Erdös-Rényi like hypergraph with only pairwise and triadic
interactions, and with the parameter p modulating the number
of hyperedges set to 0.1 [20]. All hyperedges in Euc are
undirected with identical weights σε = 50 for all ε ∈ Euc, and
we set (αε)i = 1/|T (ε)| and (βε)i = 1/|H(ε)| in (2) for all
i. The pinner sets the reference trajectory but cannot measure
the state of each node: each pinning hyperedge has 2 head
nodes of which the pinner measures the average state, i.e.,
βε = [0.5; 0.5],∀ε ∈ Ep, and 1 tail, the pinner itself.

Control gain selection and robustness of estimated bound.
We consider two cases, in which 20 or 50 control hyperedges
are added, respectively. To fulfil the hypotheses of Corollary 1,
k should be larger than 11.8 and 4.7, respectively, so that the
right-end side of (32) becomes smaller than σ = 50. Thus, we
set kε = 50 for all ε ∈ Ep for both cases. Further, we assume
that the parameter μij is drawn from a uniform distribution in
[μ̄j(1 − ψ), μ̄j(1 + ψ)], for i = 1, . . . ,N, and j = 1, 2, 3, so
increasing ψ increases the relative amplitude of the parameter
mismatches. Fig. 3 reports the dynamics of the error norms for
ψ = 0.5 (the parameters can vary up to 50% of their nominal
value), and we note how the bound estimated in (22) holds and
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Fig. 3. Controlled network of N = 100 nodes coupled through an
Erdös-Rényi like random hypergraph. Sample dynamics of the error
norm when 20 (left panel) or 50 (right panel) pinning hyperedges of size
3 are considered. The red dashed lines depict the theoretical bounds
computed from (22).

Fig. 4. Controlled network of N = 100 nodes coupled through an
Erdös-Rényi like random hypergraph. Ratio between the numerically
obtained bound c and the bound c̃ from (22) when 20 (in blue) or 50 (in
black) control hyperedges are used. The red dashed line corresponds
to perfect matching between c and c̃, and error bars to one standard
deviation.

is tight. We then test the validity of the estimated bound, based
on linearization, for increasing parameter mismatches and vary
ψ between 0.05 and 5. For each ψ , we run 10 simulations
differing for the randomly generated coupling hypergraph and
record both c̃ and the actual bound c observed in simulation.
We note that the estimated bound holds (c ≤ c̃) in 98.8% of the
cases, and may be violated only when parameters can vary up
to 100% with respect to the nominal values, see Fig. 4, when
the individual node dynamics can also diverge if uncoupled.

VI. CONCLUSION

We have provided for the first time rigorous conditions guar-
anteeing local bounded pinning controllability in networks of
nonidentical systems coupled through a directed hypergraph.
Indeed, previous global results would not hold in the presence
of parameter mismatches [18], [19]. Instead of pursuing an
approach based on the master stability function [20], which
could only yield semi-analytical results requiring the simula-
tion of the network dynamics, our methodology allowed to
provide a) closed-form conditions for local bounded pinning
control that can be checked off-line, and b) a bound on
the linearized dynamics which is useful beyond the case of
infinitesimal perturbations. Indeed, we numerically showed
a) the robustness of the bound, still fulfilled even for per-
turbations so large that would make the individual dynamics
unstable, and b) how the bound estimated from linearization
is strongly correlated with the actual one, and can be used as
a proxy of the effectiveness of the control strategy.
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