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Focus Your Attention: Multiple Instance Learning
with Attention Modification for Whole Slide

Pathological Image Classification
Hailun Cheng, Shenjin Huang, Linghan Cai, Yangfan Xu, Runming Wang, and Yongbing Zhang

Abstract—Computer-aided pathology diagnosis based on whole
slide images, which is often formulated as a weakly supervised
multiple instance learning (MIL) paradigm. Current approaches
generally employ attention mechanisms to aggregate instance-
level features. However, the weakly supervised signal and the im-
balanced instance distribution often lead to inaccurate attention
localization, compromising the performance and generalization
capability of the MIL framework. To address these problems,
this paper presents a novel MIL framework called FAMIL that
focuses on inaccurate attention and refines them. FAMIL adopts
a dual-branch structure and incorporates two innovative online
data augmentation strategies: attention-based Mixup (ABMix)
and attention-based Masking (ABMask). ABMix emphasizes the
significance of positive instances, generalizing Mixup in the MIL
scenarios, while ABMask flexibly identifies challenging positive
instances to optimize the feature representation. Moreover, these
two methods are plug-and-play and can be easily embedded
into attention-based MIL methods. Extensive experiments on
three public benchmarks demonstrate the superiority of our
FAMIL, outperforming current state-of-the-art methods. The test
AUC for the binary tumor classification can be up to 92.61%
over CAMELYON16. And the AUC over the cancer subtype
classification can be up to 93.81% and 98.41% on TCGA-NSCLC
and TCGA-RCC datasets, respectively.

Index Terms—Pathological image classification, multiple in-
stance learning, data augmentation, attention-based Mixup,
attention-based masking

I. INTRODUCTION

PATHOLOGICAL image analysis is regarded as the gold
standard for therapy decision and cancer prognosis [1]–

[4]. With the advancement of scanning technology, traditional
tissue specimens are increasingly transformed into digital
whole slide images (WSIs), which enable computer-assisted
diagnosis. However, the huge number of pixels per WSI
(e.g., 40, 000 × 40, 000 pixels) and the lack of fine-grained
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Fig. 1. Two types of inaccurate attention localization in attention-based MIL.
The yellow curve is the ground truth of the tumor region. Black boxes denote
that low attention erroneously locates the tumor area, and gray boxes indicate
that high attention incorrectly locates the non-tumor area.

annotations (patch-level labels) pose significant challenges
for the direct application of deep learning in pathological
image analysis. To address these challenges, multiple instance
learning (MIL) [5]–[11] has been widely adopted. In MIL,
each WSI is treated as a bag that contains thousands of
instances (tile patches) extracted from the WSI. A bag is
labeled as positive if at least one instance is positive, otherwise
it is negative. The MIL-based method requires only WSI-level
labels, thus significantly reducing the data annotation burden.

The application of MIL in pathology analysis aims to
solve two primary problems, namely WSI classification and
tumor localization [12]–[15]. Among MIL methods, a popular
solution is ABMIL [6], which obtains the contribution of each
instance in bag aggregation through attention scoring. Based
on the attention mechanism, ABMIL can identify areas with
tumors, thus better executing the classification task. Currently,
pathological image analysis has flourished by the variants
of ABMIL. DSMIL [7] utilizes attention to adjust multi-
scale features, improving the accuracy of tumor localization.
TransMIL [9] introduces the correlation among instances
for better bag classification. These studies generally believe
that the attention mechanism provides interpretability in WSI
classification. Ideally, for positive WSIs, instances with high
attention scores are positive instances, and instances with low
attention scores are negative instances; while for negative
WSIs, the attention scores should be evenly distributed and
consistently low across instances.

However, the attention-based methods often make mistakes
in tumor localization, as illustrated in Fig. 1. The mistakes
can be divided into two categories: (1) high attention locates
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Fig. 2. The relation between instance decision boundary and attention. In
(a), a bias exists in current attention-based MIL frameworks. In (b), FAMIL
improves the attention distribution, achieving consistency between attention
discrimination standard and instance decision boundary.

non-tumor areas, and (2) low attention locates the tumor area.
These inhibit the performance potential of attention-based MIL
methods and harm the model’s interpretability. In response to
the above problems, Lin et al. [16] argue that these phenomena
are caused by color distribution, and introduce causal inference
into the MIL to improve feature representation. To improve
the localization accuracy of attention, Tourniaire et al. [17]
propose a subtle loss function to regulate attention distribution.
However, this method requires instance-level annotations for
positive WSIs, making it challenging to implement for weakly
supervised WSI classification. Owing to the imbalance in the
number of positive and negative instances, we argue that these
two mistakes of attention localization arise from insufficient
tumor feature learning, leading to the mismatching between
attention discrimination standard and instance decision bound-
ary, as shown in Fig. 2 (a).

As an effective solution for enhancing the feature learning of
the model, data augmentation has been widely studied in natu-
ral scenarios [18]–[21]. In pathological image analysis, owing
to the large number of instances in a bag, the image-based
operations inevitably bring about large computational costs
[22]. Therefore, existing works usually adopt feature-level
augmentation such as Mixup to improve MIL performance
[23]–[25]. For example, Gadermayr et al. [24] propose a multi-
linear intra-slide interpolation Mixup to improve the accuracy
of the MIL model; Chen et al. [23] introduce instance-level
pseudo-labeling and ranking into Mixup to solve the problem
of insufficient training data and imbalanced classification.
However, these methods treat positive and negative instances
equally, failing to emphasize the significance of positive in-
stances in the MIL paradigm. Moreover, they necessitate align-
ment operations, which require that the number of instances
in the two bags to be mixed is the same. These oversights
render them ineffective in addressing the issue of inaccurate
attention caused by the weak supervision signal.

To this end, this paper focuses on inaccurate attention and
presents a novel multiple instance learning framework named
FAMIL for WSI classification. Specifically, FAMIL includes
two online data augmentation strategies to modify inaccurate
attention distribution, as shown in Fig. 2. To decrease the high
attention to non-tumor regions, we propose an attention-based
Mixup which improves the variability of the bag for enhancing
the instance discriminative power of the model. Additionally,

an attention-based masking is developed to precisely locate
tumor areas. The main idea of attention-based masking is
to discard salient (easy-to-distinguish) positive instances, thus
forcing the model to learn hard ones. Overall, the contributions
of this paper can be summarized as follows:

• This paper focuses on unexpected attention in the MIL
framework and proposes a FAMIL to effectively enhance
the feature representation of instances, modifying inac-
curate attention.

• We propose ABMix, a novel data augmentation technique
built upon the principles of Mixup. Unlike traditional
Mixup methods, ABMix does not require any size and
semantic alignment. By highlighting the importance of
positive examples, ABMix achieves a more accurate
attention localization and model performance.

• To further enhance the network’s ability to identify criti-
cal features, we introduce ABMask, a data augmentation
approach tailored to encourage hard positive instance
mining flexibly. By guiding the model to actively discover
and emphasize challenging positive samples, ABMask
achieves more accurate instance localization capabilities.

• Extensive experiments on three datasets demonstrate the
superiority of our FAMIL, with state-of-the-art results.
Furthermore, our data augmentation strategies can be eas-
ily applied in attention-based MIL for better performance.

The rest of this paper is organized as follows. In Section
II, we review the MIL for WSI classification and related
data augmentation techniques. Next, we present FAMIL in
Section III. Extensive experiments and analyses are illustrated
in Section IV. Section V and Section VI show the discussion
and conclusion of this work.

II. RELATED WORK

A. MIL for WSI Classification

MIL [26] has been extensively explored in the WSI classi-
fication task, which is a weakly supervised learning paradigm
that utilizes bag-level labels rather than instance-level labels
for training. Previous algorithms can be mainly classified
into two categories: The first one is the instance-based MIL
frameworks [26]–[31], utilizing instance-level pseudo-labels
to train an instance classifier and then aggregate instance
prediction into bag prediction. However, the instance-level
pseudo-labels derived from bag-level labels usually contain
a lot of noise [32], which impairs the final classification
performance. Consequently, the performance of instance-based
MIL methods is generally inferior to bag-based MIL methods.

The second type is the bag-based MIL frameworks [33]–
[37], which aggregate the instance features into bag features by
certain aggregation methods and utilize bag labels for training.
Max-pooling [38] and Mean-pooling [39] are two traditional
aggregation methods, but their simple mechanisms usually
lead to sub-optimal performance. To improve the performance,
ABMIL [6] is proposed, introducing a learnable aggregator
that generates bag-level representations by utilizing attention
scores assigned to the instance representations. Building upon
this work, Lu et al. proposed a CLAM [40], which selects the
top-k salient instances based on attention scores and computes
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instance-level loss for better instance representation. Some
studies also reconstruct the attention aggregator. For example,
TransMIL [9] is proposed to employ a self-attention mecha-
nism [41] to model the relationship among instances, while
DSMIL [7] takes the distance between instances and the most
salient one as attention scores, introducing a comprehensive
multi-scale embedding fusion technology to enhance patch
representation. In addition, feature clustering methods [34],
[42], [43] compute cluster centroids of all feature embeddings,
and then the representative feature embeddings are used for
the final prediction. These approaches aim to enhance the
interpretability and performance of models by leveraging the
inherent structure of the data. On this basis, prototype-based
methods [44]–[46] explore various ways to compute represen-
tative features by defining prototypes as typical components of
images. These methods often involve encoding image patches,
constructing clusters, and then decoding these clusters to
obtain interpretable prototypes. The weighted combinations of
prototype occurrences are used for image-level classification,
enhancing both interpretability and classification performance.

B. Data Augmentation for MIL

Data augmentation can enhance the robustness of the model
and has been broadly applied in the training of neural networks
[47]–[49]. Traditional image-level data enhancement meth-
ods [50]–[52], such as flipping, rotating, and blurring, often
consume a large amount of computing resources due to the
huge size of WSIs. At present, most of the data augmentation
methods used for WSIs are feature-level Mixup [22]–[25],
[53]. The basic concepts of Mixup are as follows:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (1)

where the two input samples xi and xj are drawn from
the training dataset, the labels corresponding to the input
samples are yi and yj , and λ ∈ [0, 1] is sampled from ∼
Beta(α, α). Following the above formulation, there are two
alignments [22]: (1) Size alignment: for WSIs, the number
of instances in each bag and the feature dimensions of the
instances are required to be aligned. (2) Semantic alignment:
the sample and its corresponding label should be determined
by the same λ. Based on these two alignments, many Mixup
method variants have been proposed for WSI diagnosis. For
example, ReMix [54] reduces the number of instances needed
for alignment by replacing them with clustered prototypes.
RankMix [23] sorts the instances of each bag according to their
attention scores, and then removes lower-scoring instances
from the bag with a larger number of instances to align two
bags. PseMix achieves alignment by sampling pseudo bags
following prototype clustering.

However, owing to the significant difference in the number
of instances between WSIs, alignment loses a large amount of
instance information, and existing Mixup methods mix bags
as a whole, ignoring the importance of positive instances.
Furthermore, the sub-bags generated during the mixing process
often inherit the labels of the parent bags, which can lead to
errors, especially when the bag contains few positive instances.
This paper proposes a Mixup method based on an attention

mechanism without requiring alignment. This paper proposes
a Mixup method based on an attention mechanism with-
out requiring alignment, effectively addressing these issues.
Meanwhile, we introduce a flexible masking technique based
on the attention mechanism to enhance the model’s feature
representation ability of instances.

III. METHODOLOGY

Fig. 3 shows the overview of our FAMIL. In this section,
we elaborate on the application of ABMix and ABMask
in the FAMIL framework. In the design of ABMix, we
consider the multiple instance learning theory, generalizing
the Mixup to pathological image classification with varying
dataset characteristics and conditions. Meanwhile, ABMask
selectively abandons salient positive instances for encouraging
the model to mine hard samples.

A. Preliminaries

In MIL, any input WSI X is considered as a bag with
multiple instances, which can be represented as X = {xi}ni=1.
xi is a patch cropped from the WSI and considered as the i-th
instance of X , and n is the number of instances. The bag label
Y ∈ {0, 1} and instance labels {yi}ni=1 follow:

Y =

{
0, iff

∑
i yi = 0,

1, others. (2)

Eq. 2 reflects that a negative bag includes only negative
instances, whereas a positive bag contains at least one positive
instance.

In MIL, we can only obtain the bag label, while the
labels of each instance in a positive bag are not available.
In the WSI classification task, the bag-based MIL is a popular
solution, which derives a bag representation F ∈ R1×d from
the instance features Z =

{
zi ∈ R1×d

}n

i=1
, where d is the

dimension of the feature. The above operation is referred to as
instance aggregation. With the bag-level representation, a bag
classifier Cb(·) is trained to classify the bag. Among existing
methods, the mainstream instance aggregation strategy is the
attention-based aggregation [6], which is formulated as:

F =

n∑
i=1

aizi. (3)

Here ai is the attention score for the i-th instance, which is
obtained by:

ai =
exp{WT(tanh (VzTi )⊙ sigm (UzTi ))}∑n
k=1 exp{WT(tanh (VzTk )⊙ sigm (UzTk ))}

, (4)

where W ∈ Rr×1, U ∈ Rr×d, and V ∈ Rr×d. “T” represents
the transposition operation. Attention scores can reflect the
contribution of each instance to the bag aggregation, providing
interpretability for the WSI classification. Many works develop
the formulation in different ways for attention scores. For
example, DSMIL considers the distance between an instance
and the most salient instance as the attention score, defined as
follows:

ai =
exp(⟨qi,qm⟩)∑n

k=1 exp(⟨qk,qm⟩)
. (5)
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Fig. 3. Overview of our proposed FAMIL. FAMIL contains an instance branch and a bag branch. The red dotted box represents ABMix, and the blue
dotted box represents ABMask, with a positive WSI and a negative WSI taken as examples. The solid rectangular box provides a t-SNE [55] visualization of
the instances, where the scatter points represent the instance and each color represents a different score for the instance. pos. stands for the abbreviation of
positive, and neg. stands for the abbreviation of negative.

Here, ”⟨·, ·⟩” denotes the inner product of two vectors. qi rep-
resents the query vector of zi. Thus, the attention mechanism
of DSMIL can be regarded as a variant of cross-attention.
Another notable approach is TransMIL, which introduces a
self-attention mechanism to effectively model the correlation
between different instances, thereby enhancing the overall
interpretability and classification performance.

B. Attention-Based Mixup

Although the attention mechanism facilitates MIL, the high
degree of attention cannot always locate positive areas as
expected. As discussed in Section I, we argue the reason
behind the phenomenon is insufficient learning for positive
instances. Ideally, for the positive WSI, a well-trained MIL
model should capture positive areas in any scenario when the
task is related to the tumor. However, the diversity of environ-
ments for positive instances in a single WSI is limited, leading
to challenges in attention localization. Thus, this paper designs
an attention-based Mixup that constructs diverse environments
for positive samples to enhance the perception of the network
for positive instances. Meanwhile, various negative bags are
synthesized to avoid the unbalanced bag distribution for better
training of the model. The red dotted box in Fig. 3 illustrates
the proposed ABMix, which consists of two steps, namely
group partitioning and group mixing. The detailed descriptions
are listed in the following subsections.

1) Group Partitioning: Group partitioning divides the input
WSI into two groups. We partition the positive WSI according
to attention scores and randomly group the negative WSI. To
be specific, for a positive bag Zpos = {zposi }n1

i=1 with n1

instances, we feed it into the attention module A(·) to get
the attention scores Apos of all the instances in the positive
bag:

Apos =
[
apos1 , apos2 , . . . , aposn1

]
= A(Zpos). (6)

Then, we sort the instances in the positive bag from highest
to lowest according to the attention scores:

Ipos =
[
ipos1 , ipos2 , . . . , iposn1

]
= Sort (Apos) , (7)

where ipos1 is the index of the instance with the highest
attention score, while iposn1

is the index of the one with the
lowest score in the positive bag.

For a negative bag Zneg = {znegi }n2

i=1 with n2 instances, we
sort the instances by randomly shuffling:

Ineg =
[
ineg1 , ineg2 , . . . , inegn2

]
= Shuffle (Zneg) . (8)

Using these index collections I ∈ {Ipos, Ineg}, we can
conduct group partitioning for any input bag. Specifically, we
divide all the instances into group one G1 and group two G2

using: {
G1,G2

}
= T (I, k) , (9)

where T (I, k) represents that we select top k percent instances
based on the instance index.

For a positive WSI, group one contains patches with high
attention scores, and group two contains patches with low
attention scores. According to the meaning of attention and
the definition of bag labels in MIL, we assign a positive
pseudo-label to group one and a negative pseudo-label to group
two. For a negative WSI, both group one and group two are
assigned negative pseudo-label.
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2) Group Mixing: Group mixing randomly selects two
WSIs Zj =

{
G1

j ,G
2
j

}
and Zk =

{
G1

k,G
2
k

}
, then mixes

the group one of Zj with the group two of Zk to generate
two synthesized WSIs Z

′

j =
{
G1

j ,G
2
k

}
and Z

′

k =
{
G1

k,G
2
j

}
,

whose pseudo-labels are the same as G1
j and G1

k, respectively.
Different from previous Mixup methods, our labeling strategy
follows the definition of MIL rather than Eq. 1, making it
unnecessary to align the instance counts of the two input
bags during our blending process. This operation promotes
the model to focus on the positive instances, reducing the
excessive attention to negative instances.

Considering the quality of synthesized bags, we introduce a
quality evaluation to determine whether to use them. Specifi-
cally, for the synthesized positive WSI, we adopt the bag clas-
sifier Cb(·) to predict the category of the bag. If the predicted
positive possibility is greater than 50%, we add it to the dataset
and use it to train the model in the corresponding training
epoch; otherwise, the generated sample will be abandoned.
For the synthesized negative bag, we only retain the samples
mixed by two negative WSIs. Our quality assessment process
significantly ensures the accuracy of synthetic bag labels.

C. Attention-Based Masking

To further modify the more challenging inaccurate attention
on tumor areas, we design an ABMask technique to mine hard
positive instances which is illustrated in the blue dotted box
of Fig. 3. For an input bag Z = {zi}ni=1 with n instances,
ABMask uses an instance classifier Ci (·) to generate the
prediction for each instance of the bag, and adopts a Softmax
function to map the classification results:

ŷi = Softmax (Ci (zi)) ∈ R1×2, (10)

where ŷi is the prediction result of the i-th instance. Next,
the predicted positive probability of the i-th instance is used
as a salience score si. The higher the score, the more salient
the instance. ABMask employs a salience threshold t to filter
these salient instances and generates a masked bag Zmask to
replace the original input one. In the process, if si ≥ t, the
i-th instance is considered salient and is discarded; otherwise,
it is retained.

Considering the imbalance of the tumor regions in the WSIs,
we designed three different masking strategies combined with
the quality evaluation as follows:

• Fixed Masking: For each positive WSI, fixed masking
sets a fixed salience threshold and masks patches with
salience scores higher than the threshold. Afterward,
ABMask conducts a quality evaluation on the masked
bag, which is the same as that in ABMix.

• Random Masking: Randomness is beneficial to reduce
the risk of over-fitting. ABMask introduces a random
masking strategy to obtain a masked bag. Specifically,
for each positive WSI, random masking sets a random
salience threshold and masks patches with salience scores
higher than this threshold, which is a random number
within a specified range. Subsequently, ABMask evalu-
ates each masked bag.

Algorithm 1 Optimization Scheme in FAMIL
Input: Dataset (X , Y), Epoch e, E1, E2.

1: Load two WSIs (Xj , Yj), (Xk, Yk) from (X ,Y);
2: if e ≥ E1 then
3: Obtain representative instances and corresponding

pseudo-labels;
4: Calculate the instance loss Linstance by Eq. 12;
5: if e < E2 then
6: for each i ∈ (j, k) do
7: if Yi = 1 then
8: Divide instances of a WSI into two groups

(G1
i , G

2
i ) by Eq. 6 and Eq. 7;

9: else
10: Divide instances of a WSI into two groups

(G1
i , G

2
i ) randomly by Eq. 8;

11: end if
12: end for
13: Generate pseudo bags and corresponding labels

(X
′

j , Y
′

j ), (X
′

k, Y
′

k ) by attention-based Mixup;
14: Conduct quality evaluation and append the pseudo

bags to the dataset;
15: else
16: for each i ∈ (j, k) do
17: if Yi = 1 then
18: Calculate the corresponding score Si by instance

classifier Ci (.);
19: Conduct Masking instances;
20: Conduct quality evaluation and obtain the dis-

carded bag;
21: end if
22: end for
23: end if
24: end if
25: Calculate bag loss Lbag by Eq. 11;
26: Update parameters.

• Step Masking: Considering the specific nature of each
positive bag, we design a Step Masking, which introduces
multiple salience thresholds and adaptively selects the
optimal threshold for each positive bag. Specifically, step
masking first sets up a lower threshold (with a higher
risk) to filter salient instances. Then the processed bag is
evaluated to determine whether to use the threshold. If the
masked bag fails to meet the requirement of evaluation.
We adopt the higher threshold to mask fewer salient
instances. If all thresholds cannot generate a satisfactory
bag, we use the original bag for training. In this paper,
we select three salience thresholds in step masking.

Unlike the hard instance mining approach [56] that aban-
dons a certain proportion of high-attention instances, ABMask
can mask bags flexibly. This is because ABMask adopts an
instance classifier to quantify the salience of each instance,
which enables the model to adaptively perceive salient positive
instances and fully explore them. Such flexibility is essential
given that, in numerous WSI datasets, the proportion of
positive regions within each WSI can vary considerably.
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D. Optimization

FAMIL is a two-branch framework as illustrated in Fig.
3. The bag-level branch is trained directly by the bag-level
labels, the instance branch is trained by the instance-level
labels distilled from the bag-level branch. The bag-level branch
and the instance-level branch share the same fully connected
layer of the encoder as described in Section IV-C, employing
weight sharing.

1) Loss: In our FAMIL, bag classifier Cb(·) outputs the
bag-level prediction Ŷ . We adopt the cross entropy function
to calculate the loss Lbag between the prediction Ŷ and ground
truth Y as follows:

Lbag = Y logŶ + (1− Y ) log
(
1− Ŷ

)
. (11)

In addition, for each positive WSI, we assign a positive
pseudo-label to the instance with the highest attention score
and a negative pseudo-label to the instance with the lowest
attention score, and then train the instance classifiers Ci(·) by
them. The loss function of the instance Linstance is the cross-
entropy between the network prediction ŷ and the pseudo-label
y:

Linstance = ylogŷ + (1− y) log (1− ŷ) . (12)

2) Schedule: To achieve better convergence, during the
early stages of FAMIL training, we primarily focus on optimiz-
ing the attention module and bag classifier. Once the attention
module can effectively capture positive instances (by the E1-
th epoch), we introduce ABMix into the FAMIL training
process and commence training the instance classifier. Upon
convergence of the instance classifier (by the E2-th epoch), we
discontinue ABMix and integrate ABMask into the FAMIL
training process to enhance the mining of challenging positive
samples. Detailed steps are provided in Algorithm 1.

3) Multi-subtype classification: FAMIL can be easily de-
veloped to perform a multi-subtype classification task, where
our instance-level classifier is trained by the instance with the
largest attention score in a positive WSI of each subtype. The
instance’s label inherits the label of its bag. In ABMix, when
two positive WSIs from different subtypes are extracted and
mixed, the label of the synthetic WSI is the same as the group
one of the original WSI.

IV. EXPERIMENTS

A. Datasets

We evaluate our FAMIL on four public benchmarks,
namely CAMELYON16, CAMELYON17, TCGA-NSCLC,
and TCGA-RCC, which cover cases with balanced/unbalanced
and single/multiple types of MIL problems. The CAME-
LYON16 [57] and CAMELYON17 [58] datasets are pub-
licly available at the CAMELYON17 Grand Challenge
website (https://camelyon17.grand-challenge.org/Data). The
TCGA data (NSCLC, RCC) and corresponding labels are
available from the National Institutes of Health genomic data
commons (https://portal.gdc.cancer.gov).

Fig. 4. A box plot showing the percentage of tumorous tiles (log-scaled)
in tumorous slides in the training set of CAMELYON16. The grey, hollow
points represent outliers, while the blue, circular points correspond to the data
points themselves.

1) CAMELYON16: It is a public dataset for breast cancer
metastasis detection containing 399 hematoxylins and eosin
(H&E) stained WSIs from breast cancer patients. It consists
of 270 training WSIs and 129 test WSIs. Among the training
set, 110 of them are positive (metastasis) and the remaining
are negative cases (normal). The test set consists of 50 positive
WSIs and 79 negative WSIs. The average number of patches
extracted per WSI is 11,559 at 20× magnification. This dataset
presents a significant challenge among histological datasets
due to the substantial variation in metastasis size from one
slide to another. From a MIL perspective, this results in a
significant disparity in the number of positive instances per
bag. In some cases, there are only a few positive instances
among tens of thousands of negative ones within a single bag,
while in others, there may be nearly no negative instances.
This variability is illustrated in Fig. 4 using a box plot, with
the horizontal axis presented on a logarithmic scale.

2) CAMELYON17 (unseen): Similar to CAMELYON16,
this dataset is a multi-center collection specifically designed
for pathological N-staging in breast cancer. It comprises two
categories of WSIs: those with lymph node metastasis and
those without. The dataset originates from five distinct medical
centers. To avoid overlap with CAMELYON16, WSIs from the
same centers were excluded, resulting in 324 remaining WSIs
(102 positive, 222 negative) for evaluating the domain gener-
alization performance of the models. For our experiments, the
CAMELYON17 dataset is utilized to assess the generalization
capability of models trained on CAMELYON16 in diagnosing
lymph node metastasis at the slide level. Due to the lack of
publicly available annotations in the official CAMELYON17
test set, only the training set is used for evaluation, with slides
labeled as isolated tumor cells excluded. After preprocessing,
the dataset comprises a total of 3.77 million patches at 20×
magnification, averaging 11,648 patches per WSI.

3) TCGA-NSCLC: It is a public lung cancer dataset that
includes two subtypes, lung squamous cell carcinoma (LUSC)
and lung adenocarcinoma (LUAD), with a total of 1,013
diagnostic WSIs including 512 LUADs and 501 LUSCs. In
this dataset, the positive slides contain a relatively large area
of tumor area (average 80% of the total cancer area per slide).
After preprocessing, the average number of patches extracted
per WSI was 2,894 at 10× magnification.

4) TCGA-RCC: It is a public renal cell carcinoma dataset
that includes three subtypes, namely Kidney Chromophobe
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TABLE I
RESULTS OF DIFFERENT MIL METHODS ON CAMELYON16, TCGA-NSCLC, AND TCGA-RCC DATASETS. EACH BOX INDICATES MEAN ± STANDARD

DEVIATION. THE BEST PERFORMANCE IS MARKED IN BOLD.

CAMELYON16 TCGA-NSCLC TCGA-RCC
Method ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

Max-pooling 87.23±3.81 81.27±6.13 88.86±3.95 80.12±3.11 79.25±3.33 86.03±3.43 90.62±3.22 83.89±5.34 96.76±0.96
Mean-pooling 69.21±2.23 48.44±2.56 61.52±1.96 83.54±5.62 83.90±4.71 89.06±6.20 90.32±1.18 82.72±1.44 96.87±0.57
CLAM(SB) 84.50±2.61 76.57±4.16 86.98±2.65 85.34±3.39 85.04±3.25 91.04±4.36 92.01±2.53 86.13±4.49 97.18±1.22
CLAM(MB) 84.30±4.45 76.08±6.75 85.78±3.82 85.54±4.92 85.61±4.17 91.63±4.30 92.39±2.22 86.49±3.87 97.26±1.34

DTFD-MIL(AFS) 85.22±1.48 81.88±2.99 88.23±3.86 85.22±3.66 84.99±3.09 90.13±4.07 91.91±3.04 85.70±4.42 97.16±1.69
DTFD-MIL(MMS) 88.18±2.32 82.40±4.67 89.88±1.64 85.40±3.48 85.29±3.06 91.34±2.80 91.90±3.24 85.91±5.29 97.19±1.13

MS-CLAM∗ 85.12±2.46 78.96±3.86 87.23±2.37 - - - - - -
MHIM-MIL 87.53±2.76 82.26±3.32 90.14±2.14 85.47±4.16 84.70±3.89 91.89±3.38 92.37±2.83 86.64±4.81 97.12±1.45

WiKG 88.27±1.84 82.32±2.68 90.31±2.09 85.47±3.68 85.74±3.72 91.89±3.04 92.53±2.17 87.22±4.53 97.22±1.39
MambaMIL 86.07±2.16 82.03±2.97 88.15±2.33 87.24±3.53 85.81±3.66 92.07±3.11 92.55±2.13 87.26±3.47 97.57±1.19

DSMIL 87.20±2.41 82.31±2.86 89.43±2.46 86.05±5.05 85.83±5.08 91.98±5.28 92.50±2.48 87.02±4.73 97.63±1.16
FAMIL(DSMIL) 90.36±1.27 86.49±2.22 91.96±1.68 87.84±3.83 87.84±4.24 92.60±4.21 93.24±1.83 87.90±3.45 98.41±1.04

ABMIL 87.38±2.81 82.41±3.43 89.26±2.56 86.13±4.22 85.55±4.39 91.95±3.57 92.35±2.93 86.73±4.71 97.53±1.36
FAMIL(ABMIL) 92.38±1.32 89.19±2.44 92.61±1.96 87.93±3.42 87.63±3.77 93.81±2.97 93.92±1.99 89.31±3.14 98.23±1.11

TransMIL 86.81±2.91 81.96±3.56 88.83±3.07 85.91±3.92 85.67±3.86 91.81±3.26 92.66±2.30 87.13±3.93 97.50±1.27
FAMIL (TransMIL) 89.93±2.29 86.14±2.87 91.55±2.43 87.04±3.82 87.45±3.53 92.49±2.98 94.14±1.93 89.54±2.13 98.37±1.02

∗ Note that, MS-CLAM is specifically designed for the positive and negative classification task.

Renal Cell Carcinoma (KICH), Kidney Renal Clear Cell Car-
cinoma (KIRC), and Kidney Renal Papillary Cell Carcinoma
(KIRP), with a total of 880 diagnostic WSIs, including 110
WSIs of KICH, 488 WSIs of KIRC, and 282 WSIs of KIRP.
TCGA-RCC is an unbalanced dataset among cancer subtypes,
with large tumor areas in positive slides (average total tumor
area per slide is 80%). After preprocessing, the number of
patches extracted per WSI at 10× magnification is 3,482.

B. Experiment Setup and Evaluation Metrics

Following CLAM [40], each WSI is cropped into a series
of 256 × 256 non-overlapping patches, where the background
region is discarded. In CAMELYON16 [57], we divide the
270 training WSIs into training and validation sets at a ratio
of 4:1 and tested on the official test set. For the TCGA dataset
(https://camelyon16.grand-challenge.org/Data), the data is ran-
domly split in the ratio of training:validation:test = 60:15:25.
We use three evaluation metrics to report the performance
of the model, including accuracy (ACC), F1 score (F1) and
area under the curve (AUC). For CAMELYON16, we run
experiments four times and report the averaged metrics. For
TCGA, all experimental results are obtained by 4-fold cross-
validation.

C. Implementation Details

We employ an Adam [59] optimizer with a learning rate
of 0.001 and a weight decay of 0.0001 for optimizing the
trainable weights of FAMIL. Following [40], instance features
undergo embedding into a 1024-dimensional vector using an
ImageNet pre-trained ResNet-50. During training, each feature
embedding is compressed to 512 dimensions using a fully
connected layer. In the inference stage, a softmax function
is utilized to normalize the predictions for each class. All
experiments are implemented on PyTorch 1.10.1 framework

with an Nvidia RTX 3090 GPU. The hyperparameter k is con-
sistently set to 0.5 across four datasets. Regarding the salience
threshold t, a fixed masking strategy is employed, with t set
to 0.98 for the CAMELYON16 dataset. For TCGA datasets, a
step masking strategy is adopted, with each step t configured
at 0.99, 0.98, and 0.97, respectively. The hyperparameters E1

and E2 are 50 and 300 respectively within the optimization
scheme.

D. Comparisons with State-of-the-Art Methods
We present a comprehensive comparison of FAMIL with

state-of-the-art methods on three datasets. The compared
methods involve Max-pooling [38], Mean-pooling [39], AB-
MIL [6], DSMIL [7], DTFD-MIL (AFS) [35], DTFD-MIL
(MMS) [35], CLAM (MB) [40], CLAM (SB) [40], MHIM-
MIL [56], WiKG [60], TransMIL [9], MS-CLAM [17] and
MambaMIL [61]. We obtain experimental results using their
published code, where the hyperparameters of each method
are set according to the implementation details described in
their paper, all comparative experiments are conducted under
identical experimental conditions, and only bag-level labels
are available during the training process.

1) Quantitative Comparison: Table I lists the comparison
results of different methods. The baselines of FAMIL are
three representative attention-based MIL frameworks, namely
ABMIL, DSMIL and TransMIL. Compared to other meth-
ods, Max-pooling and Mean-pooling perform poorly on three
datasets. We attribute this to their insufficient modeling of the
key instance information. This problem is especially severe
on the CAMELYON16, where the proportion of positive
instances is very small. The attention-based MIL methods
achieve better results on all three datasets by identifying key
instances. However, since the attention is not accurate, they are
misled in some instances, resulting in limited performance. In
particular, improved on attention-based MIL methods, MHIM-
MIL benefits from the percentage mining of hard instances and
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Fig. 5. Visualization of patches produced by ABMIL, DSMIL, and FAMIL. The orange curve outlines the area of the tumor. Redder patches indicate higher
attention scores, whereas bluer patches indicate lower attention scores. Ideally, red patches should only cover the area inside the orange curve and blue patches
only cover non-tumor areas. We show that our framework can significantly improve attention localization.

Fig. 6. Visualization of bag-level feature distribution with t-SNE on the
CAMELYON16 dataset. Blue dots represent negative bags, while red crosses
represent positive bags.

achieves the third-best performance on the three datasets, with
90.14% AUC on CAMELYON16, 91.89% AUC on TCGA-
NSCLC and 97.12% AUC on TCGA-RCC. However, the
percentage of tumors in different pathological images varies
considerably, and the fixed ratio setting limits its general-
ization. The proposed FAMIL solves the two phenomena of
inaccurate attention through ABMix and ABMask, breaking
the performance bottleneck of the attention-based MIL. On
CAMELYON16, our strategies significantly improve ABMIL,
DSMIL and TransMIL by 3.35%, 2.53% and 2.72% in terms
of AUC, respectively. Furthermore, we validate our framework

on three different datasets, both of which can outperform the
existing MIL methods.

2) Visualization Analysis: Fig. 5 visually illustrates the
tumor localization abilities of various attention-based methods.
From the figure, we have the following observations: (1)
For positive WSI, ABMIL and DSMIL cannot accurately
capture the tumor area (the second and third rows on the
left), resulting in lower attention distribution in positive areas
(first and second columns) and higher attention distribution in
negative areas (third column). In contrast, FAMIL effectively
improves this phenomenon (the fourth and fifth rows on the
left), indicating that FAMIL has powerful tumor localization
capability. (2) Fig. 5 also shows the attention distribution in
negative samples, where the attention distribution of ABMIL
and DSMIL is imbalanced (the second and third rows on the
right), which may lead to poor generalization. Ideally, the
model should treat each negative instance equally, meaning
that attention should be balanced. In contrast, FAMIL miti-
gates the imbalanced attention distribution by increasing the
diversity of the scene (the fourth and fifth rows on the right),
achieving better performance.

To further analyze the impact of attention score on feature
aggregation, we compared the aggregated bag-level features of
ABMIL before and after FAMIL optimization on the CAME-
LYON16 test set. The t-SNE visualization results, as depicted
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in Fig. 6, clearly demonstrate that the FAMIL-enhanced AB-
MIL achieves more separable aggregated features, attributed
to its enhanced attention localization capability.

TABLE II
GENERALIZATION CAPABILITY EVALUATION RESULTS (MEAN ±

STANDARD DEVIATION) OF FAMIL. THE BEST PERFORMANCE IS MARKED
IN BOLD.

Method Camelyon16 → Camelyon17 (unseen)

ACC (%) F1 (%) AUC (%)

CLAM (SB) 80.78±1.65 70.09±3.63 79.86±2.12
MS-CLAM 81.55±1.48 70.47±3.76 80.11±1.89
MHIM-MIL 81.32±1.94 70.19±3.58 79.86±2.61

ABMIL 81.49±1.76 69.97±3.91 79.33±2.34
FAMIL (ABMIL) 84.34±0.91 73.16±2.80 82.03±0.72

DSMIL 81.16±1.77 68.13±3.84 79.16±2.11
FAMIL (DSMIL) 83.23±0.96 70.34±3.14 81.47±0.83

TransMIL 77.87±2.58 65.09±4.23 71.31±3.04
FAMIL (TransMIL) 80.41±1.87 67.45±3.49 73.32±2.37

3) Generalization Capability: Generalization performance
is a critical metric for evaluating MIL models, particularly
given that test WSIs often display distinct visual characteristics
from the training data due to variations in data acquisition
processes. In this subsection, we assess the generalization
capabilities of mainstream MIL models, with quantitative
results summarized in Table II. The findings demonstrate that
FAMIL excels not only in classifying familiar data but also in
effectively handling previously unseen WSIs. On the unseen
Camelyon17 dataset, FAMIL significantly enhances various
classification metrics for attention-based methods. In particu-
lar, when integrated with ABMIL, FAMIL achieves impressed
performance improvements, including a 2.85% increase in
ACC, a 3.19% improvement in F1 score, and a 2.70% rise
in AUC. These results underscore the robust generalization
capacity of FAMIL in the domain of pathological image
classification.

E. Ablation Study

1) Effects of Each Key Component in FAMIL: To validate
the impact of each key component in FAMIL, we conduct
a series of ablation studies on the CAMELYON16 dataset.
The experiment results are reported in Table III. The ablation
settings of each component are described below:

• Baseline: ABMIL is employed as a baseline, where two
branches are applied for bag classification and instance
classification.

• Baseline + ABMix: Compared with baseline, we intro-
duce the ABMix to correct the inaccurate localization of
attention outside the tumor.

• Baseline + ABMask: Compared with baseline, we incor-
porate the ABMask to enhance the network’s ability to
mine positive regions and reduce the neglect of tumor
regions by the model’s attention.

• Baseline + ABMix + ABMask: It is the framework
FAMIL proposed in this work.

After the incorporation of ABMix, the model improves its
ability to learn positive instance features, increasing the bag-
level AUC of the baseline from 90.96% to 91.72%. And the
instance-level AUC increased from 90.71% to 92.83%. Con-
currently, ABMask facilitates the model mine difficult positive
features, with the bag-level AUC increasing by 1.00% and the
instance-level AUC increasing by 2.58%. When ABMix and
ABMask are combined, the performance of the model is fur-
ther improved, with the bag-level AUC reaching 92.61%, and
the instance-level AUC reaching 95.53%. This substantiates
the synergistic nature of these two methodologies, wherein
their integration manifests as a mutually reinforcing mecha-
nism, enhancing the model’s power to obtain positive features.

TABLE III
ABLATION EXPERIMENTS ON THE CAMELYON16 DATASET BASED ON

ABMIL.

Setting Bag-level Instance-level

Baseline ABMix ABMask ACC (%) AUC (%) ACC (%) AUC (%)

✓ 88.41 90.96 89.05 90.71
✓ ✓ 90.03 91.72 91.27 92.83
✓ ✓ 90.48 91.96 91.86 93.29
✓ ✓ ✓ 92.38 92.61 93.32 95.53

Moreover, a visualization result is shown in Fig. 7 which
intuitively represents the improvement of our method on the
baseline. In the figure, the red box represents the attention
visualization of the tumor area, and the blue one denotes
the attention visualization of the non-tumor area. We can
observe that the baseline has two shortcomings: high attention
distribution in non-tumor areas (the blue box in the second
column) and low attention distribution in tumor areas (the
red box in the second column). Notably, the incorporation
of ABMix proves the advantages in mitigating high attention
to non-tumor regions and simultaneously ameliorating the
low attention distribution within tumor areas. Furthermore,
ABMask serves to further diminish high attention to tumor
areas, building upon the improvements facilitated by ABMix.
These improvements further demonstrate the effectiveness of
our FAMIL.

2) Effects of ABMix: As a flexible method, ABMix can be
applied to any attention-based MIL framework. To prove the
effectiveness of ABMix, we select popular mix-up strategies
in pathological image analysis for comparison, including:

• ReMix [54]: The earliest mix-up-based approaches for
MIL which mixes the prototypes of two bags within the
same class;

• Mixup [53]: The original interpolation-based Mixup, in
which two bags are aligned in the instance number before
interpolation by random dropping instances from the bag
with a larger instance number;

• RankMix [23]: An improved interpolation-based one, in
which the instances of each bag are ranked sequentially
according to attention scores, and delete instances with
low attention for alignment;

• PseMix [22]: An instance-level mixup, in which Pseudo-
bags are formed by sampling from prototype clusters,
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Fig. 7. Visualization of ablation experiments. The red box indicates the tumor area circled in orange. The blue box represents the non-tumor area. Redder
patches indicate higher attention scores, whereas bluer patches indicate lower attention scores.

TABLE IV
RESULT OF DIFFERENT MIXUP METHODS ON CAMELYON16, TCGA-NSCLC, AND TCGA-RCC DATASETS. EACH BOX PRESENTS MEAN ± STANDARD

DEVIATION. THE BEST PERFORMANCE ARE HIGHLIGHT IN BOLD.

ABMIL DSMIL AverageDataset Method ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

Baseline 87.38±2.81 82.41±3.43 89.26±2.56 87.20±2.41 82.31±2.86 89.43±2.46 87.29 82.36 89.34
w/ Remix 88.14±1.13 83.48±1.56 90.94±1.37 87.68±2.14 82.84±2.56 89.78±1.69 87.91 83.16 90.36
w/ Mixup 88.01±2.23 83.56±2.80 90.89±1.82 87.84±1.67 82.63±2.15 89.63±1.39 87.92 83.10 90.26

w/ RankMix 88.38±0.53 83.53±0.86 90.48±0.16 87.98±2.08 83.39±2.75 90.17±0.74 88.18 83.46 90.32
w/ InstanceMix 86.82±0.97 81.13±1.26 89.91±0.89 87.22±2.62 80.88±4.49 87.95±2.81 87.02 81.01 88.93

w/ PseMix 87.03±3.12 81.34±2.78 88.89±1.97 86.90±2.06 81.02±2.38 88.77±2.51 86.97 81.18 88.83
w/ ABMix (ours) 89.23±1.07 84.87±1.14 91.42±0.66 88.84±1.36 84.68±3.33 91.31±1.09 89.04 84.78 91.37

CAMELYON16

△ Over baseline +1.85 +2.46 +2.16 +1.64 +2.37 +1.88 +1.75 +2.42 +2.02

Baseline 86.13±4.22 85.55±4.39 91.95±3.57 86.05±5.05 85.83±5.08 91.98±5.28 86.09 85.69 91.97
w/ Remix 86.54±3.43 85.88±3.57 92.43±2.89 85.86±3.13 85.84±3.02 91.77±4.59 86.20 85.86 92.10
w/ Mixup 86.33±3.81 85.96±3.60 92.35±3.08 86.07±3.85 85.94±3.76 91.86±4.51 86.20 85.95 92.11

w/ RankMix 84.54±3.51 84.55±3.16 91.52±2.81 85.97±2.98 85.82±2.46 91.53±3.85 85.26 85.19 91.53
w/ InstanceMix 87.01±3.29 86.86±3.21 92.44±3.19 85.38±3.34 85.33±2.64 91.07±4.65 86.19 86.09 91.76

w/ PseMix 87.06±3.31 86.97±3.10 92.53±2.75 86.15±3.54 86.11±2.51 92.07±3.66 86.61 86.54 92.30
w/ ABMix 87.29±3.41 87.34±3.02 92.93±2.66 86.73±3.14 86.91±2.53 92.22±3.56 87.01 87.13 92.58

TCGA-NSCLC

△ Over baseline +1.16 +1.79 +0.98 +0.68 +1.08 +0.24 +0.92 +1.44 +0.61

Baseline 92.35±2.93 86.73±4.71 97.53±1.36 92.50±2.48 87.02±4.73 97.63±1.16 92.42 86.87 97.58
w/ Remix 92.44±2.71 87.45±4.17 97.43±1.29 92.73±1.92 87.32±3.27 97.72±0.89 92.59 87.39 97.58
w/ Mixup 92.61±2.50 87.32±4.05 97.68±1.24 92.76±1.81 87.57±3.23 97.81±0.97 92.68 87.44 97.74

w/ RankMix 92.74±2.46 87.56±4.48 97.38±1.36 92.78±1.98 87.81±3.51 97.87±0.82 92.76 87.68 97.62
w/ InstanceMix 91.97±2.77 87.48±1.45 97.12±1.43 92.69±1.28 87.59±1.96 97.53±0.95 92.33 87.53 97.32

w/ PseMix 92.84±2.59 88.31±3.18 97.79±1.47 92.78±1.33 87.74±2.49 97.85±0.91 92.81 88.03 97.82
w/ ABMix 92.92±2.60 88.29±2.77 98.02±1.36 92.87±1.34 87.79±2.29 98.04±0.88 92.90 88.04 98.03

TCGA-RCC

△ Over baseline +0.57 +1.56 +0.49 +0.37 +0.77 +0.41 +0.47 +1.17 +0.45

pseudo-bag labels inherit parent bag labels, and Mixup is
achieved through mixing pseudo-bags;

• InstanceMix [22]: An instance-level Mixup baseline,
which randomly selects a certain proportion of instances
from two bags and combines them into a mixed bag. The
label setting of the mixed bag is consistent with Mixup.

Table IV shows the comparison results of the Mixup meth-
ods on three datasets, from which we can obtain the following
observations: (1) The existing Mixup methods are powerless to
generalize to various scenarios, for example, PseMix reduces
ABMIL’s AUC by 0.37% on the CAMELYON16 dataset;
RankMix reduces ABMIL’s AUC by 0.15% on the TCGA-
RCC dataset; Mixup reduces the AUC of DSMIL by 0.12%
on TCGA-NSCLC. This is because they do not emphasize
the importance of positive examples, which is critical in MIL.
In contrast, ABMix enhances the model’s perception ability
of positive areas in different scenarios by simulating different
negative areas for positive areas, achieving improvements on
each dataset. (2) Under different baselines, the performance

improvement brought by ABMix is higher than that brought
by other methods, for example, on TCGA-NSCLC, based on
ABMIL, the AUC of ABMix is 0.40% higher than that of the
suboptimal Mixup method (PseMix); on TCGA-RCC, based
on DSMIL, the AUC of ABMix is 0.17% higher than that
of the suboptimal Mixup method (RankMix). These results
demonstrate the effectiveness of ABMix, which can further
enhance the focus of attention-based methods on positive
instances, increasing the classification accuracy of the model.

In addition, we visualized the attention of different Mixup
methods on the CAMELYON16 dataset, as illustrated in Fig. 8.
ABMix improves the label fusion definition to better align with
the multi-instance learning framework and employs distinct
mixing strategies for positive and negative bags. As a result,
ABMix enables the model to concentrate more effectively on
learning positive features, thereby achieving superior attention
localization capabilities.

3) Effects of ABMask: ABMask is another core design in
our framework. The main idea of this method is to combine the
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Fig. 8. Visualization of different Mixup method on CAMELYON16 dataset. The red box indicates the tumor area circled in orange. The blue box represents
the non-tumor area. Redder patches indicate higher attention scores, whereas bluer patches indicate lower attention scores.

TABLE V
COMPARISON RESULTS (%) ON CAMELYON16 DATASET BASED ON

ABMIL AMONG DIFFERENT MASKING STRATEGIES.

CAMELYON16 TCGA-NSCLC TCGA-RCC
Masking ACC F1 AUC ACC F1 AUC ACC F1 AUC

Baseline 90.03 85.48 91.72 87.33 87.29 92.98 92.95 88.59 98.04
Fixed 92.38 89.19 92.61 87.64 87.33 93.59 93.67 89.16 98.15

Random 91.33 87.84 92.29 87.48 87.42 93.22 93.83 89.71 97.99
Step 91.92 88.51 92.72 87.93 87.63 93.81 93.92 89.31 98.23

instance branches to discard the most salient instances, thereby
indirectly forcing the model to mine more difficult-to-learn
positive instances to facilitate model training. On this basis,
we design three ABMask strategies (Fixed Masking, Random
Masking, and Step Masking) combined with the evaluation
strategy and present their impact in Table V. After introducing
the three strategies, the model boosts performance on all three
datasets. Specifically, Fixed Masking shows more significant
performance improvement on the CAMELYON16, while Ran-
dom Masking obtains the highest F1 on TCGA-RCC. Further-
more, the more complex ABMask strategy (Step Masking)
achieves the best performance on the TCGA-NSCLC dataset
which has a larger proportion of positive instances. Overall,
this experiment verifies the effectiveness of the ABMask
strategy, and the diversity of the proposed strategy improves
its applicability to different datasets.

Fig. 9. Study on two key hyperparameters of FAMIL: (a) Group probability
k and (b) Salience threshold t.

4) Hyperparameter Analysis: We conducted experiments to
assess the impact of two crucial hyperparameters in the FAMIL
framework: k, representing the proportion of group one in each
bag, and t, denoting the salience threshold for masking. The

outcomes of these tests are presented in Fig. 9. Regarding k,
proximity to our default setting (k = 0.5) tends to yield optimal
performance. In the case of t, we employ a Fixed Masking
approach without an evaluation strategy to better elucidate its
influence on the model during testing. As depicted in the right
panel of Fig. 9, a systematic reduction in t from its maximum
value of 1 initially enhances performance, followed by a
subsequent decline. This phenomenon is attributed to the fact
that a larger t results in discarding too few salient instances,
limiting the model’s efficacy in mining challenging positive
cases. Conversely, a smaller t leads to the model discarding an
excessive number of positive instances, impeding the learning
of positive features.

V. DISCUSSION

To further discuss the relationship between instance dis-
crimination and attention. we conducted experiments on the
CAMELYON16 [57] dataset with pixel-level annotations, and
Fig. 10 shows the results of different methods on test-001. As
can be seen from the figure, ABMIL’s [6] attention performs
poorly in discriminating instances, evident in the misallocation
of attention, wherein negative instances attract high attention
and positive instances receive disproportionately low attention.
Although DSMIL [7] demonstrates improved performance,
the underlying issue persists. In contrast, FAMIL effectively
enhances the coherence between instance distribution and
attention. This improvement is reflected in the alignment of
attention patterns with instance decision boundaries, thereby
facilitating accurate tumor localization.

Previous feature-level enhancement methods for WSIs gen-
erally focused on the Mixup [24] technique, but these methods
typically performed size alignment and semantic alignment
according to the Mixup definition intended for natural images.
It fails to take into account the particularity of the MIL
framework, resulting in the neglect of positive instances, which
are overwhelmed by the massive negative instances. Some
studies have explored other data augmentation methods for
mining hard instances. From the perspective of hard instance
definition, existing methods are limited to setting a fixed ratio
for hard instance mining, and ignore the huge difference in the
tumor proportion of each WSI. To this end, the ABMix we
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Fig. 10. The relationship between instance discrimination and attention,
where (a) and (c) depict the attention distribution of ABMIL and DSMIL,
respectively. Concurrently, (b) and (d) illustrate the attention distribution of
our proposed FAMIL, with these two attention-based MIL methods serving
as the respective baselines.

proposed re-optimizes the feature mixing and label generation
of Mixup specifically for the MIL framework, and places
emphasis on the feature enhancement of positive instances,
effectively alleviating the problem of negative and positive
patch imbalance. ABMask introduces an instance-level branch
to quantify the salience of each instance, adapting to WSIs
with different tumor proportions. In addition, FAMIL can be
transferred to any attention-based MIL model. Therefore, the
proposed FAMIL is a simple and effective MIL framework.

VI. CONCLUSION

This paper primarily addresses the issue of inaccurate
attention localization in attention-based MIL methods, which
is caused by insufficient learning of positive instances. This
shortcoming impacts the classification performance and gener-
alization of the model. Here, we propose a FAMIL framework
and design ABMix and ABMask to enhance its ability to
learn positive features. ABMix underscores the importance
of positive instances in the MIL paradigm and effectively
generalizes Mixup to the attention-based MIL without the need
for alignment, thus improving instance feature representation.
ABMask selectively masks salient positive instances, encour-
aging the network to mine challenging instances. Each ap-
proach includes an evaluation mechanism to ensure operational
quality. Extensive experiments demonstrate that our approach
mitigates the problem of inaccurate attention in attention-based
MIL methods, and the proposed FAMIL framework exhibits
superior performance compared to state-of-the-art methods. As
a data-efficient approach, FAMIL offers valuable insights into
the identification of rare diseases.
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