
1

Cost-Effective Edge Data Caching with Failure
Tolerance and Popularity Awareness

Ruikun Luo, Zujia Zhang, Qiang He, Senior Member, IEEE, Mengxi Xu, Feifei Chen, Member, IEEE,
Xiaohai Dai, Song Wu, Member, IEEE, and Hai Jin, Fellow, IEEE

Abstract—In the mobile edge computing environment, caching data in edge storage systems can significantly reduce data retrieval
latency for users while saving the costs incurred by cloud-edge data transmissions for app vendors. Existing edge data caching (EDC)
methods prioritize popular data and aim to minimize users’ data retrieval latency and system storage costs jointly. However, these EDC
methods often rely on the assumption that data popularity always follows certain distributions. As a result, they cannot properly adapt to
the fluctuations in data popularity due to user mobility or unexpected increases in user demands. Meanwhile, unlike cloud data centers,
complex and fragile edge servers are more likely to experience physical failures or network outages, presenting new challenges for
EDC strategies. Specifically, when an edge server fails or experiences an outage, cached data may become temporarily unavailable,
leading to increased latency as requests are redirected to alternative servers or the cloud. In this paper, to enable uncertainty-aware
edge data caching (uEDC), we first model the problem as a robust optimization problem and propose an optimal algorithm named
uEDC-B to find the optimal uEDC solution. To address the high computational complexity of uEDC-B, we introduce an approximate
algorithm named uEDC-L based on linear decision rules. Theoretical analysis and extensive experiments on a real-world dataset
demonstrate that the proposed methods outperform two state-of-the-art approaches in handling the uncertainties in data popularity and
edge server failure with a significant performance improvement of 59.27% in data retrieval latency and 55.07% in data caching cost.

Index Terms—mobile edge computing, edge data caching, data popularity, optimization approach

✦

1 INTRODUCTION

IN the digital era, mobile edge computing, a new dis-
tributed computing paradigm, is rapidly shifting the

resource provisioning from reliance on centralized cloud
data centers for data processing and storage to a more
distributed approach [1]–[3]. By relocating data and com-
putational tasks from central data centers to edge devices
or edge servers near users, mobile edge computing reduces
data processing latency and decreases the burden on data
centers significantly [4]–[6]. Comprised of connected edge
servers in a specific geographic area, an edge storage system
(ESS) is capable of delivering data to users in the area with
low latency [7], [8]. In this context, edge data caching (EDC)
has become a critical technique for enhancing data access
efficiency and reducing network congestion.

App vendors like TikTok and YouTube can reduce users’
data retrieval latency effectively by caching popular videos
on ESSs [9], [10]. They can also reduce the costs associated
with data transmissions from cloud data centers to users
since transferring data between edge servers (edge-to-edge)
is much cheaper than between the cloud and edge servers
(cloud-to-edge) [11]. For example, Amazon Web Services
charges $0.05-$0.09 for every GB of data transferred out of
its S3 to the internet [12], while only $0.01 for transferring

• R. Luo, Z. Zhang, Q. He, M. Xu, S. Wu, and H. Jin are with National En-
gineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing
Lab, School of Computer Science and Technology, Huazhong University
of Science and Technology, China. Email: {rkluo, heliotrope, hqiang,
u202112027, xhdai, wusong, hjin}@hust.edu.cn.

• F. Chen is with the School of Information Technology, Deakin University,
Geelong, VIC 3125, Australia. Email: feifei.chen@deakin.edu.au.

0:0
0

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0
10

:00
11

:00
12

:00
13

:00
14

:00
15

:00
16

:00
17

:00
18

:00
19

:00
20

:00
21

:00
22

:00
23

:00

Hour of the Day

0

50

100

150

N
um

be
r o

f D
at

a
R

eq
ue

st
s

User #1
User #2
User #3

Fig. 1: Data requests over time. We use Apache Kafka to
conduct a statistical analysis of the average number of access
requests for a specific type of data, such as video streaming
here, from users across four distinct geographical regions
within a single day.

every GB of data between edge servers within the same
AWS Wavelength Zone at the network edge [13]. Edge data
caching also enables real-time decision-making processes
for many applications in dynamic urban environments. For
example, in smart cities, traffic management systems may
rely on edge caching to process large volumes of traffic data
in real time, enabling swift adjustments to traffic flow.

In mobile edge computing environments, edge servers
are commonly deployed at 5G/6G base stations near
users [14]. Edge servers in an area communicate with each
other via high-speed links [7], [15]. Unlike cloud servers,
the limited physical sizes of edge servers dictate their con-
strained resources [16]. Their constrained storage capacities,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Fig. 2: Edge data caching strategy under popularity uncertainty and edge server failures. The popularity uncertainty is
represented by the mobility of user u1, while the uncertainty of server failures includes the failure of v5.

in particular, impact the system’s ability to accommodate
users’ data demands. To optimize the utilization of limited
edge storage resources, current edge data caching methods
typically cache the most popular data, i.e., data requested by
many users [17]–[19]. Based on data popularity, such meth-
ods rely on accurate data popularity predictions or assump-
tions regarding the distribution of data requests. However,
as shown in Fig. 1, fluctuations in the volume of edge data
access requests in the mobile edge computing environments
are common and notoriously challenging to predict [20].
These fluctuations may be attributed to various factors,
including user mobility, evolving user behavior patterns,
etc. These pose profound challenges for edge data caching.
For instance, breaking news on social media can rapidly
increase the popularity of relevant video content, potentially
rendering existing caching strategies ineffective. Failing to
respond to these swift changes in data demands. Edge
caching systems might end up storing infrequently-accessed
data. Users have to fetch viral videos from remote cloud
servers, which leads to increased data retrieval latency. Take
Fig. 2 as an example. For easy description, we assume that
all users {u1, . . . , u6} request data d1. Fig. 2(a) shows a data
popularity-based EDC strategy that caches data d1 on edge
servers v3 and v5 to ensure all users can retrieve d1 within
one hop in the system. However, due to user mobility, u1

served by v3 moves into the coverage of v1. A better EDC
strategy, as shown in Fig. 2(b), is to cache d1 on v1 to serve
the most users demanding d1. Overlooking the uncertainties
in data requests can undermine the fundamental objectives
of edge caching, i.e., to bring popular data closer to users
and reduce their data retrieval latency.

Meanwhile, unlike cloud data centers typically housed
in well-maintained and protected environments, edge
servers are often deployed in more varied and potentially
less secure or friendly locations, making them more sus-
ceptible to failures [21], [22]. This is primarily due to their
proximity to end-users for lower latency, necessitating their
placement in diverse environments that might not offer
the same infrastructure robustness and physical security
as traditional data centers [23]. Consequently, edge servers
are exposed to a higher risk of physical damage, environ-
mental hazards, power instability, and network issues [24],
[25]. These factors collectively contribute to more server
failures at the edge than their counterparts in cloud data
centers [26]. When an edge server fails, the data cached on

the failed edge server becomes inaccessible and users’ data
requests will be rerouted to other edge servers or cloud.
This increases the data retrieval latency and impacts their
quality of experience. Take Fig. 2(b) as an example. An EDC
method without considering edge server failures may cache
data d1 on edge servers v1 and v5. If v5 fails, as shown
in Fig. 2(c), this EDC strategy is not robust because users
u2 and u3 cannot retrieve d1 within one hop in the ESS.
Their data requests have to be offloaded to the remote cloud,
which increases their data retrieval latency significantly. A
more robust strategy that accounts for server failures might
involve caching the data on v1, v4, and v6.

To enable robust edge data caching, this paper makes
the first attempt to investigate the uncertainty-aware edge
data caching (uEDC) problem. Its main contributions can be
summarized as follows:

• We model and formulate the uEDC problem, and prove
its NP-hardness.

• We propose two approaches to solve the uEDC prob-
lem, i.e., uEDC-B and uEDC-L, the former for finding
optimal robust EDC strategies and uEDC-L for finding
approximate uEDC solutions in large-scale scenarios.

• We prove the theoretical performance of uEDC-L and
conduct extensive experiments to evaluate the perfor-
mance of uEDC-B and uEDC-L on a widely-used real-
world dataset.

This paper is organized as follows. We formulate the
uEDC problem and prove that it is NP-hard in Section 2. In
Section 3 and Section 4, we introduce uEDC-B and uEDC-L
in detail and evaluate uEDC-B and uEDC-L experimentally
in Section 5. Section 6 reviews the related work. Finally,
Section 7 summarizes this paper and points out the future
direction.

2 PROBLEM FORMULATION

In this section, we formulate the uEDC problem and then
prove its hardness theoretically. Table 1 summarizes the
main notations used in this paper and their descriptions.

2.1 System Model
Given an edge storage system deployed in a specific geo-
graphic area, let V represent the set of edge servers in the
system and D = {d1, ..., dn} represent users’ data requests.
In the mobile edge computing environment, the end-to-end

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

TABLE 1: Summary of notations

Notation Description
ai,k binary variable indicating cache di on edge server vk
Ck available cache space on vk

di data i

mi,j satisfiable requests from vj at di
pj,k delay between vj and vk

qi,j unsatisfiable requests from vj at di
R request uncertainty set
R set of data requests
ri,j total requests from vj at di
sk unit cache cost on vk

tj latency between vj and the cloud
V set of edge servers
vj edge server j
W edge server failure uncertainty set
wk binary variable denotes whether vk is fail

data retrieval latency consists of the latency between the
user and the edge server serving the user and the latency
in data transmission between servers. Similar to previous
studies [15], [27], this study focuses on the latter because the
former is not impacted by the EDC strategy. Let us assume
that an edge server vj needs to fetch data d from vk to
serve a user. The overall data retrieval latency is the latency
between vj and vk. Otherwise, the data is transmitted from
the cloud to the user with a latency of tj . The requests for
different data di vary for users and are aggregated onto edge
servers. Thus, different edge servers usually have different
data needs within the system. Let ri,j denote edge server
vj ’s requests for data di. The number of data requests for
data di determines its popularity. Caching popular data on
edge storage systems is critical for cost-effectiveness because
it can minimize the data retrieval latency for as many users
as possible. Finding an EDC strategy for data di is to find
out whether to cache di on each of the edge servers in the
system. It can be represented by an array of binary variables
ai,j . If ai,j = 1, it indicates that data di is cached on edge
server vj . In this context, the data retrieval latency can be
modeled as follows:

L =
∑
i

∑
j

ri,jpj,k (1)

where pj,k denotes the minimum latency between edge
server vj and vk and edge server vk is satisfies ai,k = 1.

Due to differences in hardware configurations, geo-
graphic locations, remaining resources, etc., the cost of
caching data may vary across different edge servers [28]. Let
sk represent the cost of caching a data unit on edge server
vj . The cost of caching C in the system can be calculated as
follows:

C =
∑
k

∑
i

skai,k (2)

As mentioned in Section 1, edge servers often suffer from
constrained storage resources. Thus, the number of data
cached on each edge server vk cannot violate the available
server capacity constraint:∑

i

ai,k ≤ Ck (3)

The key optimization objective is to serve the maximum
users’ data requests with the minimum data caching costs.
However, simply pursuing the minimization of caching
costs usually results in high data retrieval latency. For
instance, if a data item is cached on only one edge server
within the entire system, the storage cost will be minimal,
but users’ average data retrieval latency will be high because
distant users have no other choice but to retrieve data
from that edge server. Therefore, edge data caching should
optimize the caching cost and data retrieval latency jointly.
When all system parameters are determined, uEDC is a
deterministic problem as follows:

DP : min C + βL (4)
s.t. (3)

where β serves as a variable balancing the importance of
storage cost and data retrieval latency. In real-time video
streaming applications, users have a high demand for data
access timeliness, so a larger β can be chosen. In contrast,
for backup update applications, the frequency of data access
may be relatively low, allowing for a smaller β to achieve a
more cost-effective data caching strategy.

Considering server failures and data request uncertainty,
the solutions obtained from the deterministic model DP
may fall short in real EDC scenarios, potentially resulting
in excessive data retrieval latency. Robust optimization is an
effective method for addressing uncertainties, which uses
the uncertainty set to model the uncertain parameters [29]–
[31]. The uEDC problem can be modeled as a single-stage
robust optimization problem. However, due to the non-
linear constraints associated with server failures and the
linear constraints related to data request uncertainties, ap-
plying a single-stage robust optimization approach often
results in overly cautious solutions within the uncertainty
set. To address this issue, we introduce a two-stage robust
optimization approach. The core idea is to partition the
uEDC problem into two phases: the initial stage and a sub-
sequent stage which formulates a refined decision strategy
based on the outcome of the first stage. This approach aims
to mitigate the impacts of uncertainty set on data caching
decisions.

In the first phase, initial data caching decisions are
made based on data popularity under capacity constraints
(Eq. (3)). In the second phase, we incorporate actual user
request fluctuations and server failures to optimize the deci-
sions made in the first phase based on the extent of request
fluctuations and server failures. Specifically, the cases where
data requests cannot be met due to fluctuations and server
failures are categorized into two types: requests that can be
served by other servers within the ESS under the latency
constraint1 Lmax are considered as satisfiable requests mi,j ,
while other requests qi,j are considered as unsatisfiable
requests by the ESS. Consequently, by integrating these two
phases, the data retrieval latency also consists of two com-
ponents: the first-stage estimated latency L1 and the second-

1. To ensure an acceptable data retrieval latency for users, the trans-
mission latency between edge servers must not exceed an application-
specific latency constraint Lmax [32], [33], which can be predefined by
app vendors according to the applications’ requirements.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

stage actual latency L2. These two latency components are
expressed as follows:

L1 =
∑
i,k

ai,kpj,k (5)

L2 =
∑
i,j

qi,jtj +
∑
i,j

mi,jpj,k (6)

The real data request can be formalized as an interval,
i.e., rji ∈ [r̂i,j+gji r̄i,j], where r̂i,j denotes the expected value
of data request and r̄i,j denotes the maximum deviation
between real data request and the expected value. Therefore,
the uncertainty set of data requests can be formulated as
follows:

R = {r : ri,j = r̂i,j +gji r̄i,j ;∀di ∈ D,∀vj ∈ V,∀g ∈ G} (7)

where G = {g :
∑

i,j g
j
i ≤ P, 0 ≤ gji ≤ 1} and P is the

budget of data request uncertainty. When P = 0, the users’
data request is equal to the expected one. In this way, this
robust optimization model is thus a deterministic model.

In addition to request uncertainty, app vendors must
consider unforeseeable edge server failures during the
decision-making process. To address the uncertainty sur-
rounding server failures, we adopt a cardinality-constrained
uncertainty set similar to [29] and [34]. Let wj be a binary in-
dicator, where wj = 0 if edge server vj fails. The uncertainty
set of edge server failures can be defined as follows:

W = {wj ∈ {0, 1} :
∑
j

wj ≤ F} (8)

where F (F ≤ |V |) represents the maximum number of edge
servers that may fail in the ESS.

2.2 Problem Formulation
By incorporating uncertainties into the deterministic prob-
lem, we address potential disruptions, such as server fail-
ures that may prevent data requests from being processed
locally, necessitating offloading to a remote cloud, as defined
in Eq. (6). The two-stage robust optimization model for the
uEDC problem can be formulated as follows:

RP : min
a

{
∑
i,k

skai,k + β
∑
i,k

ai,kpj,k}

+max
r,w

min
m,q

∑
i,j

qi,jtj +
∑
i,j

mi,jpj,k (9a)

s.t.
∑
i

ai,k ≤ Ck (9b)∑
i

mi,j ≤ wj

∑
i

ri,j , ∀j (9c)

mi,j + qi,j ≥ ri,j , ∀i,∀j (9d)

In the first stage, uncertainties are ignored. That is,
changes in data popularity and server failures are not
considered while optimizing data caching cost and data
retrieval latency. A preliminary data caching strategy will be
produced. In the second stage, uncertainties are introduced.
The objectives are re-optimized to accommodate data re-
quests that can be directly satisfied and those that need
to be offloaded to the cloud. The first stage involves the
capacity constraint (9b), while the second stage involves two

constraints, i.e., (9c) and (9d). Constraint (9c) ensures that, in
the event of the failure of server vi, all data requests directed
to vi are served by data cached on servers under the Lmax
latency constraint without experiencing a failure. Constraint
(9d) ensures that the sum of all data requests satisfied within
the system and those offloaded to the remote cloud must
not be less than the total actual requests. This ensures that
all data requests will be processed eventually, one way or
another.

2.3 Problem Hardness

By reducing the uEDC problem from the classic NP-hard
facility location (FL) problem [35], we can prove the NP-
hardness of the uEDC problem.

Given a set of potential facility locations F =
{f1, f2, . . . , fm} and a set of clients C = {c1, c2, . . . , cn},
the FL problem involves determining the placement of some
facilities to serve a given set of clients. The optimization
objective is to minimize both the opening cost of the facilities
and the cost of servicing the clients from these facilities. The
FL problem can be formally described as follows:

min{
m∑
i=1

yigi +
m∑
i=1

n∑
j=1

xijdij} (10a)

s.t.
m∑
i=1

xij = 1, ∀j (10b)

xij ≤ yi, ∀i,∀j (10c)
yi ∈ {0, 1}, ∀i (10d)
xij ∈ {0, 1}, ∀i,∀j (10e)

where yi is a binary variable that determines whether a
facility at location i is open and xi,j is a binary variable
that determines whether client j is served by facility i.

Now we reduce the uEDC problem from the FL prob-
lem: 1) relax the data request uncertainty budget to 0;
2) relax the maximum number of edge servers fail to 0.
The optimization objective of uEDC can formulated as:
min{

∑
i,k skai,k + β

∑
i,k ai,kpj,k}, the same as Eq. (10a).

Constraint (10b) ensures each client is serviced by exactly
one facility. Constraint (10c) ensures each client can only
be serviced by an open facility. Combining constraint (10b)
and constraint (10c), we have

∑
i=1,...,m xij ≤ m, which is

equivalent to Eq. (9b). Combining constraints (9c) and (9d)
implies that it is necessary to serve all the data requests,
equivalent to all clients being connected to a facility in the
FL problem.

In conclusion, any solution to the NP-hard FL problem
can be reduced to the uEDC problem in polynomial time.
Thus, the uEDC problem is also NP-hard.

3 OPTIMAL APPROACH

Benders’ decomposition method [36] can be employed to
solve the two-stage robust optimization problem by divid-
ing the problem into two parts: the master problem (MP) and
the subproblem (SP). The MP incorporates first-stage decision
variables ai,j , constraints related only to ai,j , and Benders’
cuts returned from the SP. It also includes an auxiliary vari-
able η for evaluating the value of the second-stage objective

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

function. The SP encompasses second-stage decision vari-
ables m, q and uncertainty variables r, w, aiming to provide
a bound on the value of the second-stage objective function.
For the two-stage robust optimization problem described in
Eq. (9a), the initial MP can be formulated as follows:

MP: min
η,a

{
∑
k

sk
∑
i

ai,k + β
∑
i,k

ai,kpj,k}+ η (11a)

s.t.
∑
i

ai,k ≤ Ck (11b)

η ≥ 0 (11c)

where η = maxr,w minm,q

∑
i,j qi,jtj +

∑
i,j mi,jpj,k. Ac-

cording to Eq. (9a), the SP can be formulated as a bilevel
linear programming problem. In this framework, the upper
level’s decision variables are the uncertainty variables r and
w, while the lower level’s decision variables are m and q.
Thus, the SP can be expressed as follows:

SP: max
r,w

min
m,q

∑
i,j

qi,jtj +
∑
i,j

mi,jpj,k (12a)

s.t.
∑
i

mi,j ≤ wj

∑
i

ri,j , ∀j (12b)

mi,j + qi,j ≥ ri,j , ∀i,∀j (12c)
qi,j(r, w) ≥ 0, ∀i,∀j (12d)
mi,j(r, w) ≥ 0, ∀i,∀j (12e)

The upper level in Eq. (12a) optimizes decision variables
r and w, influenced by uncertainties, to achieve the best
possible outcome under given constraints. Concurrently, the
lower level focuses on optimizing m and q, which depends
on the outcome produced by the upper level. This facilitates
an integrated approach to handling uncertainties effectively.

Since Eq. (12) is a max-min linear programming problem
that is hard to solve, we reformulate the SP into a dual
problem as follows:

max
u,s

{
∑
i,j

si,jri,j − ujwj

∑
i

ri,j} (13a)

s.t.
∑
i

si,j − uj ≤ pj,k, ∀j (13b)∑
i

si,j ≤ tj , ∀j (13c)

uj ≥ 0, ∀j (13d)
si,j ≥ 0, ∀i,∀j (13e)

where si,j and uj are dual variables. Using the standard
Benders dual theory [37], the max-min SP can be trans-
formed into a single max problem.

By combining Eq. (13) and Eq. (12), we can derive a
unified maximization problem as Eq. (14). Solving Eq. (12)
is equivalent to solving Eq. (14).

max
r,w,u,s

∑
i,j

si,jri,j − ujwj

∑
i

ri,j (14a)

s.t.
∑
i

si,j − uj ≤ pj,k, ∀j (14b)∑
i

si,j ≤ tj , ∀j (14c)

uj ≥ 0, ∀j (14d)
si,j ≥ 0, ∀i,∀j (14e)

Although the bilevel SP in Eq. (12) can be simplified into
Eq. (14), according to the Benders’ dual approach, Eq. (14)
remains a bilinear optimization problem, which cannot be
solved directly. To address this issue, we apply the Karush-
Kuhn-Tucker (KKT) conditions to transform the bilinear op-
timization problem into a linear optimization problem for
resolution.

First, we construct the Lagrangian function L for Eq. (14)
as follows:

L(si,j , ri,j , uj , wj , λ
1
j , λ

2
j , λ

3
j , λ

4
i,j) =

∑
i,j

si,jri,j−

ujwj

∑
i

ri,j + λ1
j (
∑
i

si,j − uj − pj,k)+

λ2
j (
∑
i

si,j − tj)− µ1
juj − µ2

i,jsi,j − µ3
i,jri,j − µ4

jwj

(15)

where λ and µ are the Lagrange multipliers associated with
the constraints on variables q and m, respectively.

The obtained KKT conditions include stationary condi-
tions as follows:

∂L
∂si,j

= ri,j + λ1
j + λ2

j − λ4
i,j = µ2

i,j , ∀i, j (16a)

∂L
∂ri,j

= si,j + ujwj = µ3
i,j , ∀i, j (16b)

∂L
∂uj

= −wj

∑
i

ri,j − λ1
j = µ1

j , ∀j (16c)

∂L
∂wj

= −uj

∑
i

ri,j = µ4
j , ∀j (16d)

The primal feasibility conditions can be formulated as follows:

∑
i

si,j − uj ≤ pj,k, ∀j (17a)∑
i

si,j ≤ tj , ∀j (17b)

uj ≥ 0, ∀j (17c)
si,j ≥ 0, ∀i, ∀j (17d)
ri,j ≥ 0, ∀i,∀j (17e)
wj ≥ 0, ∀j (17f)

The dual feasibility conditions are:

λ1
j ≥ 0, ∀j ; λ2

j ≥ 0, ∀j (18)

The complementary slackness can be formulated as follows:

λ1
j (
∑
i

si,j − uj − pj,k) = 0, ∀j (19a)

λ2
j (
∑
i

si,j − tj) = 0, ∀j (19b)

µ1
juj = 0 ∀j µ2

i,jsi,j = 0, ∀i, j (19c)

µ3
i,jri,j = 0, ∀i, jµ4

jwj = 0, ∀j (19d)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

After applying the KKT conditions, the problem can be
expressed in the following form:

max
r,w,u,s

∑
i,j

si,jri,j − ujwj

∑
i

ri,j (20a)

s.t. 0 ≤ si,j ≤ Ai,j(1− e1i,j)

0 ≤ ri,j + λ1
j + λ2

j − λ4
i,j ≤ Ai,je

1
i,j (20b)

0 ≤ ri,j ≤ Bi,j(1− e2i,j) (20c)

0 ≤ si,j + ujwj ≤ Bi,je
2
i,j (20d)

0 ≤ uj ≤ Cj(1− e1j) (20e)

0 ≤ −wj

∑
i

ri,j − λ1
j ≤ Cje

1
j , ∀j (20f)

0 ≤ wj ≤ Dj(1− e2j) (20g)

0 ≤ −uj

∑
i

ri,j ≤ Dje
2
j , ∀j (20h)

0 ≤ λ1
j ≤ Ej(1− e3j) (20i)

0 ≤ pj,k −
∑
i

si,j − uj ≤ Eje
3
j , ∀j (20j)

0 ≤ λ2
j ≤ Fj(1− e4j) (20k)

0 ≤ tj −
∑
i

si,j ≤ Fje
4
j , ∀j (20l)

where Ai,j , Bi,j , Cj , Dj , Ej , Fj are sufficiently-large num-
bers.

To solve this sub-problem, we can use an integer pro-
gramming solver such as CPLEX2 or Gurobi3. When the
exact solution to the sub-problem is obtained, we can
determine the optimal values of maxr,w,u,s

∑
i,j si,jri,j −

ujwj

∑
i ri,j . With this solution, we can derive the values

of r, w, q, and m corresponding to the given η. Using these
values, we can regenerate a new constraint named cutting
plane:

η ≥
∑
i,j

q∗i,jtj +
∑
i,j

m∗
i,jpj,k (21)

where q∗i,j and m∗
i,j denote the solution to the SP. This

cutting plane is then added to the initial MP. Each iteration
yields the current model’s optimal solution. As the number
of cutting planes increases, the value of η increases grad-
ually, thereby continuously improving the lower bound of
the global optimal solution. The algorithm ends when the
distance between the upper and lower bounds converges to
less than a specified tolerance ϵ.

Algorithm 1 uEDC-B

1: Initialization: set k = 0, LB = −∞, and UB = +∞
2: repeat
3: Solve the SP to obtain an optimal solution

(mk+1,∗, qk+1,∗, rk+1,∗, wk+1,∗) and update UB
4: Add a new cut into the MP and update LB
5: until UB−LB

UB ≤ ϵ
Output: cache decisions a∗

Alg. 1 presents the pseudocode of uEDC-B. In the initial
MP, there are no constraints. During the solution process
of the algorithm, we continually add one of the constraints

2. https://www.ibm.com/products/ilog-cplex-optimization-studio
3. https://www.gurobi.com

from Eq. (21) to the MP, introducing a valid cut. By solving
the MP, we obtain an optimal candidate solution. The opti-
mal solution is found by solving MP and SP interactively.

4 APPROXIMATION APPROACH

As proven in Section 2.3, the uEDC problem is NP-hard.
The uEDC-B approach can obtain a theoretically optimal
solution. However, it is impractical in large-scale EDC sce-
narios because it would take a prohibitively long time to
find the optimal solution, especially when the scale of the
uncertainty set is large. To accommodate large-scale EDC
scenarios, we propose an approximation approach named
uEDC-L, which employs the linear decision rule (LDR) to
narrow the search space for the uncertainty set so that an
approximate solution can be found rapidly.

For RP shown in Eq. (9a), we can assume that the second-
stage decision variables m and q are affine functions of r and
w. Thus, the model RP can be rewritten as follows.

RP’ : min
a,c

{
∑
i,k

skai,k + β
∑
i,k

ai,kpj,k}

+ max
(r,w)∈Υ

min
m,q

∑
i,j

qi,j(r, w)tj +
∑
i,j

mi,j(r, w)pj,k

(22a)

s.t.
∑
i

mi,j(r, w) ≤ wj

∑
i

ri,j , ∀j (22b)

mi,j(r, w) + qi,j(r, w) ≥ ri,j , ∀i,∀j (22c)
qi,j(r, w) ≥ 0, ∀i,∀j (22d)
mi,j(r, w) ≥ 0, ∀i,∀j (22e)

Since m and q are only related to the uncertainty vari-
ables r and w, the linear decision rule can be defined as
follows:

qi,j(r, w) = q0i,j +
∑

δ∈[Ir]

q1i,jrδ +
∑

ϵ∈[Iw]

q2i,jwϵ,∀i,∀j (23)

mi,j(r, w) = m0
i,j +

∑
δ∈[Ir]

m1
i,jrδ +

∑
ϵ∈[Iw]

m2
i,jwϵ,∀i,∀j (24)

where Ir and Iw denote the uncertainty sets in Eq. (22),
q0, q1, q2 and m0,m1,m2 denote the determinable con-
stants.

Based on the linear decision rule, RP’ shown in Eq. (22)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

can be reformulated as follows:

RP* : min
a,c,q0,1,2,m0,1,2

{
∑
i,k

skai,k + β
∑
i,k

ai,kpj,k + ζ} (25a)

s.t. ζ ≥
∑
i,j

tj(q
0
i,j +

∑
δ

q1i,jrδ +
∑
ϵ

q2i,jwϵ)

+
∑
i,j

pj,k(m
0
i,j +

∑
δ

m1
i,jrδ +

∑
ϵ

m2
i,jwϵ) (25b)∑

i

(m0
i,j +

∑
δ

m1
i,jrδ +

∑
ϵ

m2
i,jwϵ) ≤ wj

∑
i

ri,j

(25c)

(m0
i,j +

∑
δ

m1
i,jrδ +

∑
ϵ

m2
i,jwϵ) + (q0i,j +

∑
δ

q1i,jrδ

+
∑
ϵ

q2i,jwϵ) ≥ ri,j (25d)

q0i,j +
∑
δ

q1i,jrδ +
∑
ϵ

q2i,jwϵ ≥ 0 (25e)

m0
i,j +

∑
δ

m1
i,jrδ +

∑
ϵ

m2
i,jwϵ ≥ 0 (25f)

Constraints (25b) - (25f) are nonlinear in RP* so that RP*
cannot be solved directly. We thus introduce dual variables
to transform the original constraints into linear dual con-
straints, the same as the approach discussed in Section 3.

Firstly, considering Eq. (25b), we introduce dual vari-
ables µ0, ξ0, σ0, and φ0, so that Eq. (25b) can be reformu-
lated as follows:

ζ −
∑
i,j

tjq
0
i,j −

∑
i,j

tjq
1
i,j r̂i,j −

∑
i,j

pi,km
0
i,j

−
∑
i,j

pj,k
∑
δ

mi,j r̂i,j − Pµ0 −
∑
δ

ξ0δ − Fσ0 −
∑
ϵ

φ0
ϵ ≥ 0

µ0 + ξ0δ ≥
∑
δ

tjq
1
i,j r̄i,j +

∑
i,j

pi,k
∑
δ

m1
i,j r̄i,j ,∀δ

σ0 + φ0
ϵ ≥

∑
δ

tjq
2
i,j +

∑
i,j

pi,k
∑
ϵ

m2
i,j ,∀ϵ

(26)

Like the reformulation of Eq. (25b), we introduce dif-
ferent dual variables to reformulate Eq. (25c), Eq. (25d),
Eq. (25e) and Eq. (25f). Consequently, we can obtain the
mixed-integer linear programming formulation of problem
RP* and thus an approximate solution to RP* with a MILP
solver like CPLEX or Gruobi.

4.1 Theoretical Analysis
Let Z∗ be the optimal objective value of the problem RP and
ZH be the sub-optimal one, it is clear that Z∗ ≤ ZH .

Z∗ = min
∑
i,k

skai,k + β
∑
i,k

ai,kpj,k +max η (27)

Eq. (27) can be solved by solving the n + 1 domestic
problems. Let x be the index of x-th domestic problem.
Eq. (27) can be reformulated as follows:

Z∗ = min
x=1,...,n+1

Gx (28)

where Gx can be formulated as follows:

Gx = P r̄+min(
∑
i,k

skai,k+β
∑
i,k

ai,kpj,k+
∑

y=1,...,x

(r̄−r̄x)a
y
i,k)

(29)

Let aH denote the approximate solution obtained by
uEDC-L to the problem RP, and ZH denote the sub-optimal
objective value, ZLB denote its lower bound objective value.
ZH can be expressed as ZH = ZLB +αZLB , where α is the
gap parameter between ZH and ZLB .

For each objective function value zHx of the deterministic
problem, it is clear that (for ease of understanding, we omit
all the subscripts of the variables in the original problem):

ZH ≤ ZH
x = min

∑
saH + β

∑
aHp+max η(aH) (30)

Based on dual theory, the inner maximization problem
can be replaced with:

max η(aH) = min{
∑

x=1,...,n+1

max(r̄x − θ, 0)(aH) + Pθ}

(31)
The above equation can be appropriately scaled so that
when θ is set to rx, the following can be obtained:

min{
∑

x=1,...,n+1

max(r̄x − θ, 0)(aH) + Pθ}

≤ P r̄l +
∑

x=1,...,n+1

(r̄x − r̄l)(a
H) (32)

Combining Eq. (28) and Eq. (30), we can derive:

min
∑

saH + β
∑

aHp+max η(aH) ≤ Gx (33)

Combining Eq. (32) and Eq. (33), we can derive:

ZH ≤ ZH
x ≤ (α+ 1)Z∗ (34)

Therefore, the approximation ratio for uEDC-L is α + 1
where α is given by maxx=1,...,n+1 αx.

5 EVALUATION

In this section, we evaluate the performance of uEDC-B
and uEDC-L experimentally on the real-world traces. We
implement them in Java 17 for testing in a testbed edge
storage system, focusing on their data caching cost and data
retrieval latency.

5.1 Experiment Setup
Trace and System Setup. All the experiments are conducted
on the Telecom Shanghai Dataset [38], which includes de-
tailed records of over 7.2 million mobile internet access
instances from 9,481 mobile devices across 3,233 base sta-
tions over six months. Inspired by [15], we randomly set
the data cache storage capacity for each edge server, with a
maximum limit of 100 units, and each data item is randomly
sized from 1 to 4 units. The parameters F , P , and β are set to
3, 5, and 1, respectively, as the default values. Based on the
traces, we cache the 1,000 most popular videos we collected
in September 2023 in the edge storage system. The edge
storage system consists of 30 edge servers randomly chosen
in an area from the Telecom Shanghai dataset, as visualized
in Fig. 3. The implementations of uEDC-B and uEDC-L
run on a computer equipped with Intel i9-13900k CPU (8
performance cores) and 64G RAM. They employ the classic
solver CPLEX to solve the mixed-integer linear programming
(MILP) formulations. Each experiment is repeated 100 times
and the average values are reported.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

Fig. 3: Real-world edge storage system

Competing Approaches. We evaluate uEDC-B and uEDC-L
against three representative EDC approaches including one
baseline approach and two state-of-the-art approaches.
• Random. This baseline approach randomly caches data

on edge servers until it does not violate the capacity
constraint.

• MagNet [39]. This deterministic EDC approach caches
popular data in the system without considering data
popularity uncertainty or edge server failures. MagNet
first utilizes a neural embedding algorithm to capture
historical content request patterns and clustering contents.
Then, it caches data in the system based on predicted data
popularity while balancing the storage utilization across
edge servers.

• ARO [29]. This state-of-the-art uEDC solution adopts
a two-stage robust optimization method based on the
classic column-and-constraint generation algorithm to
achieve optimal service placement and load allocation
under a given budget. In ARO, each data request can
only be served by the edge server that covers it directly.
We set the budget constraint in ARO as the maximum
capacity of the edge servers in the system to facilitate a
fair comparison.

Three versions of uEDC-L are implemented in the ex-
periments to evaluate the role of popularity uncertainty and
edge server failures in large-scale uEDC scenarios.
• uEDC-L0. This approach does not consider any uncertain-

ties, and thus solves the deterministic problem formulated
in Eq. (4).

• uEDC-L1. This approach removes the consideration of
edge server failures. Specifically, it sets wj = 0 in problem
RP for all the edge servers.

• uEDC-L2. This approach removes the consideration of
data popularity uncertainty. Specifically, it assumes that
the data requests equal the predicted value following a
Poisson distribution, which is similar to [40] and [41].

5.2 Overall Evaluation

Table. 2 compares the overall performance of Random,
MagNet, ARO, uEDC-B, and uEDC-L, measured by data
caching cost calculated by Eq. (6) and data retrieval latency
calculated by Eq. (2). We can see that:

TABLE 2: Overall performance of different approaches (Sys-
tem size = 30, F = 3, P = 5)

Approaches Data caching cost Data retrieval latency (ms)

Random 269.78 77.31

MagNet 229.11 65.37

ARO 168.56 41.78

uEDC-L 112.26 26.57

uEDC-B 96.26 24.40

• In terms of data caching cost, uEDC-B achieves the best
performance among the five approaches. Compared to
other approaches, it demonstrates the following cost ad-
vantages: 64.3% lower than Random, 58.0% lower than
MagNet, 42.9% lower than ARO, and 14.3% lower than
uEDC-L. This indicates the ability of uEDC-B to save
costs. In contrast, Random, which does not utilize addi-
tional heuristic information, incurs the highest cost. The
caching costs of MagNet and ARO fall between those
of Random and uEDC-B, with ARO, which considers
uncertainty, performing better than MagNet.

• In terms of data retrieval latency, uEDC-B also exhibits
the best performance, with an average retrieval latency of
only 24.40 milliseconds. Compared to other approaches,
uEDC-B’s latency is 68.4% lower than Random, 62.7%
lower than MagNet, 46.7% lower than ARO, and 8.2%
lower than uEDC-L. Random suffers from the highest data
retrieval latency, while ARO reduces retrieval latency by
36.08% compared to MagNet. As discussed in Section 1,
this confirms that the presence of uncertainty can signifi-
cantly degrade the QoS for users.

• Overall, uEDC-B shows the best performance in both
data caching cost and data retrieval latency, significantly
outperforming other methods. uEDC-L seconds to uEDC-
B, with an average performance gap of 11.25%, but still
clearly superior to other methods. The performance im-
provement of the proposed approaches against two state-
of-the-art approaches, i.e., MagNet and ARO, is as much
as 59.27% in minimizing data retrieval latency and 55.07%
in minimizing data caching cost.

To evaluate the performance of uEDC-B and uEDC-L
more comprehensively in various large-scale EDC scenarios,
we conduct a series of experiments by varying the number
of edge servers, the number of failed edge servers, and the
budget of request uncertainty respectively. When each of
these parameters varies, the experiments are conducted 100
runs and the averaged values are reported.

Impact of number of edge servers. As shown in Fig. 4(a),
it is evident that uEDC-B consistently achieves the lowest
data caching cost across all scenarios. Specifically, as the
number of edge servers increases, the caching cost for all
approaches rises, but uEDC-B maintains a significant cost
advantage. Compared to Random, uEDC-B’s cost is 64.3%
lower on average. This substantial reduction is attributed to
uEDC-L’s efficient caching strategy that minimizes unnec-
essary data duplication and optimally utilizes edge servers’
storage capacities. Meanwhile, as shown in Fig. 4(b), uEDC-
B achieves the lowest data retrieval latency, followed closely

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

15 30 45
Number of Edge Servers

0
50

100
150
200
250
300
350

D
at

a
C

ac
hi

ng
 C

os
t

uEDC-B
uEDC-L
ARO
MagNet
Random

(a) Data caching cost

15 30 45
Number of Edge Servers

0

20

40

60

80

100

D
at

a
R

et
rie

va
l L

at
en

cy
 (m

s)

uEDC-B
uEDC-L
ARO
MagNet
Random

(b) Data retrieval latency

Fig. 4: Performance vs. number of edge servers

1 3 5
Maximum Number of Failed Edge Servers

0
50

100
150
200
250
300
350
400
450

D
at

a
C

ac
hi

ng
 C

os
t

uEDC-B
uEDC-L
ARO
MagNet
Random

(a) Data caching cost

1 3 5
Maximum Number of Failed Edge Servers

0

20

40

60

80

100

120

140

D
at

a
R

et
rie

va
l L

at
en

cy
 (m

s) uEDC-B
uEDC-L
ARO
MagNet
Random

(b) Data retrieval latency

Fig. 5: Performance vs. maximum number of failed edge
servers

by uEDC-L. This indicates that the uEDC-B and uEDC-L
are both highly effective in accommodating fluctuating data
popularity.

Impact of number of failed edge servers. As illustrated
in Fig. 2 and discussed in Section 1, edge server failures
have a direct and significant impact on EDC strategies. In
Fig. 5, it is evident that as the number of failed edge servers
increases, the performance of all methods deteriorates in
both storage cost and data retrieval latency. This degrada-
tion is attributed to users having to retrieve data from more
distant neighboring servers due to edge server failures.
Additionally, these strategies are compelled to cache more
data in the system to mitigate the high latency associated
with offloading data requests to remote clouds and thus
increase data caching costs. In addition, it can be observed
that the impact of the number of failed edge servers on
the results is more significant than the variations caused
by changes in system size as shown in Fig. 4. This under-
scores the critical importance of considering server failures
in EDC strategies. uEDC-B and uEDC-L exhibit relatively
smaller increases compared to the other three methods as
the number of server failures increases, showing a linear
increase. This indicates that uEDC-B and uEDC-L are highly
effective in accommodating the uncertainty associated with
server failures, particularly due to the collaborative caching
among edge servers, which enhances data availability and
reduces the impact of individual server failures.

Impact of popularity uncertainty budget. The core of EDC
is to cache popular data on edge servers to serve as many
user requests as possible. If data popularity uncertainty
is not taken into account, it can significantly affect the
effectiveness of EDC strategies. Fig. 6 illustrates the impact
of increasing the request uncertainty budget on system per-

5 10 15
Budget of Request Uncertainty

0

100

200

300

400

500

D
at

a
C

ac
hi

ng
 C

os
t

uEDC-B
uEDC-L
ARO
MagNet
Random

(a) Data caching cost

5 10 15
Budget of Request Uncertainty

0

20

40

60

80

100

D
at

a
R

et
rie

va
l L

at
en

cy
 (m

s) uEDC-B
uEDC-L
ARO
MagNet
Random

(b) Data retrieval latency

Fig. 6: Performance vs. budget of popularity uncertainty

formance. We observe that uEDC-B and uEDC-L continue
to maintain a significant lead. In terms of data caching
cost, uEDC-B and uEDC-L outperform ARO and MagNet
by an average margin of 40.7%. For data retrieval latency,
this margin increases to 55.2%. As the request uncertainty
budget increases, representing greater volatility in data re-
quests, these methods might encounter more errors, such
as caching data on edge servers with fewer data requests.
Consequently, the data caching cost and data retrieval la-
tency for all methods increase. However, compared to the
increases observed in other methods, uEDC-B and uEDC-L
exhibit relatively smaller increments. This aligns with the
results shown in Fig. 5.

5.3 In-depth Evaluation
Computation Overheads. The overall analysis demon-
strates the effectiveness and significant performance advan-
tages of uEDC-B and uEDC-L in various uEDC scenarios
characterized by server failures and request volatility. How-
ever, to evaluate their computation overheads associated
with these performance improvements, we conducted ex-
periments on computation time. Fig. 7 shows the results.
The substantial computational overhead of uEDC-B is non-
negligible. As depicted in Fig. 7(a), the computation time
of uEDC-B exhibits an exponential growth trend, increasing
from 16.51 seconds to 62.4 seconds as the number of edge
servers rises from 15 to 45. This exponential increase is
due to uEDC-B’s approach of seeking the optimal solution
within the entire uncertainty set, which involves extensive
operations of the MILP solver, underscoring the NP-hard
nature of the uEDC problem. In contrast, uEDC-L’s com-
putational overhead is much lower. As the number of edge
servers, the number of failed edge servers, and the request
uncertainty budget increase, the computational overhead of
uEDC-L remains relatively stable, reflecting its robustness in
uncertain uEDC environments. ARO’s computational over-
head falls between those of uEDC-B and uEDC-L, being sig-
nificantly lower than uEDC-B but on average 82.14% higher
than uEDC-L. The other two methods, Random and Mag-
Net, which do not consider uncertainty, exhibit relatively
low computational overhead. As discussed in Section 4,
uEDC-L achieves substantial reductions in computational
overhead by employing linear decision rules, which greatly
reduce the solution space of the uncertainty set, making
its computational overhead only 27.86% of that of uEDC-
B. Therefore, uEDC-L is a more suitable choice for solving
large-scale uEDC problems than uEDC-B.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

15 30 45
Number of Edge Servers

0

10

20

30

40

50

60

70
C

om
pu

ta
tio

n
Ti

m
e

(s
)

uEDC-B
uEDC-L
ARO
MagNet
Random

(a) Computation time vs. number of edge
servers

1 3 5
Maximum Number of Failed Edge Servers

0

10

20

30

40

50

60

C
om

pu
ta

tio
n

Ti
m

e
(s

)

uEDC-B
uEDC-L
ARO
MagNet
Random

(b) Computation time vs. number of
failed edge servers

5 10 15
Budget of Request Uncertainty

0

10

20

30

40

50

60

C
om

pu
ta

tio
n

Ti
m

e
(s

)

uEDC-B
uEDC-L
ARO
MagNet
Random

(c) Computation time vs. budget of pop-
ularity uncertainty

Fig. 7: Computation overheads comparison

15 30 45
Number of Edge Servers

0
50

100
150
200
250
300
350
400

D
at

a
C

ac
hi

ng
 C

os
t

uEDC-L
uEDC-L0
uEDC-L1
uEDC-L2

(a) Data caching cost

15 30 45
Number of Edge Servers

0
10
20
30
40
50
60
70
80

D
at

a
R

et
rie

va
l L

at
en

cy
 (m

s)

uEDC-L
uEDC-L0
uEDC-L1
uEDC-L2

(b) Data retrieval latency

Fig. 8: Performance comparison: with or without uncer-
tainty modules

Impact of popularity uncertainty and server failures.
Given the advantages of uEDC-L in large-scale scenarios,
we further analyze the impact of popularity uncertainty
and edge server failures on its performance. The differences
between uEDC-L0, uEDC-L1, uEDC-L2 and uEDC-L are de-
tailed in Section 5.1. Fig. 8 illustrates that uEDC-L2 outper-
forms uEDC-L1 significantly, with an average advantage of
34.51% in terms of both data caching cost and data retrieval
latency. This indicates that the impact of edge server failures
on uEDC decision-making is more substantial. Predictably,
the uEDC-L0 approach, which does not consider any uncer-
tainties, yields the poorest performance across all scenarios.
Specifically, in Fig. 8(a), we observe that uEDC-L1 incurs
higher data caching costs compared to uEDC-L2. The data
retrieval latency, shown in Fig. 8(b), also follows a simi-
lar trend, with uEDC-L1 exhibiting higher latencies across
varying numbers of edge servers. The combined approach,
uEDC-L, which considers both edge server failures and
popularity uncertainty, is undoubtedly the most effective.
It strikes a balance by efficiently handling uncertainties and
failures, thus demonstrating the best performance in both
data caching cost and data retrieval latency.

6 RELATED WORK

Edge Data Caching. Edge data caching strategies have
become integral to reducing latency and bandwidth usage
in the mobile edge computing environment. Previous stud-
ies [17], [32], [42] focused on static caching mechanisms,
assuming predictable data demand patterns. More recent

studies by Wei et al. [43] and Muller et al. [44] have
begun incorporating adaptive algorithms that anticipate
user demands based on historical data and context-aware
analysis. These methods often presume stable network con-
ditions and consistent server availability, which are not
always realistic in real-world scenarios. For example, Wei et
al. [43] introduce the similarity-aware popularity-based caching
(SAPoC) algorithm designed to enhance the performance of
edge data caching in dynamic environments by leveraging
content similarity. SAPoC can efficiently handle content and
mobile devices’ dynamic arrivals and departures, mitigat-
ing the slow-start phenomenon commonly experienced by
traditional caching strategies that rely solely on request
history. Machine learning techniques have been widely ap-
plied in dynamic edge data caching [45]. Sun et al. [46]
proposed a decentralized, recommendation-enabled edge
caching framework featuring a novel machine learning-
based algorithm to minimize system costs and enhance
user QoE in mobile edge-cloud networks. Wang et al. [47]
introduced a cache optimization approach based on deep Q-
networks, which adaptively adjusts cache strategies to max-
imize hit rates and reduce latency, effectively addressing the
dynamic demands of edge caching. Zhang et al. [48] present
a reinforcement learning-based caching strategy that utilizes
the capabilities of users to assist in caching by leveraging
their local caches to improve system performance and adapt
to temporal and spatial variations in content popularity. By
incorporating reinforcement learning, the method dynami-
cally adjusts cache placement and content delivery policies
to maximize network utility, addressing challenges posed
by non-stationary content dynamics and limited caching
space at small base stations. However, these studies do not
account for edge server failures, and consequently, their
strategies may fail to maintain performance and reliability
in real-world MEC environments where server failures and
network disruptions are common. This oversight can lead to
increased data retrieval latency and a decrease in the overall
quality of service.

Server Failure in MEC Environments. Server reliability
is a critical challenge in dynamic mobile edge comput-
ing environments. Qiu et al. [49] have explored resilience
strategies, focusing on maintaining service continuity in the
presence of edge server failures. They combine mobile edge
computing with network function virtualization to provide

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

dynamic service function chains (SFCs) using virtual network
functions (VNFs) on resource-limited edge servers. Given the
fluctuating reliability of VNFs due to workload and time
variations, the paper addresses how to optimally deploy
and back up VNFs to enhance SFC reliability, maximize
throughput, and minimize deployment and communication
costs. Fondo-Ferreiro et al. [50] highlight a gap in dynami-
cally relocating applications across edge servers with service
continuity. The proposed solution employs software-defined
networking (SDN) to dynamically reroute users’ requests
to new edge infrastructure locations by creating a new IP
anchor point instance. This approach includes a method
using SDN to replicate previous connection contexts at the
new anchor point, ensuring session and service continuity.
Yet, these studies do not integrate their solutions with
caching strategies, leaving a gap in holistically addressing
performance and reliability in edge data caching scenarios.
Another important contribution by Chang et al. [51] and
Huang et al. [42] delves into redundancy techniques that
replicate data across multiple edge servers. It is not difficult
to see that such strategies can easily result in excessive
storage costs.
Popularity Uncertainty. The assumption of predictable data
popularity has been questioned in recent literature, with
scholars like Xia et al. [32], Yang et al. [18] and Abolhassani
et al. [52] demonstrating significant fluctuations in users’
data demands that affect caching efficiency. For example,
Yang et al. [18] explore location-aware edge data caching, fo-
cusing on predicting content popularity to optimize caching
strategies. They develop a linear model to predict content
hit rates by factoring in both content features and location
characteristics, addressing the challenge of dynamic content
popularity. The proposed solution incorporates two novel
online algorithms: a ridge regression-based algorithm for
scenarios with zero-mean noise, and an H-infinity filter-
based algorithm for cases with unknown noise structures.
Techniques that adapt to popularity changes in real-time are
discussed in their work but lack comprehensive solutions
that also consider server instability.
Holistic Approaches to Edge Data Caching. A few pioneer-
ing studies have begun to explore integrated solutions to
edge data caching. Samanta et al. [53] and Cheng et al. [29]
proposed frameworks that adjust resource procurement and
service placement strategies based on edge server failures
and data demand predictions. However, their approach
only considers scenarios where user requests are directly
served by available servers, overlooking the potential for
edge servers to collaborate on caching to optimize data
storage costs. This can increase system costs substantially.
These studies motivate us to design a cost-effective edge
data caching method that not only tolerates server failures
but also copes with the uncertainty in data popularity.
Unlike existing studies that handle these aspects in isolation,
our approach provides a unified solution ensuring optimal
service performance with minimal resource expenditure in
dynamic edge computing environments.

7 CONCLUSION AND FUTURE WORK

Edge data caching (EDC) enables low data retrieval latency by
storing popular data on edge servers close to users. Existing

EDC studies usually assume that the data popularity is
immutable or can be accurately predicted, without consid-
ering edge server failures. In dynamic mobile edge comput-
ing environments, these uncertainties often render existing
EDC methods ineffective. In this paper, we make the first
attempt to study the edge data caching problem under data
popularity uncertainty and edge server failures. We model
the uncertainty-aware edge data caching (uEDC) problem as a
two-stage robust optimization problem and prove its NP-
hardness. An optimal approach uEDC-B is proposed based
on Benders’ decomposition method and an approximation
approach uEDC-L is proposed based on linear decision
rule for large-scale EDC scenarios. Both theoretical and
experimental analyses show the significant performance
improvement of the proposed approaches against two state-
of-the-art approaches as much as 59.27% in minimizing data
retrieval latency and 55.07% in minimizing data caching
cost.

REFERENCES

[1] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[2] W. Xiao, Y. Hao, J. Liang, L. Hu, S. A. Alqahtani, and M. Chen,
“Adaptive compression offloading and resource allocation for
edge vision computing,” IEEE Transactions on Cognitive Commu-
nications and Networking, pp. 1–1, 2024.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[4] Y. Hao, L. Hu, and M. Chen, “Joint sensing adaptation and model
placement in 6g fabric computing,” IEEE Journal on Selected Areas
in Communications, vol. 41, no. 7, pp. 2013–2024, 2023.

[5] W. Xiao, X. Ling, M. Chen, J. Liang, S. A. Alqahtani, and M. Chen,
“Mvpoa: A learning-based vehicle proposal offloading for cloud-
edge-vehicle networks,” IEEE Internet of Things Journal, pp. 1–1,
2024.

[6] J. Zhou, F. Chen, G. Cui, Y. Xiang, and Q. He, “FEUAGame:
Fairness-aware edge user allocation for app vendors,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 35, no. 8, pp. 1429–
1443, 2024.

[7] R. Luo, H. Jin, Q. He, S. Wu, and X. Xia, “Enabling balanced data
deduplication in mobile edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 34, no. 5, pp. 1420–1431, 2023.

[8] G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang,
“Pushing ai to wireless network edge: An overview on integrated
sensing, communication, and computation towards 6G,” Science
China Information Sciences, vol. 66, no. 3, p. 130301, 2023.

[9] Y. Hao, J. Wang, D. Huo, N. Guizani, L. Hu, and M. Chen,
“Digital twin-assisted urllc-enabled task offloading in mobile edge
network via robust combinatorial optimization,” IEEE Journal on
Selected Areas in Communications, vol. 41, no. 10, pp. 3022–3033,
2023.

[10] R. Luo, Q. He, F. Chen, S. Wu, H. Jin, and Y. Yang, “Ripple:
Enabling decentralized data deduplication at the edge,” IEEE
Transactions on Parallel and Distributed Systems, 2024.

[11] T. Ouyang, K. Zhao, X. Zhang, Z. Zhou, and X. Chen, “Dynamic
edge-centric resource provisioning for online and offline services
co-location,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications. IEEE, 2023, pp. 1–10.

[12] AWS. (2023) Amazon s3 on-demand pricing. [Online]. Available:
https://aws.amazon.com/s3/pricing/

[13] ——. (2023) Aws wavelength pricing. [Online]. Available:
https://aws.amazon.com/wavelength/pricing/

[14] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2016, pp. 1–9.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/wavelength/pricing/

12

[15] X. Xia, F. Chen, Q. He, G. Cui, J. C. Grundy, M. Abdelrazek,
X. Xu, and H. Jin, “Data, user and power allocations for caching
in multi-access edge computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 5, pp. 1144–1155, 2021.

[16] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2019, pp. 10–
18.

[17] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data
caching optimization in the edge computing environment,” IEEE
Transactions on Services Computing, vol. 15, no. 4, pp. 2074–2085,
2020.

[18] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen,
“Content popularity prediction towards location-aware mobile
edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915–929, 2018.

[19] J. Zhou, F. Chen, Q. He, X. Xia, R. Wang, and Y. Xiang, “Data
caching optimization with fairness in mobile edge computing,”
IEEE Transactions on Services Computing, vol. 16, no. 3, pp. 1750–
1762, 2022.

[20] N. Garg, M. Sellathurai, V. Bhatia, B. Bharath, and T. Ratnarajah,
“Online content popularity prediction and learning in wireless
edge caching,” IEEE Transactions on Communications, vol. 68, no. 2,
pp. 1087–1100, 2019.

[21] K. Ray and A. Banerjee, “Prioritized fault recovery strategies for
multi-access edge computing using probabilistic model checking,”
IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1,
pp. 797–812, 2022.

[22] R. Luo, H. Jin, Q. He, S. Wu, and X. Xia, “Cost-effective edge
server network design in mobile edge computing environment,”
IEEE Transactions on Sustainable Computing, vol. 7, no. 4, pp. 839–
850, 2022.

[23] X. Chen, G. Xu, X. Xu, H. Jiang, Z. Tian, and T. Ma, “Multicenter hi-
erarchical federated learning with fault-tolerance mechanisms for
resilient edge computing networks,” IEEE Transactions on Neural
Networks and Learning Systems, 2024.

[24] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing
cache data integrity in the edge computing environment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp.
1210–1223, 2020.

[25] R. Luo, Q. He, M. Xu, F. Chen, S. Wu, J. Yang, Y. Gao, and
H. Jin, “Edge data deduplication under uncertainties: A robust op-
timization approach,” IEEE Transactions on Parallel and Distributed
Systems, 2024.

[26] M. S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon,
X. Chen, and M. Bennis, “Wireless edge computing with latency
and reliability guarantees,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1717–1737, 2019.

[27] H. Jin, R. Luo, Q. He, S. Wu, Z. Zeng, and X. Xia, “Cost-effective
data placement in edge storage systems with erasure code,” IEEE
Transactions on Services Computing, 2022.

[28] T. Ouyang, X. Chen, L. Zeng, and Z. Zhou, “Cost-aware dispersed
resource probing and offloading at the edge: A user-centric online
layered learning approach,” IEEE Transactions on Services Comput-
ing, 2024.

[29] J. Cheng, D. T. Nguyen, and V. K. Bhargava, “Resilient edge service
placement under demand and node failure uncertainties,” IEEE
Transactions on Network and Service Management, 2023.

[30] D. T. Nguyen, H. T. Nguyen, N. Trieu, and V. K. Bhargava, “Two-
stage robust edge service placement and sizing under demand
uncertainty,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1560–
1574, 2021.

[31] J. Cheng, D. T. A. Nguyen, and D. T. Nguyen, “Two-stage distribu-
tionally robust edge node placement under endogenous demand
uncertainty,” arXiv preprint arXiv:2401.08041, 2024.

[32] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[33] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-
hop cooperative computation offloading for industrial IoT-edge-
cloud computing environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 12, pp. 2759–2774, 2019.

[34] Y. Park, S. Lee, I. Sung, P. Nielsen, and I. Moon, “Facility location-
allocation problem for emergency medical service with unmanned

aerial vehicle,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 24, no. 2, pp. 1465–1479, 2022.

[35] L.-Y. Wu, X.-S. Zhang, and J.-L. Zhang, “Capacitated facility lo-
cation problem with general setup cost,” Computers & Operations
Research, vol. 33, no. 5, pp. 1226–1241, 2006.

[36] B. Du, H. Zhou, and R. Leus, “A two-stage robust model for a
reliable p-center facility location problem,” Applied Mathematical
Modelling, vol. 77, pp. 99–114, 2020.

[37] W. C. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, H. V. Poor, X. S. Shen,
and C. Miao, “Stochastic resource optimization for wireless pow-
ered hybrid coded edge computing networks,” IEEE Transactions
on Mobile Computing, vol. 23, no. 3, pp. 2022–2038, 2023.

[38] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A
reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939–951, 2019.

[39] J. Peng, Q. Li, X. Ma, Y. Jiang, Y. Dong, C. Hu, and M. Chen,
“MagNet: Cooperative edge caching by automatic content con-
gregating,” in Proceedings of the ACM The Web Conference (WWW),
2022, pp. 3280–3288.

[40] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Joint compute-
caching-communication control for online data-intensive service
delivery,” IEEE Transactions on Mobile Computing, 2023.

[41] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Single vs distributed
edge caching for dynamic content,” IEEE/ACM Transactions on
Networking, vol. 30, no. 2, pp. 669–682, 2021.

[42] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in perva-
sive edge computing environments,” IEEE Transactions on Mobile
Computing, vol. 19, no. 4, pp. 852–864, 2019.

[43] X. Wei, J. Liu, Y. Wang, C. Tang, and Y. Hu, “Wireless edge caching
based on content similarity in dynamic environments,” Journal of
Systems Architecture, vol. 115, p. 102000, 2021.

[44] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 16, no. 2, pp. 1024–1036, 2016.

[45] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to
cache: Machine learning for network edge caching in the big data
era,” IEEE Wireless Communications, vol. 25, no. 3, pp. 28–35, 2018.

[46] C. Sun, X. Li, J. Wen, X. Wang, Z. Han, and V. C. Leung, “Federated
deep reinforcement learning for recommendation-enabled edge
caching in mobile edge-cloud computing networks,” IEEE Journal
on Selected Areas in Communications, vol. 41, no. 3, pp. 690–705,
2023.

[47] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learn-
ing approach,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2020, pp. 2499–2508.

[48] X. Zhang, G. Zheng, S. Lambotharan, M. R. Nakhai, and K.-
K. Wong, “A reinforcement learning-based user-assisted caching
strategy for dynamic content library in small cell networks,” IEEE
Transactions on Communications, vol. 68, no. 6, pp. 3627–3639, 2020.

[49] Y. Qiu, J. Liang, V. C. Leung, X. Wu, and X. Deng, “Online
reliability-enhanced virtual network services provisioning in fault-
prone mobile edge cloud,” IEEE Transactions on Wireless Communi-
cations, vol. 21, no. 9, pp. 7299–7313, 2022.

[50] P. Fondo-Ferreiro, F. Gil-Castiñeira, F. J. González-Castaño, and
D. Candal-Ventureira, “A software-defined networking solution
for transparent session and service continuity in dynamic multi-
access edge computing,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1401–1414, 2020.

[51] W.-C. Chang and P.-C. Wang, “Adaptive replication for mobile
edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 11, pp. 2422–2432, 2018.

[52] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching
for dynamic content,” in Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM), 2021, pp. 1–10.

[53] A. Samanta, F. Esposito, and T. G. Nguyen, “Fault-tolerant mecha-
nism for edge-based iot networks with demand uncertainty,” IEEE
Internet of Things Journal, vol. 8, no. 23, pp. 16 963–16 971, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Ruikun Luo received his Bachelor degree from
Dalian Maritime University, China in 2018. He
received his PhD degree from Huazhong Univer-
sity of Science and Technology (HUST), China
in 2023. Now he is a Postdoc at HUST. His re-
search interests include edge computing, paral-
lel and distributed computing, and network stor-
age.

Zujia Zhang is currently working toward the
Bachelor’s degree with the School of Artificial In-
telligence and Automation, Huazhong University
of Science and Technology, Wuhan, China. Her
research interests include edge computing and
algorithm optimization.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree from
Huazhong University of Science and Technol-
ogy, China, in 2010. He is an Associate Pro-
fessor at Swinburne. His research interests in-
clude service computing, software engineering,
cloud computing and edge computing. More
details about his research can be found at
https://sites.google.com/site/heqiang/.

Mengxi Xu as a junior student at Huazhong Uni-
versity of Science and Technology, she is dedi-
cated to researching the field of edge computing.
She is passionate about exploring new technolo-
gies and innovative fields, aiming to translate
theoretical knowledge into practical applications.
She is confident in the future development of
edge computing and is committed to contributing
her efforts to the advancement of this field.

Feifei Chen received the PhD degree from the
Swinburne University of Technology, Australia, in
2015. She is a senior lecturer with Deakin Uni-
versity. Her research interests include software
engineering, edge computing, cloud computing,
and green computing.

Xiaohai Dai received his Ph.D degree from the
School of Computer Science and Technology at
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2021. He is currently
a postdoctoral research fellow with the School
of Computer Science and Technology at HUST.
His current research interests include blockchain
and distributed systems. His awards include the
Outstanding Creative Award in the 2018 FISCO
BCOS Blockchain Application Contest and Top
Ten in FinTechathon 2019.

Song Wu received the PhD degree from
Huazhong University of Science and Technology
(HUST) in 2003. He is a professor of computer
science at HUST in China. He currently serves
as the vice dean of the School of Computer
Science and Technology and the vice head of
Service Computing Technology and System Lab
(SCTS) and the Cluster and Grid Computing Lab
(CGCL) in HUST. His current research interests
include cloud resource scheduling and system
virtualization. He is a member of the IEEE.

Hai Jin is a Chair Professor of computer sci-
ence and engineering at Huazhong University
of Science and Technology (HUST) in China.
Jin received his PhD in computer engineering
from HUST in 1994. In 1996, he was awarded a
German Academic Exchange Service fellowship
to visit the Technical University of Chemnitz in
Germany. Jin worked at The University of Hong
Kong between 1998 and 2000, and as a visiting
scholar at the University of Southern California
between 1999 and 2000. He was awarded Ex-

cellent Youth Award from the National Science Foundation of China in
2001. Jin is a Fellow of IEEE, Fellow of CCF, and a life member of the
ACM. He has co-authored more than 20 books and published over 900
research papers. His research interests include computer architecture,
parallel and distributed computing, big data processing, data storage,
and system security.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531967

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Problem Formulation
	System Model
	Problem Formulation
	Problem Hardness

	Optimal Approach
	Approximation Approach
	Theoretical Analysis

	Evaluation
	Experiment Setup
	Overall Evaluation
	In-depth Evaluation

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Ruikun Luo
	Zujia Zhang
	Qiang He
	Mengxi Xu
	Feifei Chen
	Xiaohai Dai
	Song Wu
	Hai Jin

