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Holographic MIMO Communications:
What is the benefit of closely spaced antennas?

Antonio Alberto D’Amico, Luca Sanguinetti, Senior Member, IEEE

Abstract— Holographic MIMO refers to a (possibly large)
array with a large number of individually controlled and densely
deployed antennas. The objective of this paper is to provide
further insight into the use of closely spaced antennas in the
uplink and downlink of a multi-user Holographic MIMO system.
To this end, we utilize multiport communication theory, which
ensures physically consistent uplink and downlink models. We
first consider a simple uplink scenario with two side-by-side
half-wavelength dipoles, two users, and single-path line-of-sight
propagation, and show both analytically and numerically that the
receive array gain and average spectral efficiency strongly depend
on the directions from which the signals are received and on the
array matching network used. The numerical results are then
used to extend the analysis to more practical scenarios involving
a larger number of dipoles (arranged in a uniform linear array)
and a larger number of users. The case where the antennas
are densely packed in a space-constrained factor form is also
considered. It is found that the spectral efficiency benefits from
decreasing the antenna spacing if arrays of moderate size are
considered, e.g. in the order of a few wavelengths. In comparison,
larger arrays with closely spaced antennas show only marginal
improvements in spectral efficiency compared to half-wavelength
arrays.

Index Terms— Holographic MIMO, closely spaced anten-
nas, mutual coupling, circuit theory, matching networks, up-
link/downlink duality.

I. INTRODUCTION

Communication theorists are always on the lookout for new
technologies to improve the speed and reliability of wireless
communications. Chief among the technologies that blos-
somed into major advances is the multiple antenna technology,
whose latest implementation is Massive MIMO (multiple-
input multiple-output) [1], [2]. Inspired by its potential bene-
fits [3], new research directions are taking place under different
names [4], e.g., Holographic MIMO [5] and large intelligent
surfaces [6]. Particularly, the former concept refers to an
array (possibly electromagnetically large, i.e., compared to
the wavelength) with a massive number of closely spaced
antennas whose electromagnetic interactions inevitably results
into mutual coupling [7]. Although exceptions exist, e.g., [8]–
[14], the vast majority of the recent MIMO literature has
entirely neglected mutual coupling since it is all about using
(possibly physically large) arrays with half-wavelength an-
tenna spacing [2]. Another major caveat of the classical MIMO
literature (in general) is that it mostly relies on the abstractions
of signal processing and information theories, which are not
always consistent with the physical context of the underlying
system. Fortunately, there exists a thin, but solid, literature that
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can be used to overcome these limitations [15]–[19] but its
development has been relatively slow due to the less tractable
analysis.

The first attempts in this direction can be found in [15]–[17].
Particularly, in [17] the authors derived the model of a single-
user MIMO communication system as an electrical network
described by scattering matrices. This allows to account for
the mutual coupling between transmit and/or receive antennas.
A matching network was also introduced at the receiver to
maximize the power transfer from the outputs of the receive
antennas to the loads. The framework developed in [17] is
also among the first to connect the physical power to the
abstract concept used in signal and information theories. An
alternative framework is developed in [18], [19] based on
the multiport communication theory. This involves a circuit
theoretic approach where the inputs and outputs of the multiple
antenna communication system are associated with ports of
a multi-port black-box, described by impedance matrices.
Notice that the two frameworks above are equivalent and the
multiport communication theory has been used in the MIMO
literature to study several aspects. For example, in [20]–
[22] the transmit/receive array gain is evaluated (with and
without matching networks) for uniform linear and circular
arrays. The diversity gain is investigated in [23], while the
effects of the antenna separation on the mutual information
of two Hertzian dipoles are analyzed in [19]. The multiport
communication theory is also used in [24] for studying the
uplink/downlink reciprocity and mutual information of multi-
user MIMO systems. More recently, [25] used it to investigate
the impact of mutual coupling in the channel estimation of
single-user MIMO communications.

The main objectives of this paper are two fold: i) to use the
multiport communication theory to derive physically consis-
tent uplink and downlink models for multi-user Holographic
MIMO communications with linear processing; and ii) to use
the developed models to answer the following question: what
are the spectral efficiency advantages of having closely spaced
antennas? To answer this question, we first consider a simple
uplink scenario with two side-by-side half-wavelength dipoles
at the base station (BS), two user equipments (UEs) and single
path line-of-sight (LoS) propagation. In this context, we show
both analytically and numerically that the receive array gain,
interference and spectral efficiency depend strongly on the
directions from which the UE signals are received and on
the array matching network used at the BS. Benefits are only
attainable through impedance matching (e.g., [13], [14], [26])
and specific incident signal directions. However, implementing
impedance matching for arrays with numerous antennas poses
significant challenges [24]. Furthermore, in practical multi-
user systems, signal directions are uncontrollable due to their
dependency on UE locations. In these cases, the gains may
be marginal or even non-existent. The internal losses within
the dipole antennas are also shown to impact the spectral
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efficiency significantly as the spacing reduces. Numerical
results are then used to show that similar conclusions hold
in more practical scenarios with more UEs and more side-
by-side dipole antennas arranged in a uniform linear array at
the BS. Particularly, the analysis is conducted in the following
two cases: i) the number of dipoles is fixed as we vary their
spacing; ii) the size of the uniform linear array is fixed as we
vary the dipole spacing. In the latter case, it turns out that the
spectral efficiency increases as the antenna distance reduces.
This is most noticeable for arrays spanning a few wavelengths.
In contrast, larger arrays show only marginal improvements in
spectral efficiency compared to arrays with half-wavelength
spacing.

Although most of the analysis focuses on the uplink, we
also investigate the downlink. Particular attention is given to
the uplink and downlink duality in the presence of different
matching networks. Specifically, we show that the downlink
and uplink channels are reciprocal up to a linear transfor-
mation. In line with [24], the ordinary channel reciprocity
(i.e., no linear transformation) holds true only if full matching
networks are employed at both sides [24]. Numerical results
are used to quantify the spectral efficiency loss when the linear
transformation is not applied.

The remainder of this paper is organized as follows. In
Section II, we review the Multiport Communication Theory
from [19]. In Section III, we show how to compute the
impedance matrices when a uniform linear array made of half-
wavelength dipoles is used at both sides. In Section IV, the
uplink and downlink signal models for Holographic MIMO
communications are derived on the basis of the multiport
communication model. The concept of uplink and downlink
duality is also discussed. To showcase what is the impact of
mutual coupling, a simple case study with two dipole antennas
and two UEs is considered in Section V. The analysis is
then extended in Section VI to more realistic scenarios with
multiple antennas, multiple UEs and arrays of varying or fixed
aperture. Conclusions are drawn in Section VI.

Notation: Lower-case bold letters are used for vectors and
upper-case bold letters are used for matrices. n ∼ NC(0,R)
denotes the circularly symmetric complex Gaussian distribu-
tion with zero mean and covariance matrix R. We use E{·}
to indicate the expectation operator. The operators T, ∗ , and H

denote transpose, complex conjugate, and Hermitian transpose,
respectively. The Euclidean norm is denoted by ∥·∥ and | · |
is the absolute value. We use a · b and ⊙ to denote the
scalar product and the Hadamard product between a and b,
respectively.

II. REVIEW OF MULTIPORT COMMUNICATION THEORY

Consider a narrowband communication system equipped
with M antennas at the receiver and N antennas at the source.
This is described by the following discrete-time input-output
relation [27]:

y = Hx+ n (1)

where y ∈ CM and x ∈ CN denote the output and input
vectors, respectively. The vector x must satisfy E{xHx} ≤ PT

to constrain the total transmit power. Also, n ∼ NC(0,Rn)
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Fig. 1: Physical model of a multi-antenna communication
system, based on the circuit theoretic concept of linear multi-
ports [19].

is the additive Gaussian noise and H ∈ CM×N is the MIMO
channel matrix. The input-output relation in (1) can be used
to model a great variety of multiple antenna communication
systems. In order to successfully model a particular one, there
is the need to encode the physical context of the system into
it. This is exactly the point where the circuit theoretic concept
of linear multiports from [19] comes into play.

The physical model, based on the circuit theoretic approach,
is shown in Fig. 1. It consists of four basic parts: signal
generation, impedance matching, antenna mutual coupling,
and noise. The meaning of each part is briefly reviewed next.
More details can be found in [19].

A. Signal generation and power

The generation of the nth physical signal that is to be
transmitted is modeled by a voltage source, with complex
envelope vG,n, in series with the impedance ZG = RG+ jXG.
The average available power of the voltage generator is
Pa,n =

E{|vG,n|2}
4RG

where the expectation accounts for signal
randomness. Letting vG = [vG,1, vG,2, . . . , vG,N ]T , the total
average available power is thus

Pa =

N∑
n=1

Pa,n =
E{vH

GvG}
4RG

. (2)

B. Impedance matrices

The transmit/receive matching networks are multiport sys-
tems described by the impedance matrices ZMT and ZMR. In
particular, ZMT ∈ C2N×2N and ZMR ∈ C2M×2M are given
by

ZMT =

[
ZMT,11 ZMT,12

ZMT,21 ZMT,22

]
ZMR =

[
ZMR,11 ZMR,12

ZMR,21 ZMR,22

] (3)

with {ZMT,ij ∈ CN×N ; i = 1, 2, j = 1, 2} and {ZMR,ij ∈
CM×M ; i = 1, 2, j = 1, 2}. We assume that the impedance
matching networks are lossless, reciprocal [18], and noise-
less [28].
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The impedance matrix ZA ∈ C(N+M)×(N+M) accounts for
the mutual coupling between antennas and can be partitioned
as:

ZA =

[
ZAT ZATR

ZART ZAR

]
. (4)

Particularly, ZAT ∈ CN×N and ZAR ∈ CM×M quantify the
mutual coupling at the transmit and receive sides (intra-array
coupling), respectively, while ZATR ∈ CN×M and ZART ∈
CM×N model the mutual coupling between the transmit and
the receive arrays (inter-array coupling). Because antennas are
reciprocal, e.g. [7], we have ZAT = ZTAT, ZAR = ZTAR, and
ZATR = ZTART.

A common approximation for ZA follows from the uni-
lateral assumption, according to which ZATR ≈ 0N×M .
This basically implies that the currents at the receiver do
not produce effects on the transmitter. From a mathematical
standpoint, it requires that ||ZATiAT|| ≫ ||ZATRiAR|| where
iAT and iAR are the vectors of currents at the transmitting
and receiving arrays, respectively (see Fig. 1). In practice, it
implies that the transmitting antennas are not affected by the
presence of the receiving antennas. This is true as long as the
transmit and receive arrays are sufficiently separated in space
as it happens in any practical communication network.1

C. Losses in the antennas

Notice that even though antennas may possess minimal
loss, this can become significant when substantial electric
currents are required to transmit a specific power. Particularly
when dealing with closely spaced antennas, the internal losses
within the antenna can significantly impact the performance. A
common way to account for this, it is to include a dissipation
resistance that is connected in series. This implies that the
impedance matrices ZAT and ZAR must be replaced with

ZAT → ZAT +RdIN ZAR → ZAR +RdIM . (5)

If different dissipation resistances are used at the different
antennas, then the matrices RdIN and RdIM should be
replaced with diagonal matrices. For a half-wavelength dipole
the expression of the dissipation resistance can be found in [7,
Example 2.13].

D. Noise sources

The vector vEN accounts for the extrinsic noise originat-
ing from the background radiation, and its entries represent
the complex envelopes of the voltages that appear at the
antenna ports when no currents flow, i.e., open-circuit noise
voltages [18]. The elements of vEN are zero-mean correlated
random variables, with REN = E{vENv

H

EN}. A commonly
adopted model is [18, Sec. II-E]

REN = 4kBTA∆fRe(ZAR) (6)

where kB is the Boltzmann constant, TA is the noise tem-
perature of the antennas, while ∆f is the equivalent noise
bandwidth that depends on the bandwidth of the desired signal.

1It may not hold true if different short-range applications are considered,
e.g., near-field communications or short-range simultaneous wireless informa-
tion and power transfer systems.

The intrinsic noise is produced by the subsystems that
follow the receive matching network such as low noise
amplifiers (LNAs), mixers, and analog-to-digital converters
(ADCs). Most of the noise originates from the LNAs, and
thus can be modelled by using the voltage and current vec-
tors [18], [29] given by vLNA and iLNA, respectively. Both
vLNA and iLNA are zero-mean random vectors, with the
following statistics [18, Eq. (10)]: E{iLNAi

H

LNA} = σ2
i IM ,

E{vLNAv
H

LNA} = R2
Nσ

2
i IM and

E{vLNAi
H

LNA} = ρRNσ
2
i IM (7)

where RN is the so-called noise resistance of the LNAs,
usually indicated in the manufacturer data sheets. The complex
parameter

ρ =
E{vLNA,mi

∗
LNA,m}√

E{|vLNA,m|2}E{|iLNA,m|2}
(8)

accounts for the correlation between voltage and current noise
generators at each port.

E. Input-Output Relation

Under the unilateral approximation, the input-output relation
is [18, Eq. (16)]

vL = DvG + η (9)

where D and η are given by [18, Eq. (17)]

D = QZRT(ZGIN + ZT)
−1 (10)

η = Q(FRvEN − vLNA + ZRiLNA) (11)

with [18, Eq. (19)]

ZR = ZMR,11 − FRZMR,21 (12)
ZT = ZMT,11 − FTZMT,21 (13)

ZRT = FRZARTF
T

T (14)

and [18, Eq. (20)]

FR = ZMR,12 (ZMR,22 + ZAR)
−1 (15)

FT = ZMT,12 (ZMT,22 + ZAT)
−1 (16)

Q = ZL(ZLIM + ZR)
−1. (17)

The input-output relation (9) can be written in a slightly
different form (which will turn useful later on) as vL =
Q(FRvOC + η̃) where η̃ = FRvEN − vLNA + ZRiLNA and

vOC = DOCvG
(a)
= ZARTiAT (18)

with
DOC = ZARTF

T

T(ZGIN + ZT)
−1. (19)

Notice that vOC is the open circuit voltage vector as induced
by iAT when iAR = 0, as it follows from (a) in (18). In
general, iAR = 0 does not imply that the elements of vOC are
the same as if the receive antennas were isolated. This holds
true only if the receive antennas are canonical minimum scat-
tering (CMS) antennas.2 This is the case of half-wavelength

2According to [30], a canonical minimum-scattering antenna is “invisible”
when the accessible waveguide terminals are open-circuited. This means that
a vanishing electric current in the antenna does not alter the electromagnetic
field.
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dipoles [22]. We finally notice that DvG = QFRvOC so that,
using (18), we get

D = QFRDOC. (20)

Remark 1. (Input-output relation without matching networks)
In the absence of a transmit matching network, the input-
output relation can simply be obtained by setting ZT = ZAT

and FT = IN in (10) and (14), respectively. Analogously, with
no receive matching network the input-output relation can be
obtained by replacing ZR with ZAR and FR with IM .

Remark 2. (Connection with the scattering representation)
Instead of working with voltages and currents, incident and
reflected power waves can be used to describe multiport
systems (e.g., [17]). This leads to the equivalent scattering
representation that is discussed in Appendix A.

F. Transmit power and noise covariance matrix

The transmit power is defined as the average active power
at the output of the transmit matching network, or equiva-
lently, at the input of the transmit antenna array, i.e., PT =
1
2E{Re(vH

ATiAT)}. Assuming a lossless transmit matching
network, we have E{Re(vH

ATiAT)} = E{Re(vH

TiT)}. Now,
observe that, under the unilateral approximation, vT = ZTiT.
Since vT = vG−ZGiT, we obtain iT = (ZGIN + ZT)

−1
vG

so that PT reduces to

PT =
1

2RG
E{Re(vH

GBvG)} (21)

with

B = RG(ZGIN + ZT)
−HRe{ZT}(ZGIN + ZT)

−1. (22)

Notice that PT coincides with the radiated power Prad only
if the transmit antennas are lossless.

From the statistics of the extrinsic and intrinsic noise, the
covariance matrix Rη of η in (11) is:

Rη = QUQH (23)

where Q is given in (17) and U = UIN + UEN is the
correlation matrix of η̃ with

UIN = σ2
i

(
ZRZ

∗
R − 2RNRe (ρ

∗ZR) +R2
NIM

)
(24)

and UEN = FRRENF
H

R.

G. Matching network optimization

The transmit matching network ZMT can be designed to
maximize the power delivered to antennas (power matching or
maximum power transfer) [18]. This yields B = IN in (22),
and

ZT = Z∗
GIN . (25)

By taking (13) and (16) into account, this can be obtained by
setting [18]

Z⋆MT =

[
−jXGIN −j

√
RGRe{ZAT}1/2

−j
√
RGRe{ZAT}1/2 −jIm{ZAT}

]
(26)

which yields

FT = −j
√
RGRe{ZAT}−1/2. (27)

The receive matching network ZMR can be designed to ensure
that the signal-to-noise ratio (SNR) is as large as it can be
(noise matching or SNR maximization) [18]. This is achieved
with

Z⋆MR =

[
jIm{Zopt}IM j

√
Re{Zopt}Re{ZAR}1/2

j
√
Re{Zopt}Re{ZAR}1/2 −jIm{ZAR}

]
.

(28)

Plugging (28) into (12) and (15) yields

ZR = ZoptIM (29)

with Zopt = RN

(√
1− (Im{ρ})2 + jIm{ρ}

)
, and

FR = j
√

Re{Zopt}Re{ZAR}−1/2. (30)

Also, notice that

Q =
ZL

ZL + Zopt
IM (31)

and the covariance matrix Rη = |ZL|2|ZL + Zopt|−2σ2IM
becomes diagonal with

σ2 = σ2
i

(
|Zopt|2 − 2RNRe (ρ

∗Zopt) +R2
N

)
+ 4kBTA∆fRe{Zopt}).

(32)

The design of coupled matching networks is very challenging
for arrays with a large number of antennas [18], [19]. A
practical approach is to make use of a self-impedance matching
network [31, Sect. III.B], instead of a full multiport matching
network. This approach neglects the mutual coupling among
antennas and replaces, in the design of the matching networks,
the impedance matrices ZAT and ZAR with the diagonal
matrices diag(ZAT) and diag(ZAR) that contain only their
diagonal elements. It becomes possible to substitute these
matrices for the actual ones in (26) and (28) and specify
uncoupled matching networks, as described above.

III. COMPUTATION OF THE MUTUAL COUPLING
IMPEDANCE MATRIX

Measurements can be used to obtain the mutual coupling
impedance matrix ZA. Next, we show how to compute it
analytically when the antennas at both sides are cylindrical
dipoles of length ld = λ/2 and radius ad ≪ ld. Specifically,
we set ad = 10−4ld, e.g., [7, Secs. 8.5 - 8.6]. Moreover, we
assume that the receiver is equipped with a uniform linear
array.

A. Impedance matrix ZAR

We consider ZAR but the same analysis follows for ZAT.
The mutual impedance between dipole p and dipole q is
computed as [32, Eq. (25.4.14)]

[ZAR]pq = − 1

IpIq

ld/2∫
−ld/2

eqp(s)Iq(s)ds (33)
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TABLE I: Parameters of the antenna array at the BS.

Parameter Value Parameter Value
Carrier frequency 3.5 GHz Variance of the current noise source σ2

i = 2kBBWTA/RN

Bandwidth BW = 20 MHz Radiation resistance Rr = 73 Ω

Transmit power PT = −30 dBW LNA noise resistance RN = 5Ω

Amplifier and load impedance ZG = ZL = (186− j31.6) Ω Complex correlation coefficient ρ = 0.1

Noise temperature of antennas TA = 290 Dissipation resistance Rd = 10−3Rr Ω

where eqp(s) is the component (along the direction of dipole
q) of the electric field produced by a current Ip(s′) flowing in
dipole p, Iq(s) is the current flowing in dipole q, and finally Ip
and Iq are the currents at the input terminals of dipoles p and
q, respectively. The current distributions Ip(s′) and Iq(s), for
p, q = 1, 2, . . . , N , can be found by solving a system of Hallén
integral equations [32, Sec. 25.7]. The solutions can be found
by numerical methods (e.g. the method of moments discussed
in [32, Sec. 24.8]). A very good approximation of the current
distributions In(s) for center-fed dipoles is represented by the
sinusoidal current model, i.e.,

In(s) = In
sin [k (ld/2− |s|)]

sin(kld/2)
. (34)

where k = 2π/λ is the wavenumber. Based on (34), closed
form expressions for the mutual impedance can be found
in [7, Eqs. (8.69) and (8.71a-b)] for dipoles in side-by-side
configuration. Closed form expressions are also provided for
dipoles in collinear configuration [7, Eqs. (8.72a-b)], and
in parallel-in-echelon configuration [7, Eqs. (8.73a-b)]. As
for the self impedance, which coincides with the diagonal
elements of ZAR, this can be found in [7, Eqs. (8.60a-b) and
(8.61a-b)].

Fig. 2a shows the normalized eigenvalues of ZAR for
an array of λ/2-dipoles in side-by-side configuration, for
three different values of the inter-element spacing, namely
dH = λ/10, λ/4 and λ/2. The array size is LH = 6λ, and
the number of array elements (and hence of eigenvalues) is
LH/dH + 1. Matrix ZAR has been calculated by using the
sinusoidal model (34). We see that the number of significant
eigenvalues does not change appreciably when dH decreases
below λ/2, and is approximately 2LH/λ + 1. This means
that for dH < λ/2 mutual coupling introduces a significant
correlation between the different array elements, as expected.

Fig. 2b shows the normalized eigenvalues of U in (23),
obtained without a matching network (see Remark 1) and
with the parameter values reported in Table I, e.g., [18] and
references therein. The behavior of these eigenvalues is quite
different from that of Fig. 2a, because noise correlation not
only depends on ZAR but also on the LNA parameters, and
on the presence (and type) of matching networks, as shown in
(24). In particular, the curve corresponding to dH = λ/2 seems
to indicate that a significant correlation exists between the
elements of η̃ even with a half-wavelength spacing between
the antennas.

Remark 3. Other models for ZAR rely on the assumption of
isotropic antennas or Hertzian dipoles [18]–[21], [33], [34].
Isotropic antennas are inconsistent with the Maxwell equations
[35, Sec. 3.2]. Hence, models based on this assumption have
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(b) Noise covariance matrix U without matching networks.

Fig. 2: Normalized eigenvalue distribution of ZAR and U.

no physical meaning [18, Sec. III], though they are commonly
used in the literature for analytical tractability. In the case of
Hertzian dipoles, a uniform current distribution is typically
assumed, which approximates well the current distribution
of an infinitesimal linear wire (ld ≤ λ/50) with plates at
its endpoints [7, Sec. 4.2]. The sinusoidal model is a more
accurate representation of the current distribution of any wire
antenna [7, Sec. 4.3].

B. Impedance matrix ZART

The impedance matrix ZART accounts for the mutual
coupling between the transmit and receive antennas. It rep-
resents the physical wireless propagation channel and can
be computed, in principle, starting from any (e.g., deter-
ministic or stochastic) channel model. Operationally, ZART

determines the open-circuit voltage array response represented
by vOC = ZARTiAT, which is obviously influenced by various
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factors, including the type of antennas, array configuration,
polarization and transmission medium. Notice that vOC =
ZARTiAT = DOCvG. Hence, it can also be obtained from
DOC. In Appendix B, we consider an arbitrary array of CMS
antennas located in the far-field region of a single transmit
antenna, so that ZART and DOC reduce to the vectors zART

and dOC, respectively. We also assume that the transmission
takes place in a LoS propagation scenario, and that the
electromagnetic wave generated by the transmitting antenna
and incident on an antenna of the receiving array can be
approximated locally (i.e., at each receiving element) by a
plane wave. Let (θm, ϕm) denote the direction of arrival of the
plane wave incident on the mth receive antenna, and let rm
denote the distance between its center and that of the transmit
antenna. Under the above conditions, in Appendix B we show
that

dOC = α(ψ, r)⊙ a(r) (35)

where ψ and r are vectors collecting the directions of arrival
and the distances, α(ψ, r) is the vector of the channel gains,
and a(r) is the array response vector. Their expressions can
be found in Appendix B. Notice that (35) is a quite general
model for LoS propagation that applies to arbitrary array
configurations and accounts for: i) the distances to the different
antennas over the array; ii) the effective antenna length; iii)
the losses from polarization mismatch.

If the transmitting antenna is in the far-field of the receiving
array, the well-known planar wave approximation can be
achieved [36]. In this scenario, the direction of arrival (θ, ϕ)
is aligned with the direction of the line connecting the centers
of the array and the transmit antenna, and rm is replaced
by r, representing the distance between the two centers.
Consequently, (35) reduces to (e.g., [36])

dOC = α(θ, ϕ, r)a(θ, ϕ) (36)

with α(θ, ϕ, r) defined in Appendix B and a(θ, ϕ) =
[ejk(θ,ϕ)·δ1 , . . . , ejk(θ,ϕ)·δM ]T, where δm is the displacement
vector from the array center to the center of the mth receive
antenna and k(θ, ϕ) is the wave vector [32, eq. (17.1.4)].

IV. HOLOGRAPHIC MIMO COMMUNICATIONS

We consider a communication system where the BS is
equipped with MBS antennas and serves K single-antenna
UEs. The uplink and downlink signal models are derived
on the basis of the multiport communication model provided
in (9), by taking into account that in the uplink N = 1 and
M = MBS while N = MBS and M = 1 in the downlink.
We assume that lossless matching networks are used at each
UE in uplink (i.e., for power matching) and downlink (i.e.,
for noise matching). This is reasonable since a single antenna
is used at each UE. While we assume impedance matching
is consistently applied at the UE, the three different cases,
namely, Full Matching Network (Full MN), Self-Impedance
Matching Network (SI MN) and No Matching Network (No
MN), are considered for the BS.

A. Uplink data transmission

In the uplink, the vector vL ∈ CMBS of voltages measured
at the BS is generated by the superposition of the generator’s
voltages {vG,i; i = 1, . . . ,K} of the K single-antenna (i.e.,
N = 1) transmitting UEs. The dimensionless input-output
relation can be obtained from (9) as

vul
L√
c
=

K∑
i=1

dul
i

vulG,i√
c
+
ηul

√
c

(37)

where c is an arbitrary constant, measured in V2 (Volts2),
needed to obtain a dimensionless relationship. The vector
dul
i ∈ CMBS associated with the single-antenna UE i is

obtained from (20) and reads

dul
i = QulFul

Rdul
OC,i

(a)
=

F ul
T

Zul
G + Zul

T

QulFul
RzulART,i

(b)
= αul(Z

ul
L IMBS

+ Zul
R )−1Ful

RzulART,i

(38)

where (a) follows from (18) whereas (b) is because a match-
ing network for maximum power transfer is used by UE
i. From (25) and (27), this implies Zul

T = (Zul
G )

∗ and
F ul
T = −j

√
RGRe{Zul

AT}−1/2, where Zul
AT is the transmitting

antenna impedance. In (38), we have defined

αul = − jZul
L

2
√
Rul

GRe{Zul
AT}

. (39)

From (2) and (21), the transmit power of UE i can be
computed as PT,i = bulPa,i where Pa,i = 1

4RG
E{|vG,i|2}

is its available power and

bul = 2RG
Re(Zul

T )

|Zul
G + Zul

T |2
(a)
=

1

2
(40)

is the fraction of available power delivered to the transmitting
antenna. Notice that (a) follows because Zul

T = (Zul
G )

∗ when
a matching network for maximum power transfer is used by
UE i.

By setting yul = vL/
√
c, hul

i = dul
i , xuli = vG,i/

√
c and

nul = ηul/
√
c, the input-output relation of the multi-user

MIMO system in the form (1) follows:

yul =

K∑
i=1

hul
i x

ul
i + nul. (41)

The data signal xuli from UE i is modelled as xuli ∼ NC(0, pi)
with

PT,i = Pa,i =
c

2RG
pi. (42)

The vector nul ∼ NC(0MBS
,Rul

n ) is independent noise with
covariance matrix Rul

n = c−1Rη , where Rη is given by (23).
Since c is an arbitrary constant, we assume c = 1V2 without
loss of generality.

To decode xulk , the vector yul is processed with the combin-
ing vector uk ∈ CMBS . By treating the interference as noise,
the spectral efficiency (SE) for UE k is log2

(
1 + γulk

)
where

γulk =
pk

∣∣uH

kh
ul
k

∣∣2∑
i ̸=k pi

∣∣uH

kh
ul
i

∣∣2 + uH

kR
ul
n uk

(43)
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TABLE II: Relationship between uplink and downlink channels with different matching designs.

Channel Arbitrary matching networks Without matching networks With full matching networks

ddl
k

αdl

αul
Adl,uld

ul
k

αdl

αul
dul
k

ξdl

ξul
dul
k

hdl
k

αdl

αul
B

−T/2
dl Adl,ulh

ul
k

αdl

αul
B

−T/2
dl hul

k

ξdl

ξul
hul
k

is the SINR. We consider both MR and MMSE combining
[2]. MR has low computational complexity and maximizes the
power of the desired signal, but neglects interference. MMSE
has higher complexity but it maximizes the SINR in (43). In
the first case, uk = hul

k /
∥∥hul

k

∥∥, while in the second case
uk = (

∑K
i=1 pih

ul
i (h

ul
i )

H
+Rul

n )
−1hul

k .

B. Downlink data transmission

In the downlink, the voltage vdlL,k ∈ C measured at the
single antenna of UE k is generated by the voltage vector
vG ∈ CMBS at the BS array. From (9), the dimensionless
input-output relation is

vdlL,k√
c

= (ddl
k )

T
vG√
c
+
ηk√
c

(44)

where c is an arbitrary constant measured in V2. The vector
ddl
k ∈ CMBS is obtained from (20):

ddl
k = QdlF dl

R ddl
OC,k

(a)
= QdlF dl

R (Zdl
G IMBS

+ Zdl
T )−1Fdl

TzdlART,k

(b)
= αdl(Z

dl
G IMBS

+ Zdl
T )−1Fdl

TzdlART,k

(45)

since the receiving UE has a single antenna. In particular, (a)
derives from (36) as DOC is a 1×MBS matrix (i.e., a row vec-
tor) whose transpose is exactly (Zdl

G IMBS +Zdl
T )−1Fdl

TzdlART,k,
whereas (b) follows from (29) and (30). Also, we have defined

αdl =
jZdl

L

√
Re{Zdl

opt}

(Zdl
L + Zdl

opt)
√
Re{Zdl

AR}
. (46)

By setting ydlk = vdlL,k/
√
c, ndlk = ηdlk /

√
c and

hdl
k = B

−T/2
dl ddl

k (47)

xdl =
1√
c
B

1/2
dl vG (48)

the input-output relation follows in the form

ydlk = (hdl
k )

T

xdl + ndlk (49)

with PT = 1
4RG

E{Re(vH

GBdlvG)} = c
4RG

E{||xdl||2}. Since
a noise matching network is used at each UE, we have that
ndlk ∼ NC(0, c

−1σ2
dl) with σ2

dl given by (32). The vector xdl

is obtained as

xdl =

K∑
i=1

wix̃
dl
i (50)

where x̃dli ∼ NC(0, pi) is the information-bearing signal
and wi is the precoding vector associated with UE i that
satisfies E{||wi||2} = 1 so that E{||xdl||2} =

∑K
i=1 pi and

PT = c
4RG

∑K
i=1 pi. By treating the interference as noise, the

downlink SE for UE k is log2
(
1 + γdlk

)
, where

γdlk =
pk

∣∣wH

kh
dl
k

∣∣2∑
i ̸=k pi

∣∣wH
i h

dl
k

∣∣2 + σ2
dl

(51)

is the SINR for c = 1V2. We assume that wk = wk/||wk||,
and consider both MR precoding with wk = hdl

k and MMSE
precoding with wk = (

∑K
i=1 pih

dl
i (h

dl
i )

H
+ σ2

dlIMBS)
−1hdl

k .

C. Uplink and downlink duality

The concept of uplink and downlink duality in wireless
communication systems refers to the relationship between the
uplink and downlink channels. The duality principle states that
the uplink channel vector is proportional to the transpose of the
downlink channel vector, with a scaling factor that depends on
various factors (e.g., antenna gains). The significance of uplink
and downlink duality lies in its practical implications for
system design and optimization [2]. By exploiting this duality,
system parameters and algorithms can be jointly designed for
both uplink and downlink transmissions, simplifying system
complexity and improving overall performance [2, Sec. 4].
For example, channel estimation and combining techniques
developed for uplink can be applied to the downlink without
modification, leading to significant savings in complexity.
Next, we will discuss this duality in three different cases at the
BS: 1) when arbitrary matching networks (e.g., self-impedance
matching networks) are used; 2) when no matching network
is employed; and 3) when full power and noise matching
networks are employed. It should be noted that in all these
cases, zulART,k = zdlART,k holds, which is a result of the
reciprocity principle in electromagnetic propagation.

1) Arbitrary matching networks at the BS: In general, when
arbitrary matching networks are used at the BS (e.g., self-
impedance matching networks), we have that Fdl

T ̸= Ful
R

and Zdl
T ̸= Zul

R . From (38) and (45), the physical channels
dul
k and ddl

k exhibit reciprocity up to a linear transformation.
Particularly, ddl

k can be obtained from dul
k as

ddl
k =

αdl

αul
Adl,uld

ul
k (52)

where we have defined Adl,ul = (Zdl
G IMBS +

Zdl
T )−1Fdl

T (Ful
R )−1(Zul

L IMBS
+ Zul

R ).
A similar reciprocity condition is evident for hul

k and hdl
k

since hul
k = dul

k and hdl
k = B

−T/2
dl ddl

k . In particular, from (52),
hdl
k can be obtained from hul

k only if the latter is premultiplied
by the matrix B

−T/2
dl Adl,ul. The above results for ddl

k and hdl
k

are summarized in the first column of Table II.
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2) No matching networks at the BS: In the absence of
matching networks at the BS, we have that Fdl

T = Ful
R = IM ,

Zdl
T = Zdl

AT, Zul
R = Zul

AR. Accordingly, (38) and (45) become

dul
k = αul(Z

ul
L IMBS

+ Zul
AR)

−1zulART,k (53)

ddl
k = αdl(Z

dl
G IMBS

+ Zdl
AT)

−1zdlART,k. (54)

We observe that zulART,k = zdlART,k and Zdl
AT = Zul

AR in (53)
and (54). Therefore, dul

k = ddl
k when Zul

L = Zdl
G . This

condition can be satisfied as it involves the load and generator
impedances at the BS.

As for hul
k and hdl

k , from (22) we observe that, in the
absence of a power matching network, Bdl is no longer equal
to the identity matrix IMBS

but is given by

Bdl = Rdl
G(Zdl

G IMBS
+Zdl

AT)
−HRe{Zdl

AT}(Zdl
G IMBS

+Zdl
AT)

−1.
(55)

Hence, from (53) and (54) it follows that

hdl
k =

αdl

αul
B

−T/2
dl hul

k (56)

where we have used hul
k = dul

k , hdl
k = B

−T/2
dl ddl

k and Zul
L =

Zdl
G . The equation above demonstrates that hdl

k can be derived
from hul

k by multiplying it with the matrix αdl/αulB
−T/2
dl .

The results for the downlink channel are summarized in the
second column of Table II.

3) With power and noise matching networks at the BS:
When a noise matching network is used at the BS, the
impedance matrix ZMR is equal to Z⋆MR in (28). From (30)
and (31), dul

k in (38) becomes

dul
k = ξulRe{Zul

AR}−1/2zulART,k (57)

with

ξul =
1

2
√
Rul

GRe{Zul
AT}

Zul
L

√
Re{Zul

opt}
Zul
L + Zul

opt

. (58)

In the downlink, if a power matching network is used by the
BS, then ZMT = Z⋆MT so that Zdl

T and Fdl
T reduce to (25)

and (27). Hence, (45) becomes

ddl
k = ξdlRe{Zdl

AT}−1/2zdlART,k (59)

with

ξdl =
1

2
√
Rdl

GRe{Zdl
AR}

Zdl
L

√
Re{Zdl

opt}
Zdl
L + Zdl

opt

. (60)

Notice that zulART,k = zdlART,k. If the BS uses the same array
for transmission and reception, then Zdl

AT = Zul
AR. Putting

together the above results yields

ξ−1
dl d

dl
k = Re{Zdl

AT}−1/2zdlART,k

= Re{Zul
AR}−1/2zulART,k = ξ−1

ul d
ul
k

(61)

which shows that dul
k and ddl

k differ only for a scaling factor.
This holds also for hul

k and hdl
k since, in the presence of a

power matching network, Bdl reduces to IMBS as it follows
from (22). The results are summarized in the third column
of Table II. The same result is obtained in the absence of a
noise matching network at the BS by noting that Bdl in (56)
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Fig. 3: Behaviour of the normalized mutual coupling coeffi-
cient µ for two half-wavelength dipoles with sinusoidal current
and side-by-side configuration as the spacing dH varies. The
radiation resistance is Rr = 73Ω while the dissipation resis-
tance is Rd = 10−3Rr.

depends only on Zdl
AT, as follows from (55). In other words,

reciprocity up to a scaling factor is achieved even if only the
power matching network is used at the BS.

V. THE EFFECT OF COUPLING: A CASE STUDY WITH TWO
ANTENNAS IN A SINGLE PATH LOS SCENARIO

To showcase what is the impact of mutual coupling in multi-
user MIMO, next we consider a simple scenario in uplink with
K = 2 UEs and MBS = 2 half-wavelength dipoles in side-by-
side configuration. We consider LoS propagation and assume
that the UEs are in the far-field of the array. Hence, we use
(36) with ϕk and θk being the angles of the incident planar
wave generated by UE k = 1, 2. For convenience, we denote

Re{Zul
AR} = (Rr +Rd)

[
1 µ
µ 1

]
(62)

where |µ| < 1 accounts for the normalized mutual coupling
between the two receiving antennas at the BS. The shape of
µ as a function of the normalized antenna spacing dH/λ is
reported in Fig. 3 for Rr = 73Ω and Rd = 10−3Rr.

A. Array gain

The following result is found for the receive array gain,
which is valid assuming a full matching network.

Lemma 1. Consider the uplink with MBS = 2. If a full
matching network is used at the BS, then in single path LoS
propagation the receive array gain (compared to a single
antenna BS) for UE k is

ArrayGain = 2
1− µ cos (ψk)

1− µ2
(63)

with ψk = 2π dHλ cos(θk) sin(ϕk).
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Proof. In the case of full matching networks, the SNR γulk in
(43) reduces to

γulk ≜
pk

∣∣uH

kh
ul
k

∣∣2
uH

kR
ul
n uk

=
pk

|ZL|2σ2

|ZL+Zopt|2
∥hul

k ∥2

=
pk
σ2

|ZL + Zopt|2
|ZL|2

|ξul|2zul,HART,kRe{Zul
AR}−1zulART,k

(64)

as it follows from (57). By using zulART,k =
Z0α

′(θk, ϕk, rk)a(θk, ϕk) (see Appendix A) and computing
the inverse of (62) yields

γulk = 2A
1− µ cos (ψk)

1− µ2
. (65)

with A = |α′(θk, ϕk, rk)|2|ξul|2 |Z0|2
Rr+Rd

|ZL+Zopt|2
|ZL|2

pk
σ2 . The ar-

ray gain is obtained after normalization with A.

Lemma 1 shows that a receive array gain greater than 2
can only be obtained if µ ̸= 0. From Fig. 3, we see that µ
can be positive or negative depending on dH/λ, and the first
null is at dH/λ ≈ 0.43. Particularly, µ > 0 for dH/λ < 0.43
while negative values are observed for 0.43 < dH/λ < 1.
This has an important impact on the direction of arrival
(θk, ϕk) corresponding to the maximum value of the array
gain. From (63) it can be observed that for a fixed value
of dH/λ, the maximum value of the array gain is achieved
when µ > 0 and corresponds to the minimum value of cosψk
for (θk, ϕk). On the other hand, if µ < 0 the maximum is
achieved for (θk, ϕk) corresponding to the maximum value
of cosψk. Assume for example dH/λ < 0.43, which means
0 ≤ 2πdH/λ < 0.86π < π. Since µ > 0, the maximum
array gain is attained when cosψk is minimum, i.e., when
cos(θk) sin(ϕk) = ±1. This condition requires θk = 0 and
ϕk = ±π/2, which represents the end-fire direction of arrival.
The corresponding maximum receive array gain is given by

MaximumArrayGain = 2
1− µ cos(2πdH/λ)

1− µ2
. (66)

If 0.43 < dH/λ < 1, then µ < 0 and the maximum
array gain is achieved when cosψk is maximum, i.e., when
cos(θk) sin(ϕk) = 0. This requires ϕk = 0 or θk = ±π/2.
In particular, θk = 0 and ϕk = 0 corresponds to the front-fire
direction of arrival. In this case, we obtain

MaximumArrayGain =
2

1 + µ
. (67)

Fig. 4a reports the receive SNR in dB for UE 1 as a function
of ϕ1 for different values of dH and with a full matching
network, i.e., ZMR = Z⋆MR. We assume that UE 1 is located
at a distance of 50 meters and that the BS array is at an height
of 10 meters, which means θ1 ≈ −11◦. The key parameters of
the BS antenna array are reported in Table I. For comparison,
the SNR for the single-antenna case (i.e., MBS = 1) is shown
together with the line corresponding to an array gain of 3 dB,
i.e., the maximum array gain achievable with two uncoupled
antennas. In agreement with the discussion above, the results
of Fig. 4a show that, in the presence of a noise matching
network, the array gain is maximum for ϕ1 = ±π/2 (end-fire),
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(a) Full noise matching network
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(b) Self-impedance noise matching network
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14
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24
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MBS = 1
���

(c) No noise matching network

Fig. 4: Uplink SNR of UE 1 (in dB) with MMSE as ϕ1 varies
with and without a noise matching network at the BS and
MBS = 2 antennas. The UE is located at a distance of 50
meters and that the BS array is at an height of 10 meters.
Different values of dH are considered. The SNR with a single
antenna is also reported as a benchmark.

when the antenna spacing dH is below λ/4 since µ > 0. On
the contrary, it takes the maximum value for ϕ1 = 0 (front-fire)
when dH = λ/2 since µ < 0. For all the considered values
of dH , there exist ranges of ϕ1 for which the array gain is
above 3 dB. This proves that moving the antennas close to
each other may have a positive effect that becomes negligible
when dH is further reduced below λ/10. Interestingly, an array
gain greater than 3 dB can also be obtained for dH = λ/2,
when the transmitter is in front-fire. This is possible simply
because µ ̸= 0 for dH = λ/2, as shown in Fig. 3.
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Fig. 5: Uplink SNR of UE 1 (in dB) with MMSE with and
without a noise matching network at the BS and MBS = 2
antennas. The UE is located at a distance of 50 meters and
the BS array is at an height of 10 meters. Different values
of ϕ1 are considered. The SNR with a single antenna is also
reported as a benchmark.

The impact of matching network on the SNR when moving
the antennas close to each other is illustrated in Fig. 4b
and Fig. 4c, where we plot the SNR obtained with the
self-impedance matching design (see Sect. II.K) and without
a matching network. It can be observed that, for a fixed
antenna spacing, the maxima and minima occur at the same
values of ϕ1, regardless of the matching network design.
However, the specific values of these maxima and minima are
strongly influenced by the choice of the matching network.
For instance, Fig. 4b demonstrates that reducing dH below
λ/4 has a negative impact on both SNR and array gain. Fur-
thermore, it is evident that the best performance, whether with
a self-impedance matching network or without any matching
network, is achieved when dH = λ/2 and ϕ1 = 0.

To gain further insights into the effect of coupling as ϕ1
varies, Fig. 5 plots the SNR of UE 1 with a full noise matching
network for 0.01 ≤ dH/λ ≤ 1. In particular, the black
dashed curve has been obtained with ϕ1 uniformly distributed
between −π/2 and π/2. The other parameters are the same
as in Fig. 4a. The results are in agreement with those from
Fig. 4a. Specifically, Fig. 5 shows that in the presence of a
noise matching network gains are achieved depending on the
values of ϕ1. If ϕ1 is uniformly distributed between −π/2
and π/2, a minimal gain is achieved for 0.1 ≤ dH/λ ≤ 1
compared to uncoupled antennas. A loss is observed for small
values of dH/λ. This is a direct consequence of the dissipation
resistance. To better understand this effect, the following
corollary is given with µ0 = Rr

Rr+Rd
, µ2 = π

2
Z0

Rr+Rd
and

Z0 = 377Ω.

Corollary 1. If dH/λ ≈ 0, then (63) reduces to

2
1− µ0 +

[
2µ0π

2(cos θk sinϕk)
2 + µ2

]
(dH/λ)

2

(1 + µ0) [1− µ0 + µ2(dH/λ)2]
. (68)

If dH/λ→ 0, then (63) tends to 2µ0π
2(cos θk sinϕk)

2+µ2

µ0µ2
.

Proof: With half-wavelength dipoles in side-by-side con-
figuration, µ can be approximated as µ ≈ µ0 −µ2(dH/λ)

2 as
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Fig. 6: Array gain for different values of the dissipation
resistance Rd when ϕ1 = −π/2 (end-fire). A noise matching
network is used.

dH/λ ≈ 0. The Taylor expansion of cos (ψk) for dH/λ ≈ 0 is
1 − 2π2(cos θk sinϕk)

2(dH/λ)
2. Plugging these expressions

into (63) yields (68) from which the asymptotic value for
dH/λ→ 0 follows.

Fig. 6 depicts the variations of (63) and (68) with respect to
dH/λ for different values of the ratio Rd/Rr. The parameter
ϕ1 is fixed at −π/2. The figure demonstrates the significant
impact of Rd on the array gain. Specifically, as Rd/Rr

increases, the maximum array gain occurs at larger values
of dH/λ, while poor performance is observed when dH/λ
approaches 0.

B. Interference

The mutual coupling between antennas has also an impact
on the interference term

∣∣uH

kh
ul
i

∣∣2 in (43). To show this, the
following result is given for MR, i.e., uk = hul

k .

Lemma 2. Consider the uplink with MR and assume that
MBS = 2. If a full matching network is used at the BS, then
in a single path LoS propagation scenario the interference
gain (compared to a single antenna BS) between UEs k and
i is

Interf.Gain =
2
[
cos(ψk−ψi

2 )− µ cos(ψk+ψi

2

]2
(1− µ cosψk)(1− µ2)

(69)

Proof: With MR and full matching networks, the normal-
ized interference term, as it follows from (57), is

pi
∣∣uH

kh
ul
i

∣∣2
uH

kR
ul
n uk

= A′ |a(θk, ϕk)HRe{Zul
AR}−1a(θi, ϕi)|2

a(θk, ϕk)HRe{Zul
AR}−1a(θk, ϕk)

(70)

with A′ = pi|α′(θi,ϕi,ri)|2
σ2

|ξul|2|Z0|2|ZL+Zopt|2
|ZL|2 . From (62),

|a(θk, ϕk)HRe{Zul
AR}−1a(θi, ϕi)|2 is obtained as

4 [cos(ψk/2− ψi/2)− µ cos(ψk/2 + ψi/2)]
2

(Rr +Rd)2(1− µ2)2
(71)

whereas a(θk, ϕk)
HRe{Zul

AR}−1a(θk, ϕk) is given by

2

Rr +Rd

1− µ cos (ψk)

1− µ2
. (72)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3405199

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

-180 -90 0 90 180
-40

-20

0

20

40

MBS = 1
���

(a) ϕ1 = −π/2 (end-fire)

-180 -90 0 90 180
-40

-20

0

20

40
MBS = 1

@@R

(b) ϕ1 = 0 (front-fire)

Fig. 7: Normalized interference
p2|uH

1 hul
2 |2

uH
1 Rul

n u1
of UE 1 (in dB)

with MR as ϕ2 varies with a full noise matching network at
the BS and MBS = 2 antennas. Different values of dH are
considered. The single antenna case is also reported.

The result in (69) follows after normalization with A′/(Rr +
Rd).

Similarly to the array gain, the interference is also influ-
enced by the parameters dH , (θk, ϕk) and (θi, ϕi), through ψk
and ψi. The expression for the interference is more complex,
making it challenging to gain direct insights into the interplay
of these parameters. However, the numerical results shown in
Fig. 7 reveal that the coupling effects observed with densely
spaced antennas can either enhance or hinder the interference
rejection capabilities of MR (but the same considerations
apply to MMSE), depending on the directions of arrival of
the interfering signal. For example, assuming that UE 1 is
in end-fire (as in Fig. 7a) the best performance is observed
with ϕ2 = 0◦ when dH = λ/2 and for ϕ2 ≈ 24◦ when
dH = λ/10. It is worth observing that, when ϕ1 = 0◦,
moving the antennas close to each other has minimal effects
on interference rejection, as shown in Fig. 7b. In this case, the
best performance is obtained with dH = λ/2 and ϕ2 ± 90◦.

C. Spectral efficiency

Both array and interference gains contribute to the overall
SINR and ultimately impact the spectral efficiency of the
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(a) ϕ1 = −π/2 (end-fire)
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@@R

(b) ϕ1 = 0 (front-fire)

Fig. 8: SE of UE 1 (in dB) with MR as ϕ2 varies with a full
noise matching network at the BS, MBS = 2 antennas, and
different values of dH . The single antenna case is also reported
(dotted lines).

different UEs. To quantify this, Fig. 8 plots the spectral
efficiency of UE 1 as a function of ϕ2 in the same simulation
scenario of Fig. 7. The single antenna case is also reported as a
benchmark. It is assumed the same transmit power for the two
users. The results in Figs. 8a-8b can easily be explained with
those in Fig. 5 and Figs. 7a-7b. In particular, as expected, the
points of minimum/maximum in Figs. 8a and 8b correspond
to the points of maximum/minimum in Figs. 7a and 7b. When
ϕ1 = −90◦ (as in Fig. 8a), the maximum SE (more than four
times larger compared to the single antenna case) is achieved
with dH = λ/10 (when ϕ2 ≈ 24◦) but significant gains are
also observed for dH = λ/2 when ϕ2 = 0◦. On the other
hand, when ϕ1 = 0◦ poor performance is obtained by moving
the antennas close to each other, and dH = λ/2 is the best
option.

Fig. 9 plots the average SE per UE with different matching
networks at BS: i) Full Matching Network (Full MN); ii) Self-
Impedance Matching Network (SI MN); and iii) No Matching
Network (No MN). We assume that the angles of arrival ϕ1
and ϕ2 for the two UEs are within the range [−π/2, π/2]
or [−π, 0], and that both UEs are located at a distance of
50 meters. The results indicate that decreasing dH/λ has a
detrimental impact on the spectral efficiency, regardless of the
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Fig. 9: Average uplink SE per UE with MMSE, MBS = 2
antennas and K = 2. The ticker lines are obtained with
ϕ1, ϕ2 ∈ [−π/2, π/2], while the others ϕ1, ϕ2 ∈ [−π, 0].
Different noise matching networks at the BS are considered.

matching network employed. Additionally, it is evident that
the best performance is achieved when dH/λ ≥ 0.5, meaning
that there is no significant advantage in using a full matching
network compared to the self-impedance matching design. As
anticipated, a considerable reduction in spectral efficiency is
observed when no noise matching network is utilized.

VI. NUMERICAL ANALYSIS

The analysis presented above highlights that the mutual
coupling effects resulting from closely spaced antennas can
potentially provide benefits to the uplink spectral efficiency in
single-user and multi-user Holographic MIMO systems, de-
pending on the specific propagation conditions and impedance
matching networks used. The analysis focused on a simplified
uplink case study with two antennas and two UEs. Next, the
numerical analysis is expanded to more realistic scenarios,
including a larger number of antennas, arranged side-by-side
in a uniform linear array, and multiple UEs. Additionally, the
analysis considers the case of densely packed antennas in a
space-constrained form factor. By exploring these scenarios, a
more comprehensive understanding of the benefits of mutual
coupling in Holographic MIMO systems can be obtained.

The system parameters are those reported in Table I. We
consider a scenario with single-path LoS propagation and
model the wireless channel as in (35). The BS is positioned
at a height of 10 m. The azimuth angle of each UE is
randomly distributed within the sector [−π/2, π/2] while the
elevation angle depends on the distance from the BS. UEs
are randomly dropped at a minimum distance of 15 m and a
maximum distance of 150 m from the BS, and they transmit
with the same power. The results are obtained by averaging
over 1000 UE drops. While we assume impedance matching is
consistently applied at the UE, the three different case, namely,
Full Matching Network (Full MN), Self-Impedance Matching
Network (SI MN) and No Matching Network (No MN), are
considered for the BS.

Due to space limitations, our main emphasis is on the
uplink but we put a specific focus on addressing the duality
implication in the downlink. Although, we focus on LoS

0.1 0.25 0.5 0.75 1
0

2

4

6

8

10

12

14

Full MN

SI MN

No MN

MBS = 64

@@R

MBS = 16
@@I

(a) K = 10 and MBS = 16, 64

0.1 0.25 0.5 0.75 1
0

2

4

6

8

10

12

Full MN

SI MN

No MN

K = 8

@@R

K = 24

@@I

(b) MBS = 32 and K = 8, 24

Fig. 10: SE per UE with MMSE and azimuth angles {ϕk; k =
1, . . . ,K} of UEs uniformly distributed within the sector
[−π/2, π/2]. The thicker lines correspond to MBS = 16 in
Fig. 10a and to K = 24 in Fig. 10b.

propagation, similar results can be obtained with different
channel models, e.g., based on stochastic approaches.

A. Fixing the Number of Antennas while Varying Array Size

Fig. 10a illustrates the average SE per UE in the uplink as
a function of dH/λ for two different antenna configurations:
MBS = 16 and MBS = 64, with a fixed number of UEs,
K = 10. The results show that, when the number of antennas
is fixed, reducing the antenna spacing generally has a negative
impact on the average SE. Better performance is observed for
dH/λ > 0.5. In this range, employing a full matching network
yields only a marginal gain compared to the self-impedance
matching design. However, a significant decrease in SE occurs
when no matching network is utilized. As expected, increasing
the number of antennas (from MBS = 16 to MBS = 64)
results in a higher SE. Similar conclusions can be drawn from
Fig. 10b, where the number of antennas is fixed at MBS = 32,
while the number of UEs is varied between K = 10 and K =
30. The curves in Fig. 10a were obtained with Rd = 10−3Rr.
Numerical results (not reported for space limitations) show
that the SE worsens as Rd increases but similar behaviors can
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Fig. 11: Average SE per UE when the ULA has a size of
6λ. The number of UEs is K = 10 with θk ∈ [−π/2, π/2]
for k = 1, . . . ,K. The thicker lines are obtained with MR
combining while the other ones with MMSE.
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Fig. 12: Average SE per UE with full noise or SI matching,
for K = 10 and an MMSE combiner.

be observed. We also notice that the effect of Rd is more
significant for dH < λ/2 while a marginal impact is observed
for large antenna spacings (i.e, dH > λ/2).

B. Fixing the Array Size while Varying the Number of Anten-
nas

Fig. 11 illustrates the average SE per UE in the uplink
as a function of dH/λ for a fixed array size LH = 6λ.
Both MR and MMSE receivers exhibit similar SE behaviors.
Notably, when a full matching network is employed, SE
increases as dH/λ decreases due to the augmented number
of antennas MBS = LH/dH + 1. This increase in antennas
contributes to higher array gain and improved interference
rejection. However, without a matching network or with a
self-impedance matching network, the optimal performance
is achieved when dH/λ ≈ 0.4. Going below this value may
result in a decrease in SE. It is important to emphasize that
the SE improvement observed when reducing dH with a full
matching network cannot be attributed to antenna coupling.
This is evident from the declining trend of the SE in Fig. 10
as the antenna spacing decreases.

Fig. 12 shows the average SE per UE as a function of dH/λ
for three different values of the array size LH . The number
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0

2

4

6

8

10

12

Full MN

SI MN

(a) MBS = 32 and K = 10.
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(b) LH = 6λ and K = 10.

Fig. 13: Average SE per UE in the downlink with MMSE in
the same setup of Figs. 10(b) and 12. The thicker lines refer
to the case in which the uplink channels {hul

k ; k = 1, . . . ,K}
(instead of downlink channels {hdl

k ; k = 1, . . . ,K}) are used
for the computation of the precoding vectors. Both cases with
a fixed number of antennas or a fixed antenna array aperture
are considered.

of UEs is K = 10 and an MMSE combiner is employed,
with either full noise or SI matching networks. As can be
seen from the results, the behavior is the same irrespective of
the array size. We only observe that, moving the antennas
close to each other, the gain reduces as LH increases. In
particular, when LH = 6λ and a full matching network is
used, for dH = λ/10 the average SE is about 4 bit/s/Hz
and drops to about 2 bit/s/Hz for dH = λ, with a ratio of 2
between the two values. On the other hand, when LH = 24λ
the ratio decreases to about 6/4.5 ≈ 1.33. This suggests that
the benefits of densely packing antennas are more pronounced
for smaller array sizes. In addition, we find that the benefits
of increasing the number of array elements for a given array
size (resulting in a continuous antenna in practice) gradually
diminish beyond a certain threshold.
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C. Impact of uplink and downlink duality

We now consider the downlink with MMSE precoding, and
with either a full or an SI matching network. From Table II it
is seen that, with a full matching network, hul

k and hdl
k differ

only for a scaling factor. Accordingly, it is correct to design the
MMSE precoder in downlink by using the measured value of
hul
k in uplink. On the other hand, when an SI matching network

is employed, the uplink-downlink channel duality requires to
apply a linear transformation to hul

k . A performance loss is
incurred if this is not done.

Fig. 13 shows the average SE per UE in the same setup of
Fig. 10b, i.e., with MBS = 32 antennas. The number of UEs
is K = 10. We see that, with a full matching network, the
performance in uplink and downlink is the same. As for the
SI matching design, two different cases have been considered.
In the first case, the MMSE precoder is computed by using hul

k

instead of hdl
k =

αdl

αul
B

−T/2
dl Adl,ulh

ul
k , as indicated in Table II.

In the second case, the MMSE precoder is correctly computed
taking the matrix B

−T/2
dl Adl,ul into account. We see that a

considerable loss is observed in the former case (red thicker
line), especially at low values of dH/λ. The same conclusions
can be drawn from Fig. 13b, obtained in the simulation setting
of Fig. 12, which shows the average SE per UE for a fixed
size LH = 6λ of the array and K = 10.

VII. CONCLUSIONS

Building on the multiport communication theory (e.g., [18],
[19]), a physically-consistent representation of MIMO chan-
nels can be derived and directly used by communication
theorists as a baseline for modelling the uplink and down-
link of MIMO communications with closely spaced antennas.
Particularly, we used it to study the effects of mutual coupling
on the spectral efficiency and to gain insights into interplay
between antenna spacing and impedance matching network
designs. We focused on side-by-side half-wavelength dipoles
in a LoS scenario. Numerical and analytical results showed
that for the investigated scenarios, a fixed number of closely
spaced antennas with impedance matching can provide spectral
efficiency benefits, but only for specific directions of the
incident signals. On average, the spectral efficiency gains may
be marginal or even non-existent. We explored a scenario
where antennas were closely packed in a space-constrained
form, and we showed that reducing the antenna distance led
to an increase in spectral efficiency. However, this increase
becomes negligible as the array aperture size grows (in the
order of tens of wavelengths). The uplink and duality duality
was also investigated for different matching network designs.
We limited our study to uniform linear arrays of side-by-
side half-wavelength dipoles operating in LoS conditions.
However, we notice that the analytical framework can be used
to extend the results to different array configurations and non-
LoS propagation conditions.

APPENDIX A

At port n of a multiport network, we define the scattering
parameters an and bn, representing the complex envelopes

of the inward-propagating (incident) and outward-propagating
(reflected) power waves, respectively (e.g., [17]). They relate
to the voltage and current, vn and in, measured at the same
port, as [37], [38, Ch. 4]:

an =
vn + Znin

2
√

Re(Zn)
bn =

vn − Z∗
nin

2
√
Re(Zn)

(73)

where Zn is a chosen reference impedance used for computing
the scattering parameters. The physical meaning of an and bn
can be appreciated by computing |an|2 − |bn|2 = Re(vni

∗
n),

which represents the total power flowing into port n. This is
valid for any reference impedance Zn. Hence, the total power
flowing into a multiport system is Re(vHi) = ∥a∥2 − ∥b∥2
where v and i are the vectors of the voltages and currents at the
ports of the network, while a and b are vectors collecting the
scattering parameters an and bn, respectively. The amplitudes
of the incident and reflected waves are such that b = Sa
where S is the scattering matrix. The latter can be obtained
from the impedance matrix Z as, e.g., [38, Ch. 4, Eq. (4.68)]

S = F(Z−G∗)(Z+G)−1F−1 (74)

where F and G are diagonal matrices with the nth diagonal
elements 1/2

√
Re(Zn) and Zn, respectively. By substitut-

ing each impedance matrix with its corresponding scattering
matrix, based on (74), we describe the system in terms of
scattering parameters instead of voltages and currents. Both
descriptions are equivalent. For CMS antennas, the impedance
description is preferred because it can be obtained directly
from the isolated radiation pattern.

APPENDIX B
In this Appendix, we derive the expression of dOC given

in (35). The computation will be made for a LoS propagation
scenario on the basis of the two following assumptions:

Assumption 1. Each antenna of the BS array is in the far field
of the UE transmit antenna. In the far-field region, the transmit
antenna behaves like a source point, so the radiated field can
be approximately characterized by spherical wavefronts. If the
transmitting antenna has a maximum dimension of Lt, the far-
field region is at distances greater than 2L2

t/λ.

Assumption 2. The electromagnetic wave produced by the UE
transmitting antenna and impinging on a receive antenna of
the BS array can be locally approximated by a plane wave.
This approximation can be made provided that the distance
between the transmit and receive antennas is greater than
2L2

r/λ, where Lr represents the maximum dimension of the
receive antenna.

Let Einc,m denote the electric field incident on the mth
antenna of the BS array, produced by the UE’s voltage source.
Based on Assumption 2, we model Einc,m as a plane wave
that reaches the receive antenna from a particular azimuth
angle ϕinc,m ∈ [−π/2, π/2) and elevation angle θinc,m ∈
[−π/2, π/2). Assuming that the BS array consists of canonical
minimum scattering (CMS) antennas and the incident field is
linearly polarized, the mth element of vOC reads [7, Eq. (2-
93)]

vOC,m = Einc,m · l(r)eff,m(θinc,m, ϕinc,m) (75)
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where l
(r)
eff,m(θinc,m, ϕinc,m) is the effective length [7, Eq.

(2-91)] of the isolated mth element of the array towards
the (θinc,m, ϕinc,m) direction. From Assumption 1, we have
that [7, Eq. (2-92)]

Einc,m = −jkZ0iAT
e−j 2πλ rm

4πrm
l
(t)
eff (θinc,m, ϕinc,m) (76)

where Z0 is the free-space impedance, iAT is the current
feeding the antenna, rm is the distance between the centers
of the transmit and receive antennas, and l

(t)
eff (θinc,m, ϕinc,m)

is the effective length of the transmit antenna in the direction
of departure which, in a LoS scenario, coincides with the
direction of arrival (θinc,m, ϕinc,m). Plugging (76) into (75)
yields

vOC,m = α′(θm, ϕm, rm)Z0iATe
−j 2πλ rm (77)

with

α′(θm, ϕm, rm) = −j
l
(t)
eff (θm, ϕm) · l(r)eff (θm, ϕm)

2λrm
(78)

where the term l
(t)
eff (θm, ϕm) · l(r)eff (θm, ϕm) accounts for the

polarization loss [7, Sect. 2.12.2]. For the sake of notation,
we have dropped the subscript inc so that θinc,m and ϕinc,m
become θm and ϕm, respectively. According to (77), we can
write vOC = Z0iATα

′(ψ, r) ⊙ a(r). Finally, from vOC =
vGdOC and iAT = FT(ZG+ZT)

−1vG, we obtain (35) where
α(ψ, r) = FT(ZG + ZT)

−1Z0α
′(ψ, r).

Depending on the relationship between the size of the
array and its distance from the transmitting antenna, the
expression of vOC,m can be simplified according to, for
example, the Fresnel approximation or the well-known planar
wave approximation [36]. The latter differs from the planar
wave approximation of Assumption 2 because it is relevant
to the array while the one in Assumption 2 is relevant to the
single array element. Under the planar wave approximation,
(35) is reduced to the well-known expression in (36) where
α(θ, ϕ, r) = FT(ZG + ZT)

−1Z0α
′(θ, ϕ, r),

α′(θ, ϕ, r) = −jejψ0
l
(t)
eff (θ, ϕ) · l

(r)
eff (θ, ϕ)

2λr
(79)

and ψ0 = −2πr/λ being the reference phase at array center.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590–3600, Nov. 2010.

[2] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks:
Spectral, energy, and hardware efficiency,” Foundations and Trends® in
Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.

[3] L. Sanguinetti, E. Björnson, and J. Hoydis, “Toward massive MIMO 2.0:
Understanding spatial correlation, interference suppression, and pilot
contamination,” IEEE Trans. Commun., vol. 68, no. 1, pp. 232–257,
Jan. 2020.

[4] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L.
Marzetta, “Massive MIMO is a reality - what is next?: Five promis-
ing research directions for antenna arrays,” Digital Signal Processing,
vol. 94, pp. 3 – 20, Nov. 2019.

[5] C. Huang and et al., “Holographic MIMO surfaces for 6G wireless net-
works: Opportunities, challenges, and trends,” IEEE Wireless Commun.,
vol. 27, no. 5, pp. 118–125, Oct. 2020.

[6] S. Hu, F. Rusek, and O. Edfors, “Beyond Massive MIMO: The potential
of data transmission with large intelligent surfaces,” IEEE Trans. Signal
Proc., vol. 66, no. 10, pp. 2746–2758, May 2018.

[7] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

[8] A. Li and C. Masouros, “Exploiting constructive mutual coupling in
P2P MIMO by analog-digital phase alignment,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1948–1962, March 2017.

[9] C. Masouros, J. Chen, K. Tong, M. Sellathurai, and T. Ratnarajah,
“Exploiting transmit correlation and mutual coupling in MIMO trans-
mitters,” in European Wireless Conference, 2014, pp. 1–6.

[10] X. Chen, S. Zhang, and Q. Li, “A review of mutual coupling in MIMO
systems,” IEEE Access, vol. 6, April 2018.

[11] T. L. Marzetta, “Super-directive antenna arrays: Fundamentals and
new perspectives,” in Asilomar Conference on Signals, Systems, and
Computers, 2019, pp. 1–4.

[12] L. Han, H. Yin, and T. L. Marzetta, “Coupling matrix-based beamform-
ing for superdirective antenna arrays,” in IEEE Int. Conf. Commun.,
2022, pp. 5159–5164.

[13] N. Deshpande, M. R. Castellanos, S. R. Khosravirad, J. Du,
H. Viswanathan, and R. W. H. J. au2, “A generalization of the achievable
rate of a MISO system using bode-fano wideband matching theory,”
2023.

[14] M. Akrout, V. Shyianov, F. Bellili, A. Mezghani, and R. W. Heath,
“Super-wideband Massive MIMO,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 8, pp. 2414–2430, Aug. 2023.

[15] R. Janaswamy, “Effect of element mutual coupling on the capacity of
fixed length linear arrays,” IEEE Antennas Wirel. Propag. Lett., vol. 1,
pp. 157–160, March 2002.

[16] T. Svantesson and A. Ranheim, “Mutual coupling effects on the capacity
of multielement antenna systems,” in IEEE International Conf. Acous-
tics, Speech, and Signal Processing, vol. 4, 2001, pp. 2485–2488 vol.
4.

[17] J. Wallace and M. Jensen, “Mutual coupling in MIMO wireless systems:
a rigorous network theory analysis,” IEEE Trans. Wireless Commun.,
vol. 3, no. 4, pp. 1317–1325, July 2004.

[18] M. T. Ivrlac and J. A. Nossek, “Toward a circuit theory of communica-
tion,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 57, no. 7, pp.
1663–1683, July 2010.

[19] ——, “The multiport communication theory,” IEEE Circuits and Systems
Magazine, vol. 14, no. 3, pp. 27–44, 2014.

[20] H. Yordanov, M. T. Ivrlac, P. Russer, and J. A. Nossek, “Arrays of
isotropic radiators-a field-theoretic justification,” in Proc. ITG/IEEE
Workshop on Smart Antennas, 2009.

[21] M. T. Ivrlac and J. A. Nossek, “Receive antenna gain of uniform linear
arrays of isotrops,” in IEEE Int. Conf. Commun., 2009, pp. 1–6.

[22] T. Laas, J. A. Nossek, and W. Xu, “Limits of transmit and receive
array gain in massive MIMO,” in IEEE Wireless Communications and
Networking Conference, 2020, pp. 1–8.
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