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Helicoidal Transformation Method for Finite Element
Models of Twisted Superconductors

Julien Dular , François Henrotte, André Nicolet , Mariusz Wozniak , Benoît Vanderheyden ,
and Christophe Geuzaine

Abstract—This article deals with the modeling of superconduct-
ing and resistive wires with a helicoidal symmetry, subjected to
an external field and a transport current. Helicoidal structures
are 3-D, and therefore yield computationally intensive simulations
in a Cartesian coordinate system. We show in this article that
by working instead with a helicoidal system of coordinates, the
problem to solve can be made 2-D, drastically reducing the com-
putational cost. We first introduce the state-of-the-art approach
and apply it on the h-φ-formulation with helicoidally symmetric
boundary conditions (e.g., axial external magnetic field, with or
without transport current), with an emphasis on the function space
discretization. Then, we extend the approach to general boundary
conditions (e.g., transverse external magnetic field), and we present
numerical results with linear materials. In particular, we discuss
the frequency-dependent losses in composite wires made of super-
conducting filaments embedded in a resistive matrix. Finally, we
provide outlook to the application of the generalized model with
nonlinear materials.

Index Terms—Finite element analysis, multifilamentary super-
conductors, nonlinear equations, reduced order systems.

I. INTRODUCTION

LOW-TEMPERATURE superconducting composite wires
usually consist of a large number of superconducting fil-

aments embedded in a conducting matrix. This matrix helps in
redistributing current between filaments, but has the side effect
of coupling the filaments in the presence of an external transverse
time-varying magnetic field. This coupling can however be
reduced by twisting the composite wire [1], [2]. The resulting
geometry is not invariant along the wire axis and leads to a
computationally intensive 3-D modeling [3], [4], [5], [6].

Approximate models exploiting the multifilamentary struc-
ture of this kind of wires have been investigated to reduce
the computational cost, such as in [7] and [8], where coupling
currents in the conducting matrix are accounted for in a 2-D finite
element model by introducing equivalent resistances between
the filaments. Alternatively, a Frenet frame is used in [9] to
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simplify the definition of the 3-D geometry, and ac losses are
approximated by considering a fraction of the pitch length of
the wire in a 3-D model, or a cross section of the wire in a
2-D model. Homogenization techniques involving anisotropic
materials have also been considered [3]. Finally, parallelization
methods are considered to reduce the computational time [6].

Whenever possible, it is always recommended to exploit
existing symmetries. In particular, the dimension of a prob-
lem presenting a helicoidal symmetry, i.e., a combination of
translational and rotational symmetries with the same axis, can
be reduced from 3-D to 2-D without loss of accuracy if the
calculations are performed in a helicoidal coordinate system.
Methods based on this coordinate transformation have first been
introduced in optical waveguide simulations [10], [11], [12],
and since then applied to electrostatic problems [13], [14],
linear magnetodynamic problems [15], [16], [17], and nonlinear
magnetodynamic problems with superconducting filaments or
tapes [18], [19], [20], [21].

An exact helicoidal symmetry is rarely encountered in practi-
cal applications, but different kinds of deformed geometries,
curved wires, or conductor organized, e.g., into layers with
distinct twist pitch lengths, may exhibit an approximate or
partial helicoidal symmetry. Working with helicoidal coordinate
systems can still be very useful in such cases, especially in the
context of a multiscale or a subproblem approach, to compute
homogenized parameters that account for the twisting of the
filaments (e.g., Rutherford multistrand cables). Furthermore, the
2-D helicoidal approach is more accurate than an equivalent 3-D
approach, as the latter is usually limited in accuracy by non-
conformities at element interfaces in unstructured 3-D meshes.
Extensions and improvements of the helicoidal method are
therefore currently being investigated, e.g., in [16], to quantify
helicoidal effects in the context of Litz wires.

This article focuses on the helicoidal transformation method.
The rest of this article is organized as follows. We start the
analysis in Section II by applying the change of coordinates
to the h-φ-formulation [22], which is an efficient formulation
for systems with superconductors [23], and we then state the
mathematical conditions for reducing the problem dimension
from 3-D to 2-D. We will refer to the equations resulting from
this analysis as the 2D-ξ model, in order to emphasize the fact
that it is solved in helicoidal coordinates. As will be shown, a
feature of the 2D-ξ model, compared with a conventional 2-D
model in the Cartesian coordinates, is that it solves for fields
with three independent components, instead of two.
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Depending on the symmetry of the boundary conditions (BC),
the study is decomposed in two cases. If the magnetic field exci-
tation is axial and uniform, the BC then also verify the helicoidal
symmetry, irrespective of whether there is a transport current or
not. The dimension of this problem (geometry plus BC), being
helicoidally symmetric (HS), can be reduced from 3-D to 2-D
by simply applying the coordinate transformation method. This
approach is not new in the context of superconducting wires [18],
[19], [20], but it has not yet been presented with the efficient
h-φ-formulation. In Section III, the implementation details of
this formulation are reviewed with an emphasis on the discretiza-
tion of a curl-free magnetic field in nonconducting domains. In
Section IV, the implementation is verified by comparison with
a 3-D model in Cartesian coordinates.

If the magnetic field excitation is transverse, then the BC are
no longer HS. A generalization of the method is proposed in
Section V for this case. It still results in a 2-D model in some situ-
ations. To the best of the authors’ knowledge, this generalization
is a novelty compared with state-of-the-art methods. Attention
is again paid to the curl-free property of the magnetic field in
nonconducting domains. The generalized model is applied to
linear materials in Section VI, and it is shown that it reproduces
the predictions of analytical models for the coupling currents [2].
Finally, Section VII concludes this article by providing a brief
prospect about the application of the generalized method in the
presence of nonlinear materials.

All presented models are implemented in and solved by
GetDP [24]. Geometry and mesh generation are performed by
Gmsh [25]. All codes are open source and available online in
the Life-HTS toolkit.1

II. HELICOIDAL CHANGE OF COORDINATES

Let (x, y, z) be a Cartesian coordinate system. The helicoidal
change of coordinates x → ξ and its inverse ξ → x read [11]⎧⎨

⎩
ξ1 = x cos(αz) + y sin(αz)
ξ2 = −x sin(αz) + y cos(αz)
ξ3 = z

(1)

and ⎧⎨
⎩
x = ξ1 cos(αξ3)− ξ2 sin(αξ3)
y = ξ1 sin(αξ3) + ξ2 cos(αξ3)
z = ξ3

(2)

respectively, with (ξ1, ξ2, ξ3) the helicoidal coordinate system.
The twisting parameter α ∈ R is the unique parameter of the
coordinate transformation, and the pitch length is p = 2π/α.

With this transformation, helices of pitch length p around
the z-axis in the Cartesian coordinate system are mapped into
straight lines parallel to the ξ3-axis in the helicoidal coordinate
system. This is illustrated in Fig. 1 with p = 1. A geometry is
said to be HS, or to have a helicoidal symmetry, if there exists
a value α for which its description in helicoidal coordinates is
ξ3-invariant, i.e., independent of ξ3.

1[Online]. Available: www.life-hts.uliege.be.

Fig. 1. Transformation of two helicoidal curves with the change of coordinates
(1) with α = 2π. (a) Cartesian coordinates. (b) Helicoidal coordinates.

The Jacobian matrix J of the coordinate transformation (2)
reads

J =
∂xi

∂ξj
=

⎛
⎜⎝
c −s −αξ1s− αξ2c

s c αξ1c− αξ2s

0 0 1

⎞
⎟⎠ (3)

with s = sin(αξ3) and c = cos(αξ3). We have detJ = 1. The
inverse transposed Jacobian matrix J−T, written in terms of the
ξ-coordinates, then reads

J−T =
∂ξj
∂xi

=

⎛
⎜⎝

c −s 0

s c 0

αξ2 −αξ1 1

⎞
⎟⎠ . (4)

A. Helicoidal Transformation of Fields

The Jacobian matrix describes the mapping of vector compo-
nents with the transformation. Components of one-forms, such
as the magnetic field h, follow the transformation [10], [26]

hx = J−T hξ (5)

where hx and hξ denote the components of the field h in the
Cartesian and helicoidal coordinate systems, respectively.

Components of two-forms, such as the current density j (=
curl h), follow the transformation [10], [26]

jx =
J

detJ
jξ (6)

where jx and jξ denote the components of the field j in the
Cartesian and helicoidal coordinate systems, respectively.

B. Problem Definition and h-φ-formulation

The eddy current problem is governed by the following mag-
netodynamic (or magneto-quasistatic) equations and constitu-
tive laws [27]:⎧⎨

⎩
div b = 0,
curl h = j,
curl e = −∂tb,

and

{
b = μ h
e = ρ j

(7)

with b, h, j e, µ, and ρ, the magnetic flux density (T), the
magnetic field (A/m), the current density (A/m 2), the electric
field (V/m), the permeability (H/m), and the resistivity (Ω m),
respectively. In nonconducting materials, ρ → ∞ and j = 0,

www.life-hts.uliege.be
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Fig. 2. 2-D cross section of the problem. BC are axial magnetic field haxial
and transverse magnetic field htrans imposed on Γout. GC are applied transport
current Ī1 on Ωc1 , and applied voltage V̄2 on Ωc2 . In this example, C = {1, 2},
CI = {1}, and CV = {2}. The 3-D geometry is the rotated extrusion of the
represented 2-D cross section.

and Ampère’s law reads

curl h = 0. (8)

In this article, special attention is paid to satisfy this condition.
Type-II irreversible superconductors are characterized by

a nonlinear electric response. Assuming isotropy for low-
temperature superconductors, their resistivity is given by the
power law [28]

ρSC =
ec

jc

(‖j‖
jc

)n−1

(9)

where ec = 10−4 V/m is an electric field threshold defining
the critical current density jc (A/m2), and n (-) describes the
sharpness of the transition to flux flow. The norm of j is denoted
by ‖j‖, with ‖j‖2 = j2x + j2y + j2z in the Cartesian coordinates.
Finally, all materials are assumed to be nonmagnetic, so that one
has µ = μ0 = 4π × 10−7 H/m in all domains.

The magnetodynamic problem defined above is solved in a
computational domain Ω. Let Ω be an HS domain. It consists of
a conducting domain Ωc made of N connected subdomains,
Ωc = ∪i∈CΩci , with C = {1, . . . , N}, surrounded by a non-
conducting domain ΩC

c . The external boundary of Ω is noted
as Γout. Via BC, the system can be subjected to a given axial
magnetic field haxial and/or a given transverse magnetic field
htrans. A transport current Īi is imposed to the subdomains Ωci
for i ∈ CI ⊂ C, and a voltage V̄i is imposed on the subdomains
Ωci for i ∈ C \ CI = CV . We shall call global conditions (GC)
these electric conditions imposed to the conductors of the sys-
tem. Fig. 2 represents a typical cross section of the problem
at hand.

We solve the problem defined above with the finite element
method. Among the existing finite element formulations, we
choose the h-φ-formulation [22]. It involves the power law
written in terms of the resistivity, which has been shown to lead to
robust and efficient numerical resolutions for problems involv-
ing superconductors characterized by the power law [23]. Also,
the h–φ-formulation strongly verifies the curl-free condition on
h in ΩC

c , (8), by expressing the magnetic field as the gradient
of a scalar potential. This leads to a lower number of degrees of

freedom (DOFs) compared with the h-formulation [30], which
uses instead a spurious nonvanishing resistivity to limit the
current density in ΩC

c .
The 3-D h-φ-formulation reads [23]: from an initial solution

at t = 0, find h ∈ H(Ω) such that, for t > 0 and ∀h′ ∈ H0(Ω),
we have
(
∂t(μ h) ,h′)

Ω
+
(
ρ curl h , curl h′)

Ωc
=

∑
i∈CV

V̄iIi(h′).

(10)

The integral over Ω of the inner product of f and g is denoted
by (f , g)Ω, whereas the operator Ii(h) gives the circulation
of h around conductor i, which is the net current Ii flowing
in the conductor. The associated voltage is noted as V̄i. The
function space H(Ω) is the subspace of H(curl; Ω) containing
functions that are curl free in ΩC

c and verify the essential BC
and the GC [21]. The space H0(Ω) is the same space as H(Ω)
but with homogeneous essential BC and homogeneous GC. For
simplicity, we assumed homogeneous natural BC in (10).

C. h-φ-formulation in Helicoidal Coordinates

As shown in [31] and [32], in order to express the h-φ-
formulation (10) in helicoidal coordinates, it is sufficient to
replace the scalar material parameters µ and ρ by the tensors
μ̃ and ρ̃

μ̃ = μ J−1J−T det(J) = μT−1 (11)

ρ̃ = ρ
1

det(J)
JTJ = ρT (12)

with the auxiliary tensor T, defined by

T =
JTJ

det(J)
=

⎛
⎜⎝

1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2(ξ21 + ξ22)

⎞
⎟⎠ (13)

and its inverse T−1 by

T−1 = det(J) J−1J−T

=

⎛
⎜⎝
1 + α2ξ22 α2ξ1ξ2 αξ2

α2ξ1ξ2 1 + α2ξ21 −αξ1

αξ2 −αξ1 1

⎞
⎟⎠ . (14)

This is a consequence of substituting (5) and (6) into (10) and
adding a detJ factor in the volume integral terms. Beyond these
modifications, all calculations can be performed exactly as in
Cartesian coordinates [32].

The components of the curl operator in helicoidal coordinates
are given by

(curl h)ξ =

⎛
⎜⎝
∂ξ2hξ3 − ∂ξ3hξ2

∂ξ3hξ1 − ∂ξ1hξ3

∂ξ1hξ2 − ∂ξ2hξ1

⎞
⎟⎠ . (15)

They have the same expression as in Cartesian coordinates, but
in terms of the helicoidal coordinates.
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D. Conditions for Reducing the Dimension From 3-D to 2-D

In the continuous setting, the problems expressed with
Cartesian or helicoidal coordinates are equivalent. Indeed, no
approximation is introduced and the change of coordinates is
regular. For HS geometries, there are however clear advantages
in working with helicoidal coordinates.

First, it involves integrals over domains with ξ3-independent
sections.

Second, T and T−1 are also ξ3-independent, as shown in
(13) and (14). As a consequence, both the integrand coefficients
and the domains of integration in the weak formulation are ξ3-
independent.

Finally, if the BC on Γout are also ξ3-independent when
expressed in helicoidal coordinates, then the solution h of the
h-φ-formulation is ξ3-independent as well. Hence, the integra-
tion along the ξ3-direction is trivial and the problem dimension
can be reduced from 3-D to 2-D with a considerable decrease
of the computational burden compared with the equivalent
3-D problem.

BC are HS in the case of a uniform axial magnetic field
excitation. In Section III, we describe how the associated 2-D
problem can be discretized and implemented. We verify the
implementation in Section IV.

By contrast, a transverse magnetic field excitation, i.e., a
magnetic field in the x–y plane in the Cartesian coordinate
system, does not transform into a ξ3-independent field in heli-
coidal coordinates [see (25)]. In this case, the dimension cannot
be directly reduced from 3-D to 2-D. However, simplifications
are still possible, eventually also leading to a 2-D problem
in some situations. We present a novel method for such a
situation in Sections V and VI. This method generalizes the
case of HS BC, which just becomes a particular case of the
general approach.

III. PRACTICAL IMPLEMENTATION OF A FULL

h-φ-FORMULATION —HS-BC

Starting from (10) with material tensors in (11), one could
be tempted to implement the h-φ-formulation directly as a
classical 2-D problem with in-plane magnetic field, with the
only differences of 1) working in helicoidal coordinates, and 2)
having anisotropic tensors instead of scalar material parameters.
But this would not be correct: the fact that the problem is
ξ3-independent does not imply that the involved magnetic field
has only two nonzero (helicoidal or Cartesian) components.

Due to the full anisotropy of tensors μ̃ and ρ̃, one really has to
consider three independent components for the magnetic field
h in the h-φ-formulation. To emphasize this, we refer to the
resulting formulation as a full h-φ-formulation in 2-D, and we
call the associated model the 2D-ξmodel.

In this section, we present a practical implementation of this
full h-φ-formulation. First, we propose a convenient decompo-
sition of the magnetic field, which allows us to reuse the usual
function spaces of classical 2-D problems. Then, we discuss the
discretization of these function spaces. Finally, we explain how
to impose the GC and BC.

A. Decomposition of the Magnetic Field

In the h-φ-formulation, the magnetic field h can be decom-
posed into two parts: an in-plane contribution h‖, containing the
ξ1- and ξ2-components of h, and an out-of-plane contribution
h⊥, containing only the ξ3-component. We write

h(ξ1, ξ2) = h‖(ξ1, ξ2) + h⊥(ξ1, ξ2) (16)

or, explicitly in terms of their helicoidal components
⎛
⎜⎝
hξ1(ξ1, ξ2)

hξ2(ξ1, ξ2)

hξ3(ξ1, ξ2)

⎞
⎟⎠ =

⎛
⎜⎝
hξ1(ξ1, ξ2)

hξ2(ξ1, ξ2)

0

⎞
⎟⎠+

⎛
⎜⎝

0

0

hξ3(ξ1, ξ2)

⎞
⎟⎠ (17)

where h = h(ξ1, ξ2) because the solution is ξ3-independent.
Note that the vectors h‖ and h⊥ are not orthogonal.

Because the Jacobian is nonsingular, the curl-free condition
(8) reads, in the helicoidal coordinate system

(curl h)ξ =

⎛
⎜⎝

∂ξ2hξ3

−∂ξ1hξ3

∂ξ1hξ2 − ∂ξ2hξ1

⎞
⎟⎠ = 0 (18)

from (15) using∂ξ3 = 0. With the decomposition defined in (16),
the third component of (18) implies that curl h‖ = 0, which is
the same condition as for a classical 2-D formulation in which a
two-component magnetic field is considered. Then, for the first
two components of (18) to be equal to zero, the out-of-plane
magnetic field h⊥ must be uniform in ΩC

c .
These conditions are introduced in the function space defini-

tions, i.e., they are strongly enforced. They will be made explicit
at the space discretization step.

With the explicit decomposition h = h‖ + h⊥, the h-φ-
formulation reads as follows. From an initial solution at time
t = 0, find h‖ ∈ H‖(Ω) and h⊥ ∈ H⊥(Ω) such that, for t >
0∀h′

‖ ∈ H‖,0(Ω) and ∀h′
⊥ ∈ H⊥,0(Ω)

(
∂t(μ̃ (h‖ + h⊥)) ,h′

‖
)
Ω

+
(
ρ̃ curl (h‖ + h⊥) , curl h′

‖
)
Ωc

=
∑
i∈CV

V̄iIi(h′
‖) (19)

(
∂t(μ̃ (h‖ + h⊥)) ,h′

⊥
)
Ω

+
(
ρ̃ curl (h‖ + h⊥) , curl h′

⊥
)
Ωc

= 0 (20)

where the vectors h‖ and h⊥ are coupled by tensors μ̃ and ρ̃.
Note that Ii(h′

⊥) = 0. The function spaces H‖(Ω) and H⊥(Ω)
will be defined in the space discretization step.

For the resistivity in superconducting materials, the power
law (9) leads to ρ̃ = ρSC(‖j‖) T. Using (6) and detJ = 1, we
have, in terms of the components: ‖j‖2 = jT

xjx = jT
ξJ

TJjξ =

jT
ξTjξ, which is ξ3-independent.
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B. Space Discretization of the Magnetic Field

Let us consider a finite element mesh for the discretization
of the 2-D domain Ω, and let us denote by N (Ωi) and E(Ωi),
the set of nodes and edges, respectively, of the mesh in a given
(sub)domain Ωi, including entities on the boundary of Ωi.

In practice, we can discretize the in-plane magnetic field h‖
exactly as the two-component magnetic field in a classical 2-D
h-φ-formulation with in-plane magnetic field [23]. We use Whit-
ney forms [33]: gradient of node functions wn and cohomology
functions ci (cut functions) [34] in ΩC

c , and edge functions we

in Ωc\∂Ωc

h‖ =
∑

e∈E(Ωc∂Ωc)

h‖,e we +
∑

n∈N (ΩC
c )

φn grad wn +
∑
i∈C

Ii ci (21)

where coefficients h‖,e, φn, and Ii are the DOFs defining h‖ in
the discrete function space H‖(Ω).

We choose to discretize the out-of-plane magnetic field h⊥
with perpendicular edge functions wn = wnêξ3 , associated
with nodes. To account for the fact that h⊥ must be uniform
in each region of ΩC

c , we introduce global functions in ΩC
c . Let

K be the number of connected regions in ΩC
c . We describe the

out-of-plane magnetic field with the expansion

h⊥ =
∑

n∈N (Ωc\∂Ωc)

h⊥,n wn +

K∑
i=1

Di pi (22)

with wn being the perpendicular edge function associated with
node n in N (Ωc \ ∂Ωc), and pi a global shape function defined
as the sum of all perpendicular edge functions associated with
nodes in the ith connected region of ΩC

c , including those on its
boundary, for i ∈ {1, . . . ,K}. The support of the shape function
pi is therefore not restricted to ΩC

c : it is nonzero on a layer of
one element adjacent to ∂Ωc in Ωc. This defines the discrete
function space H⊥(Ω), with DOFs h⊥,n and Di. Both h‖ and
h⊥ are described by discrete 1-forms, and so is their sum, h.

For simplicity, in the following, we assume that there is only
one connected nonconducting regionΩC

c , the exterior of the wire,
such that K = 1, and we rename D1 = D.

C. GC and BC

For the GC, a current Īi, for i ∈ CI , can be imposed exactly as
in a classical 2-D h-φ-formulation with in-plane magnetic field,
i.e., strongly via the DOF Ii associated with the cut function ci
for the corresponding conducting domain Ωci . Alternatively, an
applied voltage V̄i, for i ∈ CV , can be imposed weakly in the
global term of the formulation (19).

For the BC, we consider a circular external boundary Γout,
placed in ΩC

c sufficiently far from the conductors such that we
can assume that ∂tb · n|Γout = 0, with n being the outer normal
vector. This condition is implicitly imposed for h‖ in (19) with
homogeneous natural BC on Γout. This lets the z-component of
the magnetic field, hz , undetermined on Γout. It corresponds to
the axial magnetic field, which we can freely impose. We derive
below how to translate this into a BC on h⊥|Γout in helicoidal
coordinates.

Let us first consider the situation with a zero axial magnetic
field. At a sufficiently large distance Rout from the center of
conductors carrying a total net current intensity I , the mag-
netic field tends to be purely azimuthal and axisymmetric. We
have hx = I

2πRout
(− sin θ cos θ 0)T, with θ = atan2(y, x).

In terms of the helicoidal coordinates, on the plane ξ3 = 0,
it reads

hξ = JT|ξ3=0 hx =
I

2πRout

⎛
⎜⎝

− sin θ

cos θ

αξ2 sin θ + αξ1 cos θ

⎞
⎟⎠

=
I

2πRout

⎛
⎜⎝
− sin θ

cos θ

αRout

⎞
⎟⎠ (23)

using ξ2 = Rout sin θ and ξ1 = Rout cos θ for ξ3 = 0. Conse-
quently, to satisfy hz|Γout = 0, one has to impose that hξ3 |Γout =
Iα/2π. This can be done by fixing the DOF D associated with
the basis function p in ΩC

c in (22) to the value D = Iα/2π. Note
that this value does not depend on Rout.

By superposition, if one wants to impose a nonzero axial
magnetic field haxial on the external boundary Γout in addition to
a net current intensity I , we can impose the following condition:

D =
Iα

2π
+ haxial (24)

because the axial magnetic field Cartesian components hx =
(0 0 haxial)

T transform into hξ = JT hx = (0 0 haxial)
T in

helicoidal coordinates.

IV. VERIFICATION AND APPLICATION—HS-BC

In this section, we first compare the solution of the 2D-ξ
model in helicoidal coordinates to the solution of a classical
3-D h-φ-formulation on a simple problem in order to verify
the implementation. We also quantify the computational gain
offered by reducing the dimension from 3-D to 2-D. Then, we
apply the 2D-ξ model on a more involved geometry to illustrate
the capabilities of the approach.

A. Verification Problem

We consider a wire made of six identical Nb–Ti superconduct-
ing filaments, twisted and embedded in a copper (Cu) matrix,
as illustrated in Fig. 3. In order to simplify the geometry, the
cross sections of the filaments are assumed to be disks, and the
3-D geometry is generated by a helicoidal extrusion of them.
This is of course an approximation of a realistic geometry.
If needed, cross sections of round twisted filaments can be
computed accurately using the envelope theory as in [15] or
CAD tools [25] as in [17].

The filaments have a radius of Rf = 35 µm and their centers
are at a distance R� = 98 µm from the center of the wire.
The wire has a radius of Rw = 155 µm and a pitch length of
p = 1mm. The air is modeled outside of the wire up to a distance
Rout = 500 µm.

We assume that Nb–Ti resistivity is characterized by (9) with
constant and uniform jc = 7× 109 A/m 2 and n = 50, and
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Fig. 3. Wire geometry for the verification of the helicoidal transformation
consisting of six twisted Nb–Ti filaments embedded in a Cu matrix. (a) Geometry
in a ξ1–ξ2 plane (or in the x–y plane for z = 0)—Wire geometry in 2-D.
(b) One-sixth of a pitch length—Wire geometry in 3-D. The Cu matrix in (b) is
not represented, for clarity.

Fig. 4. Periodic support for the cohomology basis function to impose a trans-
port current I(t) in the 3-D verification model. The red curve in the filaments is
a portion of the helicoidal fiber along which the solution is represented in Fig. 5.

that the Cu resistivity is ρCu = 1.81× 10−10 Ω· m. There is
no insulation between the filaments and the matrix, so that the
wire behaves as a single conducting cylinder. A net transport
current I(t) = 0.5 Ic sin(2πt/T ) is imposed in the wire, with
T = 0.1 s and Ic = 162 A, and we impose haxial = 0 A/m.

B. Implementation of the 3-D Model

We consider the 3-D geometry represented in Fig. 3(b). It
represents a periodic cell of one-sixth of a whole pitch length p.
Note that building and meshing the 3-D model, as represented
in Fig. 3(b), is not a trivial task. To account for the periodicity of
the problem, the mesh must be identical on the top and bottom
boundaries of the domain, and as an h-φ-formulation is used,
cohomology basis functions must also be periodic. The quality
of the mesh inside the filaments plays an important role for
the accuracy of the resulting numerical solution. We observed
that better results are obtained with a structured mesh inside the
filaments. Generating the mesh with such constraints is possible
with Gmsh [25]. The periodic support for the cohomology basis
function is generated as described in [34] and [35] and illustrated
in Fig. 4.

We set a homogeneous natural BC on the external boundary
Γout, so that ∂tb · n|Γout = 0 is weakly enforced. For the top
and bottom boundaries Γup and Γdown, which are topologically
identical, the periodic condition h× n|Γup = −h× n|Γdown is

Fig. 5. Current density (up) and magnetic field (down) components along a
helicoidal fiber from z = 0 to z = p. (Left-hand side) Cartesian components of
the vectors. (Right-hand side) Helicoidal components of the vectors. Solution at
t = T/4.

imposed. On conducting boundaries ∂Ωc ∩ (Γup ∪ Γdown), this
is done by forcing the equality of the DOFs associated with
topologically identical edges of these boundaries. On noncon-
ducting boundaries∂ΩC

c ∩ (Γup ∪ Γdown), the periodic constraint
is enforced via the magnetic scalar potential. We impose φ|Γup =
φ|Γdown + haxial p/6. The total current intensity flowing in the
conducting domain made up of the filaments and matrix is
imposed via the (periodic) cohomology basis function whose
generating edges are highlighted in Fig. 4.

Note that in the present case of HS-BC (transport current or
axial field), the 3-D reference model could be defined on a length
shorter than p/6 along z, if one adapts the periodic mesh and the
periodic cut accordingly. We chose a length of p/6 so that the
reference model will also be valid in the transverse field case.

Before comparing the results, we first verify that the 3-D
model indeed produces an HS solution. For illustration, from
the 3-D numerical solution, we extract the magnetic field h and
the current density j along the helicoidal fiber of pitch length p
passing at pointx = (a, b, 0), witha = 180mm and b = 11mm,
from z = 0 to z = p (see Fig. 4). We exploit the periodicity of
the problem to obtain values for z > p/6. The Cartesian and
helicoidal components of vectors h and j are represented in
Fig. 5 for a relatively fine tetrahedral mesh (144 870 DOFs),
at time t = T/4. Helicoidal components are obtained using
the one- and two-forms transformation relations, see (5) and
(6), respectively.

The oscillations and spikes along the fiber represent interele-
ment nonconformities, which are expected with lowest order
tetrahedral Whitney shape functions. These oscillations decrease
in amplitude with mesh refinement. Up to these interelement
variations, the 3-D solution correctly presents a helicoidal sym-
metry. It is also interesting to notice that the current density
has nonzero ξ1- and ξ2-components, and that the ξ3-component
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Fig. 6. Magnetic field (left-hand side), current density in the filaments (mid-
dle), and current density in the matrix (right-hand side) at time t = T/4 for
the 2D-ξ problem solved with the helicoidal coordinate system. The arrows
represent the in-plane x- and y-components of h and j, whereas the triangular
elements are colored as a function of the out-of-plane z-component of h and
j. The dashed red line in the left-hand side figure is the cut along which the
magnetic field is represented in Fig. 7.

of the magnetic field is not equal to zero. This illustrates
the need for a three-component magnetic field in the 2-D
helicoidal model.

C. Comparison of the Results From the 3-D and 2D-ξ Models

We now compare the results of the 2D-ξ problem in helicoidal
coordinates with the reference 3-D problem described above.
Note that for the 2D-ξ model, in this particular case, we could
further exploit the symmetry and model only one-sixth of the
circular region, as depicted in Fig. 3(a), using periodic BC on
the symmetry boundaries as well as an adapted cohomology
function in ΩC

c , hence reducing the computational cost even
more. We however choose to model the full 2-D cross section.

The solution of the 2D-ξ model on a medium mesh resolution
(4700 DOFs) is represented in Fig. 6. The current mostly flows in
the superconducting filaments, as shown by the different scales
for the middle and right-hand side subfigures. On the left-hand
side subfigure, one can see that the current flow in the twisted
filaments induces a nonzero z-component hz of the magnetic
field at the center of the wire.

A comparison of the local magnetic field of the 2D-ξ model
with that of the reference 3-D model is given in Fig. 7, along the
dashed red line highlighted in Fig. 6, for two mesh resolutions.
The solution of the 3-D model is taken on the plane z = ξ3 = 0,
but this choice is arbitrary: as was shown in Fig. 5, up to the
interelement variation, the solution of the 3-D model is also
ξ3-independent. Solutions of the 2D-ξ and 3-D models match
locally. We verified and this is also the case for the current density
(not represented in the figures).

A comparison of the ac loss is given in Fig. 8. The ac loss
per unit length along êz in both the superconducting filaments
and the conducting matrix are compared for the two models,
and for two mesh resolutions. For the 2D-ξ model in helicoidal
coordinates, the ac loss is computed as (ρ̃ jξ , jξ)Ωc , where Ωc

is either restricted to the filaments, or to the matrix. For the
3-D model, the integral (ρ jx , jx)Ωc is computed over the 3-D
domain with the Cartesian coordinate system, and the result is
divided by p/6, to obtain the ac loss per unit length as well. Note
that both models include all loss contributions by construction:

Fig. 7. Magnetic field along the dashed red line represented in Fig. 6, for the
3-D and 2D-ξ models, at time t = T/4, with coarse (up) and fine (down) mesh
resolutions.

Fig. 8. AC losses in the superconducting filaments (up) and in the conducting
matrix (down) for a transport current I(t), as a function of time, for two
mesh resolutions, with the 2D-ξ model in helicoidal coordinates and the 3-D
verification model.

hysteresis losses in the filaments, as well as coupling and eddy
current losses in the matrix [36].

Meshes for the coarse resolution in the z = ξ3 = 0 plane
are similar for the 2D-ξ and 3-D models, as well as meshes
for the fine resolution. However, we observed that the 2D-ξ
model solution is less sensitive to the mesh resolution. This is
due to the interelement nonconformities in a tetrahedral 3-D
mesh, which should be made significantly lower (by mesh
refinement) to ensure an accurate evaluation of the quadratic
quantity representing the ac losses. Meshes with prisms, i.e.,
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TABLE I
PERFORMANCE COMPARISON FOR THE 3-D AND 2D-ξ MODELS WITH IMPOSED

CURRENT AND NO AXIAL MAGNETIC FIELD, COMPUTED WITH 150 TIME

STEPS FROM t = 0 TO t = 5 T/4 ON A SINGLE INTEL CORE I7 2.2 GHZ CPU

Fig. 9. Cross section of the 54-filament Nb–Ti/Cu wire.

extruded triangles, in the filaments were also tested. They give
slightly better results, but also increase the complexity of the
meshing step, as pyramids must be used as transition elements
between prisms in the filaments and tetrahedra outside of them.

The local and global quantity agreement shows the validity
of the 2D-ξ model in helicoidal coordinates. The dimension
reduction allows for a very large reduction of the computational
cost. This is demonstrated in Table I, which compares the per-
formance of the 2D-ξ and 3-D models on meshes with similar
characteristic length for the finite elements (triangles in 2D-ξ
and tetrahedra in 3-D). The fine 2D-ξ model is more than two
orders of magnitude faster to solve than the fine 3-D model.

D. Application to a 54-Filament Wire

As a more realistic geometry, we consider a wire with 54
filaments arranged in a hexagonal lattice with filament center
spacing of d = 110µm, as represented in Fig. 9. Filament radius
is Rf = 45 µm, wire radius is Rw = 500 µm, and the pitch
length is p = 10 mm. We keep the same material parameters
as before for the Nb–Ti and the Cu matrix and we impose a
transport current I(t) = 0.8 Ic sin(2πt/T ), with T = 1 s and
Ic = 2.4 kA.

Fig. 10 shows the time evolution of the current in the filaments
depending on their position. As expected, the current density
progressively penetrates into inner layers of the wire. Due to
the twist, the current flowing in the outer filaments generates
a nonzero hz component inside the wire. Circulating in-plane
currents therefore appear in the inner layers to shield this axial
magnetic field, as illustrated in Fig. 11.

Note that during the first transport current increase (for
t < T/4), no filament carries a negative current. This is in

Fig. 10. Distribution of the current among the filaments, as a function of their
distance to the center O, for the 54-filament geometry.

Fig. 11. Magnetic field (left-hand side) and current density (right-hand side)
for the 54-filament wire at time t = 0.1 s. Only one quarter of the geometry is
shown. Arrows represent the in-plane components and the elements are colored
as a function of the value of the z-component of the vectors. Note that two
different scales are used for the magnetic field for clarity.

contradiction to what was obtained in [37] with an alternative
method on a similar problem, where a critical state model is
considered and the current density is assumed localized along a
line within every filament, which therefore leads to neglecting
the spatial extension of the filaments.

V. EXTENSION TO NONHELICOIDALLY-INVARIANT

BC—GENERAL BC

When BC are not HS, the dimension of the problem cannot
be directly reduced from 3-D to 2-D on basis of the geometrical
symmetry only. This is the case when a wire is subjected to a
uniform transverse magnetic field. For an applied magnetic field
hx = (0 1 0)T, we have

hξ = JT hx =

⎛
⎜⎝

sinαξ3

cosαξ3

αξ1 cosαξ3 − αξ2 sinαξ3

⎞
⎟⎠ (25)

which is not ξ3-independent, see Fig. 12. As a consequence,
the solution of the magnetodynamic problem will not be ξ3-
independent either. The periodic structure of the problem can
however be exploited by expressing the solution as a series of
periodic functions with respect to ξ3.

In this section, we present this approach and show that it
generalizes the method described in Section III. In particular,
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Fig. 12. Uniform magnetic field along êy for the six-filament geometry
represented in Fig. 3. (Left-hand side) In the physical space on the plane
x = 0. (Right-hand side) In the helicoidal coordinate system represented as
an orthogonal system on the plane ξ1 = 0.

we show that it also leads to a 2-D model in helicoidal coor-
dinates, which has the potential of considerably reducing the
computational cost compared with a 3-D model.

A. Fourier Decomposition of the Magnetic Field

Given the p-periodicity with respect to ξ3, by separation of
variables, we can expand the magnetic field h = h(ξ1, ξ2, ξ3)
in the following series:

h(ξ1, ξ2, ξ3) =

∞∑
k=−∞

hk(ξ1, ξ2)fk(ξ3) (26)

with the modes fk = fk(ξ3) that are functions of ξ3 only and
that are defined as

fk(ξ3) =

⎧⎨
⎩
√
2 cos(αkξ3), k < 0

1, k = 0√
2 sin(αkξ3), k > 0

(27)

and with the spatial Fourier coefficients hk = hk(ξ1, ξ2) that
are three-component vector functions of ξ1 and ξ2.

The modes fk are mutually orthogonal and have a unit norm,
denoted as ‖fk‖ = 1, in the sense of the following inner product:

〈fk1
, fk2

〉 = 1

p

∫ p

0

fk1
fk2

dξ3 = δk1k2
∀k1, k2 ∈ Z. (28)

They also satisfy the following property:

dfk
dξ3

= αkf−k ∀k ∈ Z. (29)

Introducing a decomposition of the magnetic field into its
in-plane and out-of-plane components as in the HS case of
Section III for each Fourier coefficient hk, we can rewrite
(26) as

h =

∞∑
k=−∞

(
h‖,k(ξ1, ξ2) + h⊥,k(ξ1, ξ2)

)
fk(ξ3) (30)

with the h‖,k containing the ξ1- and ξ2-components of hk, and
the h⊥,k containing its ξ3-component. Equation (30) actually
generalizes the decomposition in (16) for the case of HS BC.
Indeed, in the case of HS BC, the only mode that is involved
is f0(ξ3) = 1, with coefficients h‖,0 = h‖ and h⊥,0 = h⊥, and

the coefficients of the other modes, h‖,k and h⊥,k∀k ∈ Z0, are
all equal to zero.

B. Space Discretization With Curl-Free Functions in ΩC
c

The curl of decomposition (30) reads

curl h =

∞∑
k=−∞

(
fk curl h‖,k +

dfk
dξ3

êξ3 × h‖,k

+ fk curl h⊥,k

)
(31)

where êξ3 is the unit vector in the ξ3-direction.
The only term in (31) contributing to the ξ3-component of the

curl involves the curl ofh‖,k. We can therefore keep the same dis-
crete function space for theh‖,k as forh‖ in Section III, however
without the

∑
i Iici term of (21) for k �= 0, as transport currents

only contribute to the fundamental mode with f0(ξ3) = 1. As in
the ξ3-independent case, we express the out-of-plane magnetic
field h⊥,k as a sum of perpendicular edge functions. But now,
the h‖,k functions also contribute to the ξ1- and ξ2-components
of the curl of h for k �= 0 in (31) via the cross product term.
Therefore, the curl-free condition in ΩC

c is no longer met with a
uniform out-of-plane magnetic field in ΩC

c , for k �= 0. Instead,
as is shown below, the curl-free condition induces a coupling
between the in-plane and out-of-plane magnetic field contribu-
tions in ΩC

c . For simplicity, as was done before, we assume that
there is only one connected nonconducting region ΩC

c .
Using curl-free in-plane functions h‖,k in ΩC

c and (31), the
curl-free condition on h in ΩC

c reads

∞∑
k=−∞

(
dfk
dξ3

êξ3 × h‖,k + fk curl h⊥,k

)
= 0. (32)

Using the mode property (29), this yields

∞∑
k=−∞

(
curl h⊥,k − αkêξ3 × h‖,−k

)
fk = 0 (33)

which results in the following condition∀k ∈ Z:

curl h⊥,k − αkêξ3 × h‖,−k = 0. (34)

For k = 0, we retrieve the same condition as in the HS problem,
that is, h⊥,0 must be uniform in ΩC

c , with a value given by (24).
For k �= 0, the condition can be enforced via the independent
DOFs of the in-plane and out-of-plane magnetic field contribu-
tions. Indeed, in ΩC

c , we have the expansions

h⊥,k =
∑

n∈N (ΩC
c )

h⊥,k,n wnêξ3 (35)

h‖,−k =
∑

n∈N (ΩC
c )

φ‖,−k,n grad wn (36)

where wnêξ3 = wn is the perpendicular edge function of node
n, with wn being the usual node function. In terms of the
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individual DOFs, (34) reads

∑
n∈N (ΩC

c )

(
h⊥,k,n + αk φ‖,−k,n

)
⎛
⎜⎝

∂ξ2wn

−∂ξ1wn

0

⎞
⎟⎠ = 0. (37)

This equation is valid over the whole domain ΩC
c if and only if

the first parenthesis is constant. This is the case if, for k �= 0

h⊥,k,n + αk φ‖,−k,n = 0 ∀n ∈ N (ΩC
c ). (38)

That is, to ensure a curl-free magnetic field in ΩC
c , the DOFs

of the mode h⊥,k must be linked directly to those of the mode
h‖,−k inΩC

c (or vice-versa). This link between the DOFs strongly
ensures that curl h = 0 in ΩC

c and allows for a significant
reduction of the number of unknowns, hence a reduction of the
computational cost of the resolutions.

C. BC for a Transverse Magnetic Field

The transverse magnetic field defined in (25) applied as a BC
on Γout only involves the modes f−1(ξ3) and f1(ξ3). We have,
in helicoidal components

(h‖,−1)ξ =

√
2

2

(
0 1 0

)T
(39)

(h⊥,−1)ξ =

√
2

2

(
0 0 αξ1

)T
(40)

(h‖,+1)ξ =

√
2

2

(
1 0 0

)T
(41)

(h⊥,+1)ξ =

√
2

2

(
0 0 −αξ2

)T
. (42)

We can verify that they satisfy (34).

D. Derivation of the h-φ-formulation With Linear Materials

With linear materials, orthogonality allows solving modes
with different values of |k| (i.e., including −k and k) indepen-
dently. For each value of |k|, the integration along ξ3 gives an
independent set of equations, written in terms of the unknown
Fourier coefficients h‖,−k, h⊥,−k, h‖,k, and h⊥,k. These coef-
ficients are functions of ξ1 and ξ2 only, and hence, the problem
is 2-D. The formulation is derived in the Appendix.

For nonlinear materials, the modes are no longer decoupled.
We provide observations and comments on how to handle this
situation in Section VI-C.

VI. VERIFICATION AND APPLICATION—GENERAL BC

In this section, we first verify the implementation of the
generalized 2D-ξ method by comparing its results with those
of a 3-D reference model, for linear materials. We then apply
the method on a 54-filament wire and discuss the different
contributions to the total ac loss, still with linear materials.
Finally, we comment on the application of the method in the
case of nonlinear materials.

Fig. 13. Solution of the 2D-ξ model with linear materials, on the z = 0 plane,
for a transverse field of 0.1 T. The arrows represent µ0h, and the triangular
elements are colored as a function of the value of µ0hz , using the color map
on the top. The dashed red line is where the field is taken for Fig. 14, and the
red dot along that line represents the intersection with the plane z = 0 of the
helicoidal fiber along which the field is taken for Fig. 15. (Left-hand side) Mode
with f−1(ξ3) [see (43)]. (Right-hand side) Mode with f+1(ξ3) [see (43)].

A. Verification With Linear Materials

The validity of the approach with linear materials is verified
by comparing the results of the 2D-ξ model with those obtained
with a classical 3-D model. We consider the same geometry as
in Section IV, but with a constant resistivity in the filaments, and
with a uniform transverse magnetic field instead of an imposed
transport current.

The filaments have a constant resistivity ρSC = 3.3× 10−14

Ω·m (dummy value chosen for verification), and the matrix has
a constant resistivity ρCu = 1.81× 10−10 Ω·m. The system is
subjected to a transverse magnetic field along y, increasing from
0 to 0.1 T with a constant ramp-up rate of 18 T/s.

BC for the 2D-ξ model are imposed on Γout so as to satisfy
(39)–(42). Only modes f−1(ξ3) =

√
2 cosαξ3 and f+1(ξ3) =√

2 sinαξ3 are therefore excited so that the full magnetic
field reads

h =
(
h‖,−1(ξ1, ξ2) + h⊥,−1(ξ1, ξ2)

)
f−1(ξ3)

+
(
h‖,+1(ξ1, ξ2) + h⊥,+1(ξ1, ξ2)

)
f+1(ξ3) . (43)

The result of the linear 2D-ξ model is illustrated in Fig. 13.
Comparisons with the solution of the 3-D problem are given

in Figs. 14 and 15, along a characteristic line in the z = ξ3 = 0
plane and along a helicoidal fiber of pitch length p, passing at
point x = (r, 0, 0), with r = R� + 0.8Rf, from z = 0 to z = p.
Both models agree with each other.

As in the HS-BC case, exploiting the geometrical symme-
try allows for a strong reduction of the computational work.
It should however be mentioned that the 2D-ξ model with
transverse field BC involves double number of DOFs com-
pared with the same model with HS-BC, as two modes are
needed to represent the transverse field (−k and k, compared
with k = 0 only).

The 2D-ξ model still leads to a considerable reduction of
DOFs compared with the 3-D model. Indeed, taking values of the
fine mesh resolution from Table I, the 3-D model involves 145 k
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Fig. 14. Magnetic field components along the dashed red line represented in
Fig. 13, at z = 0, for the 3-D and 2D-ξ models with a fine mesh resolution for
µ0hy = 0.1 T.

Fig. 15. Magnetic field along the helicoidal fiber of pitch length p, passing
at point x = (r, 0, 0), with r = R� + 0.8Rf (represented by the red dot in
Fig. 13), from z = 0 to z = p, for the 3-D and 2D-ξ models for µ0hy = 0.1 T.
(Left-hand side) Cartesian components of the vectors. (Right-hand side) Heli-
coidal components of the vectors.

DOFs whereas the 2D-ξ model with two modes only involves
12 k DOFs.

B. Application on a 54-Filament Wire With Linear Materials

We now consider the 54-filament geometry defined in Fig. 9
but with a linear material in the filaments. We fix the resistivity
in the filaments to ρSC = 1.81× 10−15 Ω·m and in the matrix
to ρCu = 1.81× 10−10 Ω·m.

Choosing such a low resistivity in filaments leads to an ap-
proximated model for superconducting wires at low magnetic
fields (below filament saturation). We will see that this linear
model reproduces the coupling current dynamics observed in
the Cu matrix of superconducting wires. The validity of the
linear model is however limited to this. It does not describe
superconducting hysteresis effects in filaments, and hence does
not allow for superconducting loss calculation. Instead, in the
following, the computed losses in the filament region will be
those of a normal resistive material.

We compute the ac loss induced by a time-varying transverse
magnetic field µ0h = bmax sin(ωt)êy , with bmax = 0.1 T, as a
function of the frequency f = ω/2π. As in the previous section,

Fig. 16. AC loss as a function of the frequency of an external transverse
magnetic field for linear materials and p = 10 mm. The total loss and separate
contributions (filament, coupling, and eddy) are shown. The legend is valid for
both subfigures. The markers denote the total loss obtained by a 3-D model, for
verification.

BC are such that only the modes f−1(ξ3) and f+1(ξ3) are excited
[see (39)–(42)].

Moreover, because the materials are linear and the excitation is
harmonic, the problem can be solved in the frequency domain. To
this end, we write the problem in terms of the auxiliary complex
quantity ĥ(ξ), the phasor of the magnetic field. The phasor is
related to the physical magnetic field byh(ξ, t) = �(ĥ(ξ)eiωt),
with i =

√−1, and we replace all time derivatives in the formu-
lation by a multiplication by iω.

The time-average instantaneous loss density, in W/m3, reads,
in terms of Cartesian and helicoidal components of the phasor
ĵ for the current density

1

2
ĵ
�

x

(
ρ ĵx

)
=

1

2
ĵ
�

ξ ρ̃ ĵξ (44)

where ĵ
�

denotes the transposed complex conjugate of ĵ. Note
that both sides of (44) are real since ρ is a scalar and ρ̃ is a
Hermitian tensor. The total loss per unit length is obtained by
integrating (44) over the whole wire cross section.

We decompose this total loss into separate contributions,
which allows for an easier interpretation of the results. The
filament loss is the integral of (44) on the filament region only.
The coupling loss is the integral of (44) on the matrix region
only, taking only the in-plane components of ĵx into account
(the x and y Cartesian components). Finally, the eddy current
loss is the same but with only the out-of-plane component ĵz .

We present the results for frequencies ranging from 10−2 to
105 Hz in Fig. 16 for a pitch length p = 10mm. Values from a 3-
D reference model are also given for comparison, the agreement
with the 2D-ξ model is very good. The current distribution at
two distinct frequencies is shown in Fig. 17.
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Fig. 17. Real part of the current density distribution in the matrix in trans-
verse magnetic field in harmonic regime. Arrows represent the in-plane x–
y-components, and elements are colored as a function of the out-of-plane
z-component. (a) f = 10−2 Hz. (b) f = 103 Hz.

Fig. 16 shows that the dominant loss contribution depends on
the frequency. This can be interpreted as follows.

Neglecting the effect of the twist, we expect the peak value
of the filament loss to arise when the diffusion skin depth δSC =√

2ρSC/ωμ is comparable with the radius of the wire Rf. We
have δSC/Rf = 1 for the frequency f = 0.22 Hz, which is not
too far from the peak in Fig. 16(b).

A change of regime for the eddy current loss per cycle should
arise when the skin effect starts to play a role in the matrix.
This is expected to happen when the diffusion skin depth δCu =√
2ρCu/ωμ is comparable with the thickness of the outer sheath

of the matrix Dos ≈ 80 µm. Here, we have δCu/Dos = 1 for
the frequency f = 7.2 kHz, which coincides with the peak in
Fig. 16(b). Below this frequency, in the 0.1–5 kHz range, most
of the field is shielded by currents in the filaments, which are
coupled via coupling currents, as discussed below.

Coupling losses are due to currents flowing between the fila-
ments, known as the coupling currents [38]. They are represented
by the arrows in Fig. 17. It is worth mentioning that they are
on average flowing antiparallel to the applied magnetic field,
as predicted by analytical models [36], [38]. Their dynamics is
that of an RL-circuit governed by a time constant τc and they
contribute to a loss per cycle and per unit length qcycle (J/m).
Simplified models propose [36]

τc =
μ0

2ρeff

( p

2π

)2

, qcycle = πR2
w
b2max

2μ0

πωτc

(ω2τ2c + 1)
(45)

with ρeff being the effective resistivity of the matrix, accounting
for the presence of the filaments [2]. In the present case in which
we assume no insulation between the filaments and the matrix,
assuming that the filaments have negligible resistivity, we can
estimate ρeff as follows [39]:

ρeff = ρCu
1− λ

1 + λ
(46)

with λ being the filling factor of the filaments in the wire.
Here, λ = 0.44 so that τc = 23 ms. The associated frequency is
fc = (2πτc)

−1 = 7 Hz, which roughly corresponds to the posi-
tion of the peak value of the coupling loss per cycle in Fig. 16(b).

Fig. 18. Real part of the current distribution in the filaments in transverse
magnetic in harmonic regime. Arrows represent the in-plane x–y-components,
and elements are colored as a function of the out-of-plane z-component.
(a) f = 10−2 Hz. (b) f = 103 Hz.

Fig. 19. AC loss as a function of the frequency of an applied transverse
magnetic field for linear materials and different pitch lengths. Solid curves
represent the total loss. Dashed curves represent the coupling loss only. The
main effect of the twist is to shift the coupling loss curves to higher frequencies
for decreasing values of p. The total loss for a wire made of Cu only (2-D model)
is given for comparison (dotted curve). The legend is valid for both subfigures.

Below the peak frequency, the filaments are mostly decoupled, as
the magnetic field does not change fast enough for large coupling
currents to appear. Above the peak frequency, they get more and
more coupled, as illustrated in Fig. 18.

As an illustration of the effect of p on the coupling losses, we
give in Fig. 19 the total and coupling losses for different values of
the pitch length. We can verify the agreement with the analytical
prediction (45): the peak position of the coupling losses scales
quadratically with p, affecting the total loss significantly. The
curve for a pure Cu cylindrical conductor of the same radius Rw,
with ρSC = ρCu = 1.81× 10−10 Ω·m, is given for comparison.

Note that for the pure Cu case, we have δCu/Rw = 1 for
f = 183 Hz, which roughly corresponds to the position of the
peak of ac loss per cycle.
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Fig. 20. Current density (up) and magnetic field (down) along the helicoidal
fiber of pitch length p, passing through point x = (r, 0, 0), with r = R� +
0.8Rf from z = 0 to p, for a transverse applied magnetic field along êy and Nb–
Ti filaments. (Left-hand side) Three components of the vectors in the x-space.
(Right-hand side) Three components of the vectors in the ξ-space. Solution of
the 3-D model on a fine mesh with prismatic element in the filaments.

Fig. 19 clearly shows the beneficial effect of twisting the
filaments at low frequencies. Wires with smaller pitch length
indeed have shorter time constants and are less subject to cou-
pling current losses at low frequencies. It must be mentioned
that the twist however does not reduce loss for all frequencies,
which is in agreement with experimental measurements, e.g.,
in [40].

The simple linear model discussed here allows for a qualitative
description of coupling current losses that are representative of
real superconducting wires for low applied magnetic field only.
With superconducting filaments, saturation effects change the
coupling current dynamics for higher field amplitudes [2]. Such
effects cannot be reproduced with a linear model.

As already said, the analysis of this linear model must there-
fore be carried out with caution. Total loss evaluations for
superconducting wires cannot be extracted from this model as
hysteresis losses of superconducting filaments are not part of
the linear model. The inclusion of nonlinear material properties
is necessary for such analysis. In the next section, we present
the challenges that such an inclusion brings to the helicoidal
transformation approach with general BC.

C. Comments for Nonlinear Materials

In the presence of nonlinear materials, such as superconduct-
ing filaments with a power law resistivity described by (9),
mode decoupling is no longer possible with general BC. As
derived in the Appendix, the eddy current term of the formulation
expands as a double sum on k, k′ ∈ Z of the terms given by (51).
Each term in (51) involves the tensor ρ̃. For a superconducting
filament, this tensor depends on the full local current density,
which couples the modes with different values of |k|. A large

Fig. 21. Amplitudes of the mode contributions for the evolution of the three
components of h in the ξ-space, along the same helicoidal fiber as in Fig. 20.
Values are obtained via a fast Fourier transform. Modes for even numbers of k
are not excited by a transverse magnetic field.

number of modes in (30) is therefore likely to be excited by a
transverse magnetic field.

As the integral along the ξ3-direction can no longer be com-
puted a priori, the resulting problem is no longer 2-D, which
makes it qualitatively different from the 2D-ξ model with linear
materials. To assess the importance of this mode coupling, we
can use the 3-D model. We show in Fig. 20 the evolution of the
magnetic field and the current density along one helicoidal fiber,
obtained with the 3-D model with the same material parameters
as in Section IV, but subject to a transverse magnetic field.
As can be seen on the bottom-right plot, the magnetic field in
helicoidal coordinates cannot be described only with the two
modes f−1(ξ3) and f+1(ξ3) as in the linear case. Higher modes
are excited.

The amplitude of the different modes can be quantified by a
discrete Fourier transform of the magnetic field evolution along
this helicoidal fiber. This is illustrated in Fig. 21. Small, but
nonnegligible contributions are brought by modes |k| > 1.

Whether a description with a limited number of modes would
lead to satisfying evaluations of losses or not is not an obvious
question; knowing a priori how many modes should be con-
sidered on a new geometry remains an open question. Further
investigations in that direction are necessary.

VII. CONCLUSION

In this work, we applied a change of coordinates on the h-φ-
formulation for modeling multifilamentary wires presenting a
helicoidal symmetry. This led to a reduction of the geometrical
dimension from 3-D to 2-D, hence allowing for a substantial gain
in terms of computational effort. We separated the study in two
steps, depending on the helicoidal symmetry of the BC (BC).
In both cases, we described in details the spatial discretization
of finite element fields in helicoidal coordinates. In particular,
we emphasized the necessity of using three independent com-
ponents for the unknown fields. We then successfully verified
our implementation against standard 3-D models.

In the case with no external field (e.g., transport current
situation only) or with an axial magnetic field, BC are HS
and the method can be directly applied to nonlinear materials.
The approach is exact in the sense that no approximation is
introduced in the continuous setting. The proposed method can
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be directly applied on single-layer CORC cables [41] or twisted
stacked-tape conductors [42].

In the case of a transverse magnetic field, BC are no longer HS,
but the approach was generalized and applied to linear materials.
We presented a study of coupling current induced losses in
the harmonic regime, and we finally commented on a possible
extension to nonlinear materials. For nonlinear materials with
general BC, further investigations are necessary.

APPENDIX

The full h-φ-formulation expressed in helicoidal coordinates
reads: from an initial solution at t = 0, findh ∈ H(Ω) such that,
for t > 0 and ∀h′ ∈ H0(Ω)(

∂t(μ̃ h) ,h′)
Ω3D

+
(
ρ̃ curl h , curl h′)

Ωc,3D

=
∑
i∈CV

V̄iIi(h′) (47)

with μ̃ and ρ̃ two tensors defined in (11) and (12). This formu-
lation is written in the 3-D domain Ω3D, not yet reduced to a
2-D problem. In the case of nonhelicoidally symmetric BC, the
solutionh is not ξ3-invariant, and the dimension reduction is not
immediate.

Below, we expand the two integral terms of this formulation
when the magnetic field h(ξ1, ξ2, ξ3) is decomposed with (30)
and the modes fk(ξ3) defined in (27). We remind that these
modes are orthonormal in the sense of the inner product defined
in (28).

Flux variation term (linear case)

The first term of (47) expands as the double sum

∞∑
k=−∞

∞∑
k′=−∞

(
∂t(μ̃ h‖,kfk) ,h′

‖,k′fk′
)
Ω3D

+
(
∂t(μ̃ h⊥,kfk) ,h

′
‖,k′fk′

)
Ω3D

+
(
∂t(μ̃ h‖,kfk) ,h′

⊥,k′fk′
)
Ω3D

+
(
∂t(μ̃ h⊥,kfk) ,h

′
⊥,k′fk′

)
Ω3D

. (48)

Because the decomposition in (30) separates the variables, we
can integrate each individual term along the geometry invariant
ξ3-direction over one pitch length p. The orthogonality of the
modes induces that terms with k �= k′ vanish (provided that µ is
not a function of the magnetic field). Dividing the integral by p
and using ‖fk‖ = 1, we get

∞∑
k=−∞

(
∂t(μ̃ h‖,k) ,h′

‖,k
)
Ω
+
(
∂t(μ̃ h⊥,k) ,h

′
‖,k

)
Ω

+
(
∂t(μ̃ h‖,k) ,h′

⊥,k

)
Ω
+
(
∂t(μ̃ h⊥,k) ,h

′
⊥,k

)
Ω

(49)

where integrals now only have to be performed on a 2-D domain.
Equations for different values of |k| are uncoupled. In ΩC

c , the
DOFs for h⊥,k and h‖,−k are linked with each other using (38).

Eddy current term (linear case)

The second term of (47) expands as the double sum
∞∑

k=−∞

∞∑
k′=−∞

(
ρ̃ curl (h‖,kfk) , curl (h′

‖,k′fk′)
)
Ωc,3D

+
(
ρ̃ curl (h⊥,kfk) , curl (h

′
‖,k′fk′)

)
Ωc,3D

+
(
ρ̃ curl (h‖,kfk) , curl (h′

⊥,k′fk′)
)
Ωc,3D

+
(
ρ̃ curl (h⊥,kfk) , curl (h

′
⊥,k′fk′)

)
Ωc,3D

. (50)

Using (31) for the curl, we get the following lengthy expression
for each pair of values (k, k′) ∈ Z× Z:(

ρ̃ fk curl h‖,k , fk′ curl h′
‖,k′

)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h‖,k , fk′ curl h′
‖,k′

)
Ωc,3D

+

(
ρ̃ fk curl h‖,k ,

dfk′

dξ3
êξ3 × h′

‖,k′

)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h‖,k ,
dfk′

dξ3
êξ3 × h′

‖,k′

)
Ωc,3D

+
(
ρ̃ fkcurl h⊥,k , fk′ curl h′

‖,k′

)
Ωc,3D

+

(
ρ̃ fkcurl h⊥,k ,

dfk′

dξ3
êξ3 × h′

‖,k′

)
Ωc,3D

+
(
ρ̃ fk curl h‖,k , fk′curl h′

⊥,k′
)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h‖,k , fk′curl h′
⊥,k′

)
Ωc,3D

+
(
ρ̃ fkcurl h⊥,k , fk′curl h′

⊥,k′
)
Ωc,3D

. (51)

In the linear case in which ρ̃ is not a function of the fields, we
can integrate each term along the geometry invariant ξ3-direction
over one pitch length p, divide by p, use the mode property (29),
and exploit the mode orthonormality.

For k = 0, because dξ3f0 = 0, only terms for k′ = 0 survive,
and they are decoupled from all other terms (k �= 0). These terms
are the same as the ones implemented in the case of HS-BC(

ρ̃ curl h‖,0 , curl h′
‖,0

)
Ωc

+
(
ρ̃ curl h⊥,0 , curl h′

‖,0
)
Ωc

+
(
ρ̃ curl h‖,0 , curl h′

⊥,0

)
Ωc

+
(
ρ̃ curl h⊥,0 , curl h′

⊥,0

)
Ωc

. (52)

For k �= 0, only one term of the sum on k′ survives for each term,
either k′ = k, or k′ = −k. Indeed, (29) induces the coupling of
the modes k and −k. For a given value of k �= 0, in (51), the
only terms that remain are(

ρ̃ curl h‖,k , curl h′
‖,k

)
Ωc

+ αk
(
ρ̃ êξ3 × h‖,k , curl h′

‖,−k

)
Ωc

+ α(−k)
(
ρ̃ curl h‖,k , êξ3 × h′

‖,−k

)
Ωc
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+ α2 k2
(
ρ̃ êξ3 × h‖,k , êξ3 × h′

‖,k
)
Ωc

+
(
ρ̃ curl h⊥,k , curl h′

‖,k
)
Ωc

+ α(−k)
(
ρ̃ curl h⊥,k , êξ3 × h′

‖,−k

)
Ωc

+
(
ρ̃ curl h‖,k , curl h′

⊥,k

)
Ωc

+ αk
(
ρ̃ êξ3 × h‖,k , curl h′

⊥,−k

)
Ωc

+
(
ρ̃ curl h⊥,k , curl h′

⊥,k

)
Ωc

. (53)

To these terms, another set needs to be added, with the opposite
value of k, k� = −k. In total, this gives 18 individual terms for
the eddy current contribution, for each value of |k| �= 0.
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