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Deterministic Safety Guarantees for
Learning-Based Control of Monotone Nonlinear

Systems Under Uncertainty
Joshua Adamek , Moritz Heinlein , Lukas Lüken , and Sergio Lucia , Member, IEEE

Abstract—This letter presents a novel framework to
guarantee safety for learning-based control of nonlinear
monotone systems under uncertainty. We propose to evalu-
ate online whether a one-step simulation brings a nonlinear
system into a robust control invariant (RCI) set. Such
evaluation can be very efficiently computed even under
the presence of uncertainty for learning-based approximate
controllers and monotone systems, which also enable a
simple computation of RCI sets. In case the one-step
simulation drives the system outside of the RCI set, a
fallback strategy is used, which is obtained as a byproduct
of the RCI set computation. We also develop a method to
calculate an N-step RCI set to reduce the conservativeness
of the proposed strategy and we illustrate the results with a
simulation study of a nonlinear monotone system.

Index Terms—Optimal control, robust control, machine
learning.

I. INTRODUCTION

LEARNING-BASED control strategies can provide impor-
tant advantages when compared to traditional control

techniques, for example by using data-based models in
model predictive control (MPC) formulations [1], [2] or by
approximating complex MPC approaches via simple neural
networks [3], [4]. Approximate MPC controllers based on
neural networks can lead to significantly faster controller
evaluation times compared to standard MPC approaches as
well as to potentially improve the closed-loop performance [5].
While there exist probabilistic validation methods for learning-
based controllers [6], it can be challenging to apply these
controllers in safety-critical nonlinear systems that require
deterministic safety guarantees, especially in the presence
of approximation errors or uncertainties about the system
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dynamics. So far, deterministic guarantees under bounded
system uncertainties exist for linear systems [7].

In contrast, online optimization-based robust MPC meth-
ods can guarantee safety under bounded uncertainties also
for nonlinear systems [8]. The drawback of these methods
is an increased computational effort, which often becomes
impractical for larger systems, thus increasing the appeal of
employing learning-based controllers.

An additional advantage of employing a learning-based
controller is that the resulting closed-loop state and input
trajectories can often be easily simulated online, as it is
typically computationally very cheap [9]. As a result, it
is possible to detect unwanted closed-loop behavior due to
approximation errors or other uncertainties by forward simula-
tion. The remaining problem is the design of a suitable fallback
strategy that guarantees safety in case an unwanted behavior
is detected. Several approaches deal with the design of such a
fallback strategy for nonlinear systems with no uncertainties.
These approaches are often referred to as safety filters and
an overview of existing methods for nonlinear systems can be
found in [2].

The design of a fallback strategy for uncertain nonlinear
systems is even more difficult, as one has to ensure safety for
all possible uncertainty realizations. This problem is very com-
plex in general and in this letter, we focus on the sub-class of
nonlinear monotone systems to efficiently compute safety fil-
ters in the uncertain case. Monotone systems arise in different
applications ranging from building ventilation [10] to bio-
chemical systems [11]. A large linear monotone system can be
found in [12]. In [12], the authors proposed an optimization-
based method to calculate a one-step hyperrectangular robust
control invariant (RCI) set for monotone systems. This method
computes piece-wise constant policies that ensure invariance
with respect to the RCI set for any uncertainty realization.
These policies are used to design a robust MPC strategy with
deterministic guarantees under uncertainty.

This letter extends the approach of [12] to compute N-step
robust control invariant sets that overcome some of the conser-
vatism of the one-step hyperrectangular RCI set. In addition,
and as the main contribution of this letter, we propose to use
the resulting invariance-ensuring policies as a fallback strategy
in case a possibly unsafe control action of the learning-based
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controller is predicted. Under this framework, we prove that
learning-based controllers operating within the computed RCI
set leads to a safe closed-loop behavior for nonlinear monotone
systems with bounded uncertainty.

This letter is structured as follows: Section II introduces the
concept of monotonicity. In Section III, we firstly recap the
optimization problem as proposed in [12] to calculate the
one-step RCI set, while building on that to propose the
new calculation of an enlarged N-step RCI set. Section IV
introduces the proposed safety filter as a new control algorithm
while proving the deterministic safety of the method under
uncertainty. In Section V, the proposed algorithm is applied
to a two-dimensional case study.

II. REACHABILITY OF MONOTONE SYSTEMS

We consider nonlinear discrete-time systems of the form

xk+1 = f (xk, uk, pk), (1)

where x ∈ R
nx denotes the states, u ∈ R

nu denotes the inputs
and p ∈ P ∈ R

np represents uncertain parameters assumed
to be in a compact set P with discrete time index k. The
system dynamics f :Rnx ×R

nu ×R
np �→ R

nx is assumed to be
continuous and differentiable ∀x ∈ X,∀u ∈ U,∀p ∈ P, where
X and U denote the compact state and input spaces.

Definition 1 (Monotone Dynamical Systems): A system is
called monotone on the sets X ∈ R

nx , U ∈ R
nu , P ∈ R

np

with respect to the states x (the uncertainties p) if for every
pair x̂ and x̃ in X (p̂ and p̃ in P) that satisfies the condition
x̂ ≥ x̃ (p̂ ≥ p̃), the following inequality holds:

f
(
x̂, u, p

) ≥ f (x̃, u, p), ∀u ∈ U, ∀p ∈ P (2a)

f
(
x, u, p̂

) ≥ f (x, u, p̃), ∀u ∈ U,∀x ∈ X, (2b)

where the inequalities are understood elementwise.
The monotonicity conditions in Definition 1 are satisfied if

all the elements of the Jacobian of the dynamics with respect
to the states (the uncertainties) are non-negative ∀u ∈ U,∀x ∈
X,∀p ∈ P [13].

Remark 1: Monotone systems, appear for example in
systems modeling the temperature in buildings [10], [12] or
biochemical reaction cascades [11], [13] as a consequence
of conservation laws. Through a state transformation, some
non-monotone systems can be made monotone [11], [14].
Often, non-monotone systems also exhibit partial monotone
dynamics, which can be exploited to decompose the system
into monotonically increasing and decreasing parts via mixed-
monotonicity [15].

Monotonicity enables a direct computation of tight hyper-
rectangular outer approximations of reachable sets, as stated in
the following Proposition. The term hyperrectangle is used to
describe the multidimensional interval spanned by two points,
the bottom left and top right corners of the hyperrectangle. In
the rest of this letter, hyperrectangular sets {x|a ≤ x ≤ b} are
denoted as [a, b].

Proposition 1: The one-step reachable set for any fixed
input u ∈ U of the discrete monotone dynamic system (1)

with x ∈ [x−, x+] and p ∈ [p−, p+] is bounded by the
multidimensional interval

f (x, u, p) ∈ [
f
(
x−, u, p−)

, f
(
x+, u, p+)]

. (3)

Proposition 1 can be proven directly by applying (2a)
and (2b). Because the top right and bottom left corners of the
set in (3) are the corners of the true reachable set, it is the
tightest hyperrectangular outer approximation of the reachable
set. The repeated application of Proposition 1 can be used to
calculate an N-step reachable set, which is the set that can be
reached by the system after propagating the dynamics for all
possible values of the uncertainty during N-steps with a given
sequence of control inputs.

III. ROBUST CONTROL INVARIANT SETS FOR

MONOTONE SYSTEMS

The straightforward computation of reachable sets for
monotone systems enables the calculation of robust control
invariant sets [10], [12].

Definition 2 (Robust Control Invariant Set): A set XRCI is
robust control invariant if it holds that ∀x ∈ X

RCI ∃ u ∈
U, such that f (x, u, p) ∈ X

RCI, ∀p ∈ P.

In the scope of this letter, monotonicity and bounded
uncertain parameters are required as specified in the following
Assumption to enable the scalable computation of reachable
sets for large state and uncertainty dimensions.

Assumption 1: The dynamic system (1) is monotone in the
states and the uncertainties, so (2a) and (2b) hold. Additionally,
the uncertainties are assumed to take values only within the
interval P ⊆ [p−, p+].

For systems satisfying Assumption 1, it is possible to
compute an RCI set as defined in Definition 2 by finding a
hyperrectangular RCI set XRCI = [x−

RCI, x+
RCI] for which for a

fixed control input uRCI it holds that:

x−
RCI ≤ f

(
x−, uRCI, p−) ≤ f

(
x+, uRCI, p+) ≤ x+

RCI. (4)

However, in reality, constraint (4) is often infeasible, as
there does not exist one single uRCI ensuring invariance
for both extreme realizations of the uncertainty. To enable
different control inputs for different states and hence relax
said constraint, a feedback policy is necessary. For locally
controllable systems that are additionally monotone in u, [10]
developed an interpolating control policy to ensure invariance
of a hyperrectangular RCI set. In [12], the hyperrectangular
RCI set is divided into Ns smaller hyperrectangles to improve
performance without the need for monotonicity in u. Each of
the smaller hyperrectangles, described by the top right xs+ and
bottom left xs− corners have one associated control input us,
resulting in a piece-wise constant control policy that can be
defined as:

φ(x) = us, if x ∈ [
xs−, xs+]

,∀s ∈ NNs . (5)

The RCI set requirement is fulfilled if the reachable sets of
all smaller hyperrectangles lie inside the hyperrectangular RCI
set. Figure 1 visualizes the additional flexibility achieved by
the piece-wise constant control policy on smaller subsets.
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Fig. 1. Visualization of the assumptions on the set XRCI. In the bottom
plot, the black rectangle is divided and each subregion is propagated
with an individual input. The propagations need to lie inside X

RCI.

We denote with Ns the number of smaller hyperrectangles,
X

RCI is divided into, and with NNs = {1, . . . , Ns} the set of all
integers from 1 to Ns. The optimization problem formulated
in [12] to calculate such a hyperrectangular RCI set is:

max
xs+,xs−,us, ∀s∈NNs

V
(

x[1:Ns]±)
(6a)

s.t:
[
x1−, xNs+

]
∈ X, (6b)

us ∈ U, ∀s ∈ NNs , (6c)

h
(

x[1:Ns]±)
≤ 0, (6d)

xNs+ ≥ f
(
xs±, us, p±) ≥ x1−, ∀s ∈ NNs . (6e)

The function V(x[1:Ns]±) is an arbitrary measure for the size
of the RCI set. Here, we consider the maximization of the set
volume

V
(

x[1:Ns]±)
=

nx∏

i=1

(
xNs+

i − x1−
i

)
. (7)

The state constraint satisfaction (6b) can be checked easily for
box constraints, as well as polyhedral constraints via Farkas
Lemma [16]. The constraint (6d) requires that the smaller
hyperrectangles fill the RCI set spanned by [x1−, xNs+] without
holes and (6e) enforces the invariance of the set.

The requirement of a hyperrectangular RCI set results in
unnecessarily conservative sets, as often the RCI set can be
described as an ellipsoid or a polytope [16]. To alleviate
this problem, we propose in this letter the computation of
N-step robust control invariant sets, which are defined in the
following.

Definition 3 (N-Step Robust Control Invariant Set): A set
X

N-RCI is N-step robust control invariant if it holds that for
each state x1 ∈ X

N-RCI there exists a sequence of control

policies φi(xi) ∈ U such that the N-step reachable set of
X

N-RCI lies within X
N-RCI ∀pi ∈ P, with i = 1, . . . , N.

To check for the above condition, we propose N hyperrect-
angles [x1−

i , xNs+
i ] = X

N-RCI
i , which each are propagated with

a piece-wise constant policy

φi(xi) = us
i , if xi ∈ [

xs−
i , xs+

i

]
,∀s ∈ NNs , ∀i ∈ NN . (8)

We enforce that the reachable set of each hyperrectangle is
bounded by the next hyperrectangle. The N-step robust control
invariance is enforced by constraining the propagation of the
last hyperrectangle to lie again in the first hyperrectangle. All
hyperrectangles should satisfy the state constraints.

We propose to compute the N-step robust reachable sets by
solving the following optimization problem:

max
xs+

i ,xs−
i ,us

i , ∀s∈NNs ,∀i∈NN

V
(

x[1:Ns]±
[1:N]

)
(9a)

s.t:
[
x1−

i , xNs+
i

]
∈ X, ∀i ∈ NN, (9b)

us
i ∈ U, ∀s ∈ NNs ,∀i ∈ NN, (9c)

h
(

x[1:Ns]±
i

)
≤ 0,∀i ∈ NN (9d)

xNs+
i+1 ≥ f

(
xs±

i , us
i , p±) ≥ x1−

i+1,

∀s ∈ NNs , ∀i ∈ NN−1, (9e)

xNs+
1 ≥ f

(
xs±

N , us
N, p±) ≥ x1−

1 , ∀s ∈ NNs . (9f)

We denote the union of all XN-RCI
i as X

N-RCI
[1:N] .

Proposition 2: Suppose Assumption 1 holds, then the
hyperrectangles X

N-RCI
i , resulting from (9), are all N-step

robust control invariant according to Definition 3.
Proposition 2 can be proven by extending the proof

from [12] over multiple time steps and is omitted here for
brevity.

If the cost function (9a) is chosen as V(x[1:Ns]±
1 ) in (7),

this will lead to a hyperrectangle X
N-RCI
1 with at least the

size of the one-step RCI set resulting from (6). The number
of hyperrectangles Ns can be chosen as a trade-off between
complexity and conservatism. The proposed approach enables
to calculate N-step RCI sets for monotone systems with a
complexity scaling linearly in N and Ns. Each hyperrectangle
can be defined over its corner points xs±

i and its safe input us
i

(linear in Ns). The propagation of every hyperrectangle to the
next RCI set is again defined with two points f (xs+

i , us
i , p+)

and f (xs−
i , us

i , p−) and are bounded by the next RCI set, which
again is defined by a constant Ns hyperrectangles (linear in N).

IV. ROBUST CONTROL INVARIANT SET AS A SAFETY

FILTER FOR MONOTONE SYSTEMS

We propose to use the N-step RCI set defined by (9) for
a safety filter that guarantees a safe closed-loop behavior
inside the N-step RCI set when any control law �(xk) is
used for the system. We will use �(xk) as notation for the
control law throughout the following Section for simplicity,
without loss of generality for any other possible control law
�, especially �(xk, uk−1), which is a typical control law for
tracking problems with desired input smoothing as seen in
Section V. The proposed strategy checks online whether the
control law �(xk) leads the system into the N-step RCI set,
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Fig. 2. Algorithmic overview of the proposed control law κ(xk , �) The
offline computation of the safe fallback inputs as well as the respective
subregions is used in the online application as a safe alternative input in
case one of the predicted x+ or x− are leaving the N-step RCI set.

which has been precomputed offline. this is the case, it is
applied to the system. If this is not the case, a safe fallback
strategy has to be chosen instead. As a direct result of (2b), for
a monotone system under uncertainty it is sufficient to check
whether for the current state xk, x− = f (xk,�(xk), p−) and
x+ = f (xk,�(xk), p+) are within the N-step RCI set. Since
this check is computationally very simple, it can be easily
performed online, by calculating the error value ek as

ek =
{

1 if x+or x− �∈ X
N-RCI
n ∀n ∈ NN

0 else.
(10)

Note that while X
N-RCI
[1:N] is the union of the N hyperrectangles,

there has to be one rectangle X
N-RCI
n , n ∈ NN that includes

both x+ and x−.
Solving (9) generates inputs as defined by (8) that ensure

the N-step invariance of each point within the N-step RCI set.
This enables the use of a straightforward fallback strategy

uf (xk) = φi(xk) if xk ∈ [
xs−

i , xs+
i

]
(11)

that is used in case the check in (10) fails. In general, as there
can be more than one hyperrectangle that includes xk, uf (xk) is
non-unique. In those cases the first found hyperrectangle that
fulfills said condition is chosen for uf (xk) , as this concludes
the search as early as possible. Other variants like choosing the
input that is the closest to �(xk) are possible. This framework
is presented in Figure 2. With this, the main Theorem can be
stated as follows:

Theorem 1: If Assumption 1 holds, then for any controller
�(xk) and the fallback strategy (11), the control strategy

κ(xk,�) =
{

uf (xk), if ek = 1
�(xk), if ek = 0

(12)

makes the set X
N-RCI
[1:N] computed as in (9) a robust control

invariant set and therefore guarantees safe operation of the
controller.

Proof: The proof is conducted using case distinction:
Case 1: ∃n x− and x+ ∈ X

N-RCI
n → ek = 0.

A rectangular set XN-RCI
n that is part of the N-step RCI set

is found such that x+ and x− are within this hyperrectangle.
Applying Proposition (1), shows that

xk+1 = f (xk, uk, p) ∈ [
x−, x+]

(13)

for an input uk = �(xk) and any p ∈ [p−, p+]. Therefore, by
Assumption 1 there exists an n, such that xk+1 ∈ X

N-RCI
n ⊂

X
N-RCI
[1:N] must hold.
Case 2: ∀n x− or x+ �∈ X

N-RCI
n → ek = 1

There is no rectangular set XN-RCI
n that is part of the RCI

set such that x+ and x− are within this hyperrectangle for the
input uk = �(xk). Therefore, the control law will switch to
the fallback law uk = uf (xk) = φi(xk). Per definition in (8),
φi(xk) is the input policy in xk that guarantees that xk+1 ∈
X

N-RCI
[1:N] ∀p ∈ [p−, p+].
In both cases, xk+1 remains in the N-step RCI set XN-RCI

[1:N]
under the given control law. Since X

N-RCI
[1:N] ⊆ X

V. ILLUSTRATIVE EXAMPLE: NONLINEAR MONOTONE

SYSTEM

A. Nonlinear Double Integrator

We consider the control of a two-dimensional discrete-time
nonlinear double integrator of the following form:

xk+1 = Axk + Buk + F
√

xT
k xk (14)

A =
(

1 1
0 1

)
, B =

(
1 0
0 1

)
, F =

(
p
p

)

which can be controlled by a two-dimensional input vector
uk ∈ [(−10 −5)T , (10 5)T ]. The states space is constrained to
xk ∈ [(0 0)T , (10 10)T ]. The system is subject to uncertainty
with the parameter being uncertain in the range p− = 0.0 ≤
p ≤ 0.3 = p+.

The task for the controller is a tracking problem, with the
desired setpoint defined as x̄ = (5 2)T .

B. Evaluated Controllers

We investigate the proposed method on two different con-
trollers, a nonlinear MPC and a neural network controller
imitating a nonlinear MPC (approximate MPC). Note that any
other learning-based controller such as reinforcement learning
methods would be suitable as well. The nonlinear MPC solves
the following optimization problem at every sampling time:

min
u

Npred−1∑

j=0

�uT
j R�uj +

Npred∑

j=0

(
xj − x̄j

)T
Q

(
xj − x̄j

)

s.t. xj+1 = f (xk, uk, p)

�uj = uj − uj−1

0 ≤ xj ≤ cx

− cu ≤ uj ≤ cu

x0 = xk

u−1 = uk−1

∀j = 0, . . . , Npred − 1. (15)

The optimal sequence of inputs is denoted as u� =
[u�

0 . . . u�
Npred−1], while �MPC(xk, uk−1) = u�

0 ∈ U is applied
to the system in each step. The initial state of the optimized
trajectories in each time step is xk ∈ X. Npred is the prediction
horizon of the MPC. The MPC is evaluated with the nominal
value of p = 0.15, a prediction horizon of Npred = 10, state
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Fig. 3. Robust control invariant sets for the system as proposed in [12]
(left) and the increased N-step RCI set as defined in (9) under the
proposed cost function in (7) (right).

and input constraints as stated in Section V-A. The cost func-

tion is defined with Q =
(

1 0
0 1

)
, R =

(
1 0
0 1

)
. Secondly, we

define the approximate MPC controller as a feedforward neural
network, N (x, θ, d, m), parameterized by a number of layers
d, the number of neurons m, a nonlinear activation function,
the inputs x in the network, and its network parameters θ .
The approximate control law is therefore �approx(xk, uk−1) =
N (xk, uk−1). For the given system in Section V-A we train
a neural network using ntrain = 10000 sampling points,
d = 6, m = 100, a ReLU activation function and the ADAM
solver [17] , and use this network as an approximated MPC
�approx. Finally, the proposed framework is compared against
the robust MPC approach �robust in [12], which instead of
relying on a safety filter to ensure constraints satisfaction
under uncertainty, incorporates the robustness directly in the
underlying MPC formulation.

C. Results

All the results presented in this letter are openly available.1

The MPC is implemented with the do-mpc framework [18]
using the NLP solver IPOPT [19], which is also used for the
offline computation of (9). All of the performance metrics are
computed on an i7-CPU/16 GB RAM computer.

1) Improved N-Step Robust Control Invariant Set: One of
the contributions of this letter is to enlarge the set in which
the controller can be operated by calculating an N-step robust
control invariant set. With the cost function as proposed in (7),
we ensure to have at least the same area as for the RCI set
proposed in (6). For the given system, N = 3 with Ns = 25
subregions yields the best results, as no gain in the overall area
for both the one-step RCI set and N-step RCI set is achieved by
further increasing N and Ns. The area in which the framework
can be applied safely increases by 20.03 % by using the N-
step RCI set compared to the one-step RCI set, and is depicted
in Figure 3. By increasing the RCI set size the overall area
is not a hyperrectangular anymore, as it is the union of all
optimized sets. In theory, these sets can even be disjunct. The
computation time of the offline N-step RCI set calculation is
0.15 s.

2) Performance Metrics: To further analyze the
performance of the proposed method, the tracking task
described in Section V-A is performed with and without the

1https://github.com/JoshuaAda/CDC_DGAMUNMS

TABLE I
PERFORMANCE METRICS (PERCENTAGE OF SAFETY FILTER

APPLICATION ABBREVIATED WITH uf ) FOR THE EVALUATED
CONTROLLERS WITH AND WITHOUT A SAFETY FILTER IN COMPARISON

TO THE ROBUST MPC METHOD PROPOSED IN [12]

safety filter for both the exact nominal MPC �MPC and the
approximate MPC �approx. The respective controllers with
the proposed safety filter are denoted as κ(xk,�MPC) and
κ(xk,�approx). Furthermore, these controllers are compared
against the exact robust MPC (�robust) method proposed
in [12]. We set the initial state to (x0 = 8.57)T and u−1 =
(−5 − 10)T , which would have been an infeasible state value
given just the one-step RCI set, and compute a trajectory of
20 s. We compare the stage cost, the evaluation time, and
the constraint violations for M = 1000 different uncertainty
realizations. The mean values of stage costs, evaluation time,
percentage of violations as well as percentage of steps where
the safety filter is applied over the entire time can be found
in Table I. The results are shown for simplicity for a fixed
initial condition. We obtained similar conclusions for varying
initial conditions. Both the nominal MPC and approximate
MPC achieve the best overall stage costs stage costs without
the filter. When employing the proposed safety filter, the
stage cost increases due to the usage of the filter inputs. The
robust method is more conservative in tracking the setpoint,
achieving an overall higher stage cost compared to nominal
or approximate MPC. As expected, the computation time
required for evaluating the nominal MPC is smaller than the
required for the evaluation of the robust MPC, but it can be
significantly reduced if approximate MPC is used. In addition,
the nominal and approximate controllers lead to constraint
violations for 0.72 % and 1.44 % of the time steps. If the safety
filter is employed, it is active in 5.00 % of the conducted time
steps while achieving its goal that no constraint violations are
encountered.

Figure 4 shows one state trajectory of the approximate MPC
with and without a safety filter as well as the robust MPC
approach for one specific uncertainty realization. For t =
1 s the approximate MPC without a safety filter registers a
constraint violation, which is detected in the proposed safety
framework and corrected by the safety filter.

3) Benefits of the Proposed Safety Filter: With the results
in Table I, Theorem 1 is validated as the safety filter method
ensures deterministic guarantees even for the approximate
MPC controller which, as a standalone controller, would be
unsafe. As both MPC and approximate MPC are designed on
the nominal model and therefore not optimal with uncertainty,
their usage can lead to constraint violations. Since the fallback
inputs are not optimal but safe, the performance will degrade
if the fallback inputs are applied while ensuring the safety
for these controllers. As the safety filter approach guarantees
safety through an offline computation of the N-step RCI
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Fig. 4. State trajectory over time of the approximate MPC with and
without the safety filter as well as the robust MPC approach. Due to the
applied noise, there is a control violation at t = 1 s for the approximate
MPC, which is rescued by the applied fallback strategy in the proposed
control scheme.

set, it drastically reduces evaluation time and computational
effort during the online execution against the method proposed
in [12]. The online evaluation scales at most linearly with the
number of subregions as the check in (11) can be efficiently
evaluated via a search tree, that exploits the sequencing of the
partition of the state space so that checking iteratively for each
dimension if the current state is within the respective interval
narrows down the search space proportional to the number of
partitions in that dimension. Therefore, the proposed method
scales better than the approach in [12], therefore increasing
its applicability to larger nonlinear monotone systems. Finally,
the main advantage of the method is its general applicability
to all controller types. Especially learning-based controllers
are suitable as they typically come with fast online evaluation
times, as shown in Table I, and could be used to further
improve the closed-loop performance.

VI. CONCLUSION AND FUTURE WORK

We propose a framework to safely use learning-based
controllers for nonlinear monotone systems under uncertainty.
An efficient approach to calculate an N-step RCI set has
been developed which, compared to a one-step RCI set,
has a significantly larger volume and therefore leads to less
conservative behavior. The resulting offline solution is used
as a safety filter making the framework generalizable to
all nonlinear controllers. Since learning-based approximate
controllers come with fast evaluation times, they are suited best
for the proposed framework, which enables better scalability
and reduced computation time in comparison to [12]. We
demonstrate the advantages of the proposed approach in a

simulation case study by showing decreased conservatism and
computational effort as well as a favorable scaling to larger
systems. Future research will focus on extending the findings
from monotone systems to the larger set of nonlinear mixed-
monotone systems [20].
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