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Denser Teacher: Rethinking Dense Pseudo-Label
for Semi-supervised Oriented Object Detection

Tong Zhao, Qiang Fang, Xin Xu

Abstract—Oriented object detection, which aims to detect1

multi-oriented objects, is a fundamental task for visual analysis2

in complex scenarios, such as aerial images. However, pow-3

erful detection performance relies on abundant and accurate4

annotations. Therefore, semi-supervised oriented object detection,5

which utilizes unlabeled data to improve performance, is a6

promising method to address this problem. In this work, we7

explore Dense Pseudo-Label (DPL), which directly selects pseudo8

labels from the original output of the teacher model without any9

complicated post-processing steps, and expose the shortcomings10

of existing methods. Through analysis, we identify that the11

imbalance between obtaining potential positive samples and12

removing the interference of inaccurate pseudo labels hinders13

the effectiveness of DPL. To further improve DPL efficiency, we14

propose Denser Teacher, a new semi-supervised oriented object15

detection method. In this method, we design a simple yet effective16

adaptive mechanism called global dynamic k estimation to guide17

the selection of DPLs in densely-distributed scenes. Additionally,18

to improve scale adaptation, we introduce dense multi-scale19

learning for DPL, where DPLs from different scales are utilized to20

bridge the scale gap. We conduct extensive experiments on several21

benchmarks to demonstrate the effectiveness of our proposed22

method in leveraging unlabeled data for performance improve-23

ment. Our code will be available at https://github.com/Haru-24

zt/DenserTeacher.25

Index Terms—aerial images, semi-supervised learning, object26

detection27

I. INTRODUCTION28

ORIENTED object detection is a significant research field29

for visual analysis in complex scenarios, such as aerial30

images [1]–[5]. Currently, deep learning-based methods domi-31

nate the field and have achieved rapid development. However,32

the progressive performance of oriented object detection is33

based on massive annotations. When provided with limited34

annotations, the performance of oriented object detectors drops35

severely [6]. Moreover, annotating abundant fully labeled36

datasets is costly and time-consuming. To effectively leverage37

abundant unlabeled data, Semi-Supervised Object Detection38

(SSOD) has garnered extensive attention [7]–[9]. However,39

existing SSOD works [10]–[13] mainly focus on general object40

detection, where objects are annotated with horizontal boxes.41

In some scenes, such as aerial images, horizontal boxes have42

difficulty efficiently representing objects [1], [14]. In con-43

trast to general scenes, objects in aerial images are typically 44

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

(Corresponding authors: Qiang Fang.)
Tong Zhao, Qiang Fang and Xin Xu are with the College of Intelligence

Science and Technology, National University of Defense Technology, Chang-
sha, 410000 China. E-mail: {zhaotong, qiangfang, xinxu}@nudt.edu.cn

Manuscript received XXX, 2022; revised XXX.

captured from a bird’s-eye view and consequently present 45

additional challenges, including arbitrary orientations, multiple 46

scales, and dense distributions [1]. Therefore, semi-supervised 47

oriented object detection deserves serious consideration. 48

Existing SSOD methods strongly rely on precise pseudo- 49

labels, which can be divided into Sparse Pseudo-Label (SPL) 50

[10], [12], [15], [16] and Dense Pseudo-Label (DPL) [6], 51

[11], based on the sparsity of pseudo-labels. In SPL, bounding 52

boxes and their labels are provided as supervision information, 53

similar to the ground truth. For DPL, pseudo labels are directly 54

selected from the original output of the teacher model without 55

any complicated post-processing steps. By removing post- 56

processing steps, DPL retains richer information and has thus 57

received extensive attention [11]. 58

However, existing DPL-based methods are inefficient for 59

aerial scenes. Dense Teacher [11] proposes a region selection 60

technique to highlight key information and suppress noise, 61

but it requires a fixed selection ratio to control the number 62

of pseudo labels. This limitation restricts the selection of 63

sufficient pseudo labels in dense scenes and may cause the 64

selected pseudo labels to contain abundant noise in other 65

scenes. SOOD [6] combines DPL with SPL to reduce noise. 66

In SOOD [6], DPLs are randomly sampled from the teacher’s 67

predictions, but this approach involves a sequence of post- 68

processing steps with fine-tuned hyper-parameters, which has 69

been shown to be sensitive in dense scenes [11]. 70

In this study, we note that although some DPL-based 71

methods achieve competitive performance in semi-supervised 72

oriented object detection, the potential of DPL-based methods 73

is still largely hindered by the imbalance between obtaining 74

potential positive samples and removing the interference of 75

inaccurate pseudo labels. To verify this phenomenon, we 76

analyze the effectiveness of existing DPL-based methods, as 77

shown in Fig. 1. To simplify the analysis, we calculate the 78

True Positive (TP), False Positive (FP), and False Negative 79

(FN) numbers of DPL-based methods Dense Teacher [11] 80

and SOOD [6] on the DOTA-v1.5 validation set. Note that 81

all models are trained under the DOTA-v1.5 10% partially 82

labeled setting. We observe that Dense Teacher [11] obtains 83

the fewest FNs, indicating its effectiveness in mining potential 84

positives but suffers from insufficient TPs and abundant FPs. 85

We conjecture that the fixed selection ratio causes this prob- 86

lem. SOOD [6] greatly alleviates this problem by introducing 87

SPLs to improve the quality of DPLs (TP +79.9% and FP - 88

32.6%), but consequently results in a significant increase in 89

FN (+166.8%), indicating that SOOD [6] still struggles with 90

obtaining potential positive samples. 91

Through analysis, we identify that an essential cause hin-92
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Fig. 1. The True Positive (TP), False Positive (FP), and False Negative (FN)
statistics of DPL-based methods in the DOTA-v1.5 10% partially labeled
setting. The statistics are measured on the DOTA-v1.5 validation set.

dering the effectiveness of DPL is the imbalance between93

obtaining potential positive samples and removing the interfer-94

ence of inaccurate pseudo labels. To overcome this problem,95

we propose integrating potential object information into the96

DPL selection process. Such design carefully handles dense97

distribution challenge of oriented object detection, as we98

follow the natural idea that we should select suitable DPLs99

according to the quantity of potential objects. Moreover, the100

scales of oriented objects in aerial images vary significantly101

across different categories and scenes, which presents a new102

challenge to DPL-based methods [17], [18]. Existing works103

have demonstrated that incorporating an extra down-sampled104

view of the unlabeled image and regularizing the network105

with consistency constraints at either the feature level or label106

level can significantly improve performance [13], [16], [19].107

However, these methods mostly focus on SPL and do not108

facilitate DPL, leaving the possibility of building multi-scale109

learning for DPL.110

To address these issues, we propose a novel method called111

Denser Teacher for semi-supervised oriented object detection.112

To select proper DPLs in densely-distributed scenes, we design113

an adaptive mechanism called Global Dynamic K Estimation114

(GDE) to estimate the quantity of potential objects in an115

image and use this information to guide the selection of DPLs.116

Additionally, to mitigate scale variance, we propose Dense117

Multi-Scale Learning (DMSL) for DPL, in which DPLs with118

different scales are selected to build a more direct and effective119

way to improve scale adaptation.120

We summarize our main contributions as follows:121

1) We investigate the effectiveness of dense pseudo-labels122

and expose the shortcomings of existing dense pseudo-123

label methods.124

2) We propose an adaptive mechanism called Global Dy-125

namic K Estimation (GDE) to formulate a direct way126

to integrate potential objects information into the dense127

pseudo-label selection process and select suitable pseudo128

labels.129

3) We introduce Dense Multi-Scale Learning (DMSL) for130

dense pseudo-labels, in which dense pseudo labels from131

different scales are utilized to improve scale adaptation. 132

4) Our Denser Teacher contributes significant performance 133

gains on several benchmarks, confirming the effective- 134

ness of our proposed method. 135

In the following manuscript, Sec. II introduces the related 136

work on semi-supervised oriented object detection; Sec. III 137

discusses the proposed method, Denser Teacher; Sec. IV shows 138

the experimental setting and results; Sec. V presents the 139

discussion; and Sec. VI presents the conclusion. 140

II. RELATED WORK 141

A. Oriented Object Detection 142

Unlike general object detection, oriented object detection 143

represents objects with Oriented Bounding Boxes (OBBs). In 144

recent years, oriented object detection has witnessed signifi- 145

cant progress due to the rapid development of deep learning. 146

RoI Transformer [20] proposed an RRoI learner to convert 147

horizontal regions of interest (HRoIs) into rotated regions of 148

interest (RRoIs) and an RPS RoI Align module to extract 149

spatially rotation-invariant feature maps. R3Det [21] intro- 150

duced a coarse-to-fine approach to reconstruct feature maps 151

by designing a feature refinement module. ReDet [22] pro- 152

posed rotation-equivariant networks and RiRoI Align to extract 153

rotation-invariant features. Oriented R-CNN [2] proposed a 154

new rotated object representation based on midpoint offset 155

and designed an oriented RPN to reduce the cost of proposals. 156

LSKNet [3] introduced large and selective kernel mechanisms 157

into oriented object detection to incorporate prior knowledge. 158

Moreover, discontinuity in oriented object detection has re- 159

ceived much attention. GWD [23], KLD [24], and KFIoU [25] 160

used Gaussian distributions to represent OBBs and demon- 161

strated effectiveness in alleviating the impact of discontinuity. 162

CSL [26] transformed the angular prediction task from a 163

regression problem to a classification task to solve the issue of 164

discontinuous boundaries. Gliding Vertex [27] explored a new 165

OBB representation by sliding the four vertices of an HBB 166

(Horizontal Bounding Box) to construct an OBB. Transformer- 167

based methods [17], [28] have also been developed for oriented 168

object detection. The above methods enhanced detection per- 169

formance by fully leveraging the characteristics of oriented 170

objects. However, these methods usually required a large 171

amount of training data with fully labeled annotations, which 172

are costly and time-consuming. Our method aims to improve 173

the performance of semi-supervised oriented object detection 174

and alleviate the demand for abundant annotations. 175

B. Semi-Supervised Object Detection 176

Recently, semi-supervised learning (SSL), which aims to 177

improve performance by leveraging a limited amount of 178

labeled data alongside a large volume of unlabeled data, 179

has achieved significant results in image classification. Most 180

existing works in SSL can be roughly categorized into pseudo- 181

labeling and consistency regularization. In contrast, SSOD 182

methods need to make instance-level predictions and regress 183

the corresponding bounding boxes, which makes them more 184

challenging. STAC [29] proposed a multi-stage SSOD training 185

framework that combined pseudo-labeling and consistency 186

training by utilizing weak and strong augmentations inspired187
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Fig. 2. Overview of the proposed Denser Teacher. It comprises a student model and a teacher model. During training, the teacher model parameters are
updated from the student model using Exponential Moving Average (EMA). Global Dynamic K Estimation is employed to select suitable DPLs for unlabeled
data according to K, and Dense Multi-Scale Learning is employed to improve the scale adaptation. Note that the labeled part is hidden for simplicity.

by FixMatch [30]. Unbiased Teacher [15] addressed the class188

imbalance problem in pseudo-labeling by focusing on learning189

rare classes using focal loss. Soft Teacher [10] adopted classi-190

fication scores to re-weight pseudo labels and introduced a191

box jittering technique to select high-quality pseudo labels192

for the regression branch. Consistent Teacher [12] focused193

on inconsistencies during training and proposed a unified194

framework to handle inconsistencies in anchor assignment,195

feature alignment, and threshold processes. The above methods196

were all based on SPL. For SPL, various threshold-based197

techniques were employed to select reliable pseudo-labels,198

mostly conducted after complex post-processing steps like199

NMS. In contrast, Dense Teacher [11] introduced DPL and200

a region selection method to reduce noise and provide finer-201

grained supervision signals. DPL selects pixel-wise pseudo-202

labels, eliminating the aforementioned trouble. Moreover, the203

challenge of scale variation in SSOD has also drawn attention204

in recent years. PseCo [16] adopted a down-sampled view to205

make scale-invariant predictions. MixTeacher [13] adopted a206

similar approach but introduced a mixed view. However, these207

methods were all based on SPL, leaving DPL unexplored.208

Moreover, the aforementioned works focused on general object209

detection. This paper aims to improve the performance of210

semi-supervised oriented object detection.211

C. Semi-Supervised Oriented Object Detection212

Recently, SOOD [6] pioneered semi-supervised oriented ob-213

ject detection by introducing global consistency and adaptive214

weights based on the orientation gap between the teacher and215

student models, achieving excellent performance. DDPLS [31]216

introduced a density-guided selection method, achieving some217

improvement but lacking various dataset validations. PST [32]218

proposed a new framework called Pseudo-Siamese Teacher, in 219

which two teacher models are used to generate high-quality 220

pseudo annotations. Moreover, PST [33] applied a symmetric 221

and bounded Jensen–Shannon divergence and scale-adaptive 222

knowledge distillation to reduce the unreliability of pseudo 223

annotations in localization, scale, and orientation, achiev- 224

ing significant improvement. Compared to these works, our 225

method focuses on DPL, carefully handling the selection of 226

DPL, and introduces a new multi-scale framework for DPL. 227

III. METHOD 228

A. Overview 229

As shown in Sec. I, we identify that a primary cause hinder- 230

ing the effectiveness of DPL-based methods is the imbalance 231

between obtaining potential positive samples and removing 232

the interference of inaccurate pseudo labels. To address this 233

problem, we propose a DPL-based method called Denser 234

Teacher. An overview of our method is shown in Fig. 2. Unlike 235

previous DPL-based methods, we design a new DPL selection 236

mechanism called Global Dynamic k Estimation (GDE) to 237

adaptively select suitable DPLs in densely-distributed scenes, 238

as shown in Sec. III-C. Compared with the previous DPL- 239

based methods, GDE directly integrates potential object in- 240

formation into the dense pseudo-label selection process, ad- 241

dressing the dense distribution challenge inherent in oriented 242

object detection. Additionally, scale variation has been widely 243

explored in semi-supervised object detection in recent years. 244

Existing works have demonstrated that incorporating an extra 245

down-sampled view of the unlabeled image and regularizing 246

the network with consistency constraints at either the feature 247

level or label level can significantly improve performance [16], 248

[19]. However, few works focus on the scale variation of 249

DPL. Since the scale variance problem represents a significant 250
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challenge in oriented object detection, we propose a new multi-251

scale learning framework called Dense Multi-Scale Learning252

(DMSL) for DPL, which will be detailed in Sec. III-D.253

Moreover, we offer preliminary in Sec. III-B.254

B. Preliminary255

In semi-supervised oriented object detection, a model is256

trained with a labeled set Dl = {(X l
i , Y

l
i )|Nl

i=1} and an257

unlabeled image set Du = {Xu
i |Nu
i=1}, where Nl and Nu258

are the numbers of labeled and unlabeled data, respectively.259

For each labeled image X l
i , the annotation Y li consists of a260

set of rotated boxes and corresponding category labels for261

the instances that appear in the image. Following common262

practice in previous work [6], [10], [16], we adopt the pseudo-263

labeling framework under the teacher-student paradigm as our264

basic training framework. Specifically, the training images265

are sampled from both labeled and unlabeled datasets, and266

the overall objective comprises these two parts to update the267

student model. Due to the lack of ground truth in unlabeled268

images, the teacher model provides pseudo labels for the269

student, whose weights are updated by the exponential moving270

average of the student model.271

θTt+1 = (1− λ)θSt + λθTt (1)

where θT and θS denote the parameters of the teacher model272

and student model, respectively, and the subscript denotes273

the training iteration. λ is the momentum to maintain the274

difference between the teacher model and student model.275

In every training iteration, the training objective on labeled276

data follows a regular manner, fully supervised by the ground277

truth labels. For the unlabeled data, the teacher model first gen-278

erates pseudo labels on a weakly augmented view of the image,279

which provides supervision signals for a strongly augmented280

view of the image for the student model. Subsequently, the281

student model is updated with the objective from the labeled282

data and a strongly augmented view of the image with pseudo283

labels. The overall training objective can be formulated as:284

L = Ls + αLu (2)

where Ls and Lu denote the supervised loss of labeled285

images and the unsupervised loss of unlabeled images, respec-286

tively. α controls the contribution of the unsupervised loss.287

C. Global Dynamic K Estimation288

In the dense pseudo-labeling framework, the selection of289

DPLs is a key problem. While DPLs contain rich information,290

they also contain noise. In Dense Teacher [11], the selection291

process relies on a fixed selection ratio determined by dataset292

analysis. While this global approach may be effective for293

datasets like COCO [34], where object distribution is rela-294

tively uniform, it may not be sufficient for scenarios with295

extreme imbalanced distribution, such as in aerial images.296

SOOD [6] uses SPLs as the basis for selection, employing297

random sampling to select reliable DPLs, but its performance298

is thus limited by the SPLs. Moreover, Fig. 1 shows that these299

methods still struggle with the abundance of low-quality DPLs300

or inefficiency in finding potential DPLs. 301

To alleviate this problem, inspired by OTA [35], we build 302

a simple yet effective selection mechanism called Global 303

Dynamic K Estimation (GDE), where we carefully handle 304

the dense distribution challenge of oriented object detection. 305

In OTA [35], the IoU values over the candidate bag are 306

summed up to represent the number of positive samples. For 307

labeled data, the candidate bag is based on ground truth, which 308

is missing in unlabeled data. Moreover, the IoU calculated 309

between the prediction and pseudo label is inaccurate. As 310

we cannot obtain accurate local ground truth, we seek an 311

approximate method to estimate the positive samples or DPLs 312

from the entire image. Intuitively, the number of DPLs selected 313

for an image varies. Many factors can affect the selection, such 314

as object distribution, object size, and occlusion conditions. It 315

is difficult to build a function that could take all of these factors 316

into consideration, especially in unlabeled data. Therefore, in 317

GDE, we roughly estimate the number of DPLs in an image 318

according to the dense predictions. Specifically, for an image, 319

we sum up the classification scores of dense predictions and 320

represent the estimated quantity of DPLs as K. We define K 321

as: 322

K =

M∑
l=1

Wl∑
i=1

Hl∑
j=1

Slij (3)

323

Slij = max
c
ylij,c (4)

where ylij,c is the probability of category c in the l-th 324

Feature Pyramid Network (FPN) layer at location (i, j) in the 325

corresponding feature map. M is the number of FPN layers. 326

As a result, the DPLs are selected as follows: 327

~dlij =

{
1, if Slij in top K,

0, otherwise
(5)

where ~dlij is the symbol deciding the selection of a DPL in 328

the l-th FPN layer at location (i, j) in the corresponding feature 329

map. Note that we round down the K in practice. Moreover, 330

GDE can be directly applied to anchor-free detectors like 331

FCOS [36]. An empirical study in Fig. 3 demonstrates our 332

hypothesis. The estimated K has a positive correlation with 333

the relative number of pseudo labels selected. GDE’s adaptive 334

mechanism directly incorporates potential object information 335

into the dense pseudo-label selection process, carefully select- 336

ing suitable DPLs in densely distributed scenes. This approach 337

effectively addresses the dense distribution challenge inherent 338

in oriented object detection, enhancing efficiency compared to 339

previous methods and addressing an issue largely overlooked 340

by prior works. 341

After selecting suitable DPLs, to handle continuous values 342

(values between 0 and 1), we use Quality Focal Loss [37] 343

as the classification objective for unlabeled data. Let yT 344

and yS denote the teacher’s and student’s predictions of the 345

classification head. We calculate the classification loss as: 346

Lclsu = −|yT −yS |γ× [yT log(yS)+(1−yT )log(1−yS)] (6)
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Fig. 3. The correlation between the estimated K and the relative number of
pseudo labels selected under the DOTA-v1.5 10% partially labeled setting.
Relative number indicates the sum of confidence of pseudo labels selected.
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Fig. 4. Comparison of multi-scale learning between SPL-based methods
(PseCo [16] as example) and our DPL-based Dense Multi-Scale Learning.

where γ is the suppression factor. For the regression head and 347

auxiliary head (like the centerness branch in FCOS [36]), we 348

employ Smooth L1 Loss [38], following the employment in349

SOOD [6]. Thus, the overall loss of unlabeled data is:350

Lu = Lclsu + Lregu + Lauxu (7)

where, Lregu and Lauxu represent the regression loss and351

auxiliary loss, respectively, for the unlabeled data.352

D. Dense Multi-Scale Learning353

Scale variation across object instances remains a key chal-354

lenge in object detection tasks [39], [40], especially in oriented 355

object detection in aerial images. Despite the remarkable 356

progress made by modern detection models, this challenge is 357

particularly evident in the semi-supervised setting. Existing 358

works have demonstrated that incorporating an extra down- 359

sampled view of the unlabeled image and regularizing the 360

network with consistency constraints can improve the per- 361

formance of semi-supervised object detection [16]. However, 362

previous works [13], [16] mainly focus on methods based on 363

the SPL framework, where label-level scale learning is easy 364

to deploy. However, for DPL, as the DPLs are selected from 365

the original output of the model without any post-processing 366

method, it is difficult to build label-level scale learning, as 367

shown in Fig. 4. For DPL-based methods, SED [41] and 368

DSL [19] construct a distillation method to utilize multi-scale 369

information where all the original outputs are used without 370

a selection process. While DPL contains rich information, it 371

also retains many low-scoring predictions due to the absence 372

of a threshold operation. Since those low-scoring predictions 373

usually involve the background regions, the knowledge encom- 374

passed in them is intuitively less informative. Previous works 375

find that learning to mimic the teacher’s response in those 376

regions hurts performance [11]. As far as we are aware, no 377

existing work focuses on directly building multi-scale learning 378

for DPLs. 379

Based on the above observation, to mitigate scale variance 380

in semi-supervised oriented object detection, we propose a 381

new framework called Dense Multi-Scale Learning (DMSL) 382

for DPLs, which also leverages the down-sampled view but 383

resorts to building a more convenient method for multi-scale 384

DPL learning. Given an image, most detectors first extract 385

multi-scale features Pi with decreasing spatial sizes, which 386

constitute a feature pyramid P. In the case of FPN, the spatial 387

sizes of adjacent levels in the feature pyramid always differ 388

by 2×, resulting in P2−P6 layers with spatial sizes from 1/22 389

to 1/26 with respect to the size of the input image. 390

In this work, we first extract two feature pyramids from the 391

regular view and the down-sampled view of the input image, 392

denoted as P+ = {P+
2 , ..., P

+
6 } and P− = {P−

2 , ..., P
−
6 }, 393

respectively. Notice that with a 0.5× down-sample ratio, the 394

network produces a small-scale feature pyramid. Unlike pre- 395

vious works, we utilize the down-sampled view of the teacher 396

model and constrain the consistency across different scales. 397

Consequently, the training objective for unlabeled data in 398

Equation 7 extends to: 399

Lu = Lu,+ + Lu,− (8)

= Lclsu,+ + Lregu,+ + Lauxu,+ + Lclsu,− + Lregu,− + Lauxu,− (9)

where Lu,+ and Lu,− represent the loss for the unlabeled 400

data in the regular view and down-sampled view, respectively. 401

Through DMSL, DPLs with different scales are selected 402

to build a more direct and effective way to improve scale 403

adaptation. 404
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TABLE I
EXPERIMENTAL RESULTS ON DOTA-V1.5 WITH PARTIALLY LABELED SETTING. THE BEST RESULTS ARE IN BOLD. - INDICATES THAT THE RESULT WAS

NOT REPORTED IN THE LITERATURE. ∗ AND † INDICATE IMPLEMENTATIONS WITH ROTATED-FASTER R-CNN AND ROTATED-FCOS, RESPECTIVELY.

Setting Methods Partially Labeled Data

1% 5% 10% 20% 30%

Supervised Faster RCNN [43] 13.22 33.95 43.43 51.32 53.14

Semi-supervised

Unbiased Teacher∗ [15] - - 44.51 52.80 53.33
Soft Teacher∗ [10] - - 48.46 54.89 57.83

PseCo∗ [16] - - 48.04 55.28 58.03
DualPolish∗ [44] - - 49.02 55.17 58.44

PST∗ [33] - 41.39 49.63 57.39 60.40

Supervised FCOS [36] 15.67 33.38 42.78 50.11 54.79

Semi-supervised
Dense Teacher† [11] 18.38 40.27 46.90 53.93 57.86

SOOD† [6] 17.12 40.02 48.63 55.58 59.23
Denser Teacher (Ours)† 20.98 43.40 52.05 57.49 60.40

IV. EXPERIMENT 405

A. Dataset and Evaluation Protocol 406

DOTA [14] is one of the largest datasets for oriented407

object detection in aerial scenes. We conducted experiments408

on DOTA-v1.5 and DOTA-v1.0. Compared to DOTA-v1.0, the409

images in DOTA-v1.5 remain unchanged, but there are addi-410

tional annotations for small objects (less than 10 pixels) and an411

extra category, Container crane. These additional annotations412

for small objects make the dataset more challenging and better413

reflect the characteristics of real-world aerial imagery objects.414

Both DOTA-v1.5 and DOTA-v1.0 comprise 2,806 large-scale415

aerial images and are divided into three sets. The training set416

consists of 1,411 images, the validation set has 458 images,417

and the test set contains 937 images. We adopt the standard418

mean Average Precision (mAP) as the evaluation metric for419

the DOTA datasets.420

DIOR-R [42] is a challenging dataset with oriented objects421

annotated on the DIOR dataset. The DIOR-R dataset includes422

11,725 and 11,738 images as the trainval set and test set,423

respectively, with a uniform size of 800×800, covering 20424

categories. We also adopt mAP as the evaluation metric425

for the DIOR-R dataset. Compared with DOTA dataset, the426

DIOR-R dataset carefully collects data with uniform size and427

thus features a more balanced distribution of object sizes428

and densities, with fewer extreme variations compared to the429

DOTA dataset, which contains a wider range of object sizes430

and more variable densities.431

To be closer to the actual application scenario, we mainly432

consider a partially labeled setting to confirm the effectiveness433

of our proposed method on limited data.434

DOTA Partially Labeled. In DOTA-v1.5, following SOOD435

[6], we randomly sample 10%, 20%, and 30% of images from436

the training set as labeled data and set the remaining images437

as unlabeled data. For each protocol, we provide a fold with438

a similar distribution as the training set to avoid distribution439

mismatching [33]. To further evaluate our method in more440

severe situations, we extend this setting to 1% and 5%. Note441

that in the 1% setting, only 14 images are provided as labeled442

data. For DOTA-v1.0, we use the same setting as in DOTA-443

v1.5.444

DIOR-R Partially Labeled. Similarly to the setting in445

DOTA, we randomly sample 1%, 5%, 10%, 20%, and 30%446

of images from the trainval set of DIOR-R as labeled data 447

and keep the remaining data as unlabeled data. 448

B. Implementation Details 449

We use Rotated-FCOS [36] as the base rotated object detec- 450

tor and ResNet-50 [45] with FPN [39] as the backbone. The 451

implementation of the base detector follows the MMRotate 452

framework [46]. 453

DOTA Partially Labeled. The model is trained for 120k 454

iterations on two NVIDIA RTX3090 GPUs with three images 455

per GPU. We use SGD with the learning rate initialized to 456

0.0025. The weight decay and momentum are set to 0.0001 457

and 0.9, respectively. For a fair comparison, we set the data 458

sample ratio between the labeled and unlabeled data to 2:1, 459

following the setting in SOOD [6]. Following previous work 460

[6], [33], we split the original images into 1024×1024 patches 461

with a pixel overlap of 200 between adjacent patches. 462

DIOR-R Partially Labeled. We follow the same imple- 463

mentation as in DOTA. 464

We adopt the same asymmetric data augmentation used 465

in SOOD [6]. Specifically, we use strong augmentation for 466

the student model and weak augmentation for the teacher 467

model. Strong augmentation includes random flipping, color 468

jittering, random grayscale, and random Gaussian blur, while 469

weak augmentation only includes random flipping. Following 470

previous works [6], [12], we use the ”burn-in” strategy to 471

initialize the teacher model. For the α in Equation 2, which 472

balances the contributions of the supervised and unsupervised 473

losses, we initially adopt α to 1, following the prior work [6]. 474

However, with the introduction of DMSL, which incorporates 475

two unsupervised losses at different scales, we adjust α to 0.5. 476

This adjustment ensures equal contributions from the super- 477

vised and unsupervised components, maintaining a balanced 478

influence across all loss terms. 479

C. Main Results 480

In this section, we compare our method with SOTA semi- 481

supervised oriented object detection methods [6], [33] and 482
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TABLE II
EXPERIMENTAL RESULTS ON DOTA-V1.0 WITH PARTIALLY LABELED SETTING. THE BEST RESULTS ARE IN BOLD.

Setting Methods Partially Labeled Data

1% 5% 10% 20% 30%

Supervised FCOS [36] 15.55 34.34 43.03 51.40 55.30

Semi-supervised
Dense Teacher [11] 20.05 42.57 49.53 55.76 58.07

SOOD [6] 17.52 43.00 50.18 56.47 60.37
Denser Teacher (Ours) 19.45 45.84 52.62 59.20 62.82

TABLE III
EXPERIMENTAL RESULTS ON DIOR-R WITH PARTIALLY LABELED SETTING. THE BEST RESULTS ARE IN BOLD.

Setting Methods Partially Labeled Data

1% 5% 10% 20% 30%

Supervised FCOS [36] 19.33 37.45 43.66 47.96 52.23

Semi-supervised
Dense Teacher [11] 26.98 44.45 51.05 55.22 57.51

SOOD [6] 25.02 41.56 48.18 52.61 55.47
Denser Teacher (Ours) 26.88 46.46 52.87 55.93 58.73

re-implement some SOTA SSOD methods on oriented object 483

detectors for reference. In the experiments, for a fair com- 484

parison, we apply the same augmentation settings in the re-485

implemented experiments.486

1) Quantitative Analysis:487

DOTA Partially Labeled. We compare our proposed488

Denser Teacher with existing SOTA methods on the DOTA-489

v1.5 and DOTA-v1.0 datasets. The results are shown in Table. I490

and Table. II. In the DOTA-v1.5 dataset, our method, Denser491

Teacher, achieves the best performance under the 1%, 5%,492

10%, 20%, and 30% proportions, reaching 20.98 mAP, 43.40493

mAP, 52.05 mAP, 57.49 mAP, and 60.40 mAP, respectively.494

This outperforms the supervised baseline by 5.31 points, 10.02495

points, 9.27 points, 7.38 points, and 5.61 points, respectively.496

Similarly, our method also surpasses or equals the previous497

SOTA method PST [33], especially when labeled data are498

scarce. For example, it outperforms PST [33] by 2.01 points499

and 2.42 points in the 5% and 10% settings, confirming the500

effectiveness of our proposed method on severely limited data.501

Moreover, among DPL-based methods, our method also shows502

excellent performance and surpasses the SOTA method SOOD503

[6] by a large margin. Furthermore, we compare our proposed504

method, Denser Teacher, with re-implemented DPL-based505

methods in the DOTA-v1.0 dataset. As shown in Table. II,506

our proposed Denser Teacher achieves optimal performance507

in most settings, except in the 1% setting. Specifically, our508

method achieves a performance of 19.45 mAP, which is509

0.60 points behind Dense Teacher [11]. In other settings, our510

method clearly exceeds previous DPL-based methods, showing511

outstanding performance in semi-supervised oriented object512

detection.513

DIOR-R Partially Labeled. To further evaluate our method514

on various datasets, we compare our Denser Teacher method515

with re-implemented DPL-based methods on DIOR-R. The516

results are shown in Table. III. Our proposed Denser Teacher517

achieves the best performance in most cases. Specifically, it518

reaches 26.88 mAP, 46.46 mAP, 52.87 mAP, 55.93 mAP,519

and 58.73 mAP under the 1%, 5%, 10%, 20%, and 30%520

labeled data settings, surpassing the supervised baseline by521

7.55 points, 9.01 points, 9.21 points, 7.97 points, and 6.5 522

points, respectively. Compared with SOOD [6], our method 523

shows a significant improvement across different data ratios. 524

Moreover, we notice that Dense Teacher [11] also surpasses 525

SOOD [6] by a large margin. We conjecture that since the 526

object distribution in DIOR-R is not as extreme as in DOTA, 527

the disadvantage of using a fixed selection ratio is greatly 528

compensated, resulting in similar performance. Nevertheless, 529

our method still surpasses Dense Teacher in most settings, 530

showing great adaptation in changeable scenarios. 531

We observed that on the DOTA-v1.0 and DIOR-R datasets, 532

our method significantly outperforms the SOOD and FCOS 533

methods under the 1% labeled data setting. Although its 534

accuracy is slightly lower than that of the Dense Teacher 535

method, the performance remains comparable. This minor per- 536

formance gap may be attributed to the relatively weaker base 537

detector used in our framework, which struggles to distinguish 538

between foreground and background regions effectively. This 539

challenge indirectly impacts the quality of DPLs generated 540

during training. Despite this, our method achieves optimal 541

performance in all other labeled data settings, demonstrating 542

its effectiveness and robustness for semi-supervised oriented 543

object detection across various datasets. 544

2) Qualitative Analysis: Fig. 5 presents a qualitative com- 545

parison between Denser Teacher and other SOTA methods. 546

We find that our method excels in detecting multi-scale dense 547

objects, indicating that multi-scale object information and 548

abundant supervision signals are effectively learned. Moreover, 549

the visual results demonstrate that introducing the proposed 550

mechanism significantly reduces false negatives (dashed cir- 551

cles) and false positives (solid circles), indicating more robust 552

learning of the objects and a significant contribution to semi- 553

supervised oriented object detection. 554
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(a) Ground Truth (b) Supervised Baseline (c) SOOD (d) Ours

Fig. 5. Some visualization examples from the DOTA-v1.5 dataset. The green rectangles indicate predictions. The red dashed circle, solid red circle, and red
arrow represent false negatives, false positives, and inaccurate orientation predictions, respectively.

D. Ablation Study 555

In this section, we conduct ablation experiments to validate 556

our key designs. Unless specified, all ablation experiments are557

performed under the 10% partially labeled setting in DOTA-558

v1.5.559

1) Component Analysis: The contributions of different560

components of our proposed Denser Teacher are listed in561

Table. IV. In the DOTA-v1.5 10% partially labeled setting,562

the Rotated FCOS supervised baseline achieves 42.97 mAP.563

TABLE IV
COMPONENT ANALYSIS OF THE PROPOSED METHOD.

Methods GDE DMSL DOTA-1.5 DIOR-R

Supervised - - 42.97 43.66

Denser Teacher X - 51.00 52.15
X X 52.05 52.87
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TABLE V
COMPARISONS OF DIFFERENT DENSE PSEUDO-LABEL SELECTION

METHODS.

Selection Strategies mAP

I Learning Region 46.90
II Instance-level DPL 47.18
III GDE (Ours) 51.00

(a) Ground Truth (b) Dense Teacher

(c) SOOD (d) Denser Teacher (Ours)

Fig. 6. Visualization of different dense pseudo-label selection methods.
Different color represents different category. Note that in SOOD [6], dense
pseudo-labels are selected by random sampling in the prediction of teacher
model filtered by fixed threshold 0.5 .

By using GDE, the performance can be significantly improved564

from 42.97 to 51.00 mAP, already surpassing the SOTA565

method in Table. I. By adopting DMSL, the performance can566

be further improved to 52.05 mAP, indicating that the model567

becomes more robust and has higher accuracy. Similarly, in568

the DIOR-R 10% partially labeled setting, by using GDE,569

the performance can be significantly improved from 43.66 to570

52.15. By adopting DMSL, the performance can be further571

improved to 52.87 mAP. The ablation studies in Table. IV572

verify the effectiveness of each module in Denser Teacher in573

various dataset.574

2) Comparisons of Different Dense Pseudo-Label Selection575

Methods: The selection of DPL is one of the key components576

of DPL-based methods. To further verify the effectiveness577

of our proposed selection method, we conduct a comparison578

of different selection methods, including: the learning region579

used in Dense Teacher [11], the instance-level DPL selection580

method used in SOOD [6], and our GDE. For a fair compar-581

ison, we remove the other components in the methods. The582

results are shown in Table. V. We also provide a visualization583

of the selection results of different methods in Fig. 6. Dense584

Teacher [11] involves a learning region strategy based on Fea-585

PL

BD

BR

GTF

SV

LV

SH

TC

BC

ST

SBF

RA

HA

SP

HC

CC

PL

0.2

0.4

0.6

0.8

Dense Teacher AP

SOOD AP

Denser Teacher AP

Fig. 7. Class-wise AP in different methods. Plane (PL), Baseball Diamond
(BD), Bridge (BR), Ground Track Field (GTF), Small Vehicle (SV), Large
Vehicle (LV), Ship (SH), Tennis Court (TC), Basketball Court (BC), Storage
Tank (ST), Soccer-Ball Field (SBF), Roundabout (RA), Harbor (HA), Swim-
ming Pool (SP), Helicopter (HC), and Container Crane (CC).

ture Richness Score [47], but requires a static hyper-parameter586

to control the number of selections, resulting in deficient DPL587

selection. Such a design also brings challenges in complex 588

scenarios where extreme distribution is common. SOOD [6] 589

improves the quality of DPLs by randomly sampling from 590

the SPLs. This helps the model concentrate on high-quality 591

supervision but makes its performance highly dependent on 592

the results of SPLs, which have been confirmed to be sensitive 593

in complex scenes [11]. In Fig. 6, we present the SPLs used 594

in SOOD [6], filtered by a fixed threshold of 0.5, to provide 595

an intuitive understanding. In contrast, our proposed selec- 596

tion method, GDE, shows an obvious advantage in selecting 597

suitable DPLs, and thus achieves the best performance gain. 598

This demonstrates the effectiveness of our proposed selection 599

method in complex scenes, clearly setting it apart from existing 600

methodologies. 601

3) Multi-scale Learning: DMSL provides a straightforward 602

and effective approach to achieving multi-scale learning, and 603

it is distinctly differentiated from existing methodologies 604

through the incorporation of DPL. To further demonstrate 605

our method’s effectiveness in multi-scale learning, we select 606

several representative categories, including Ship (SH), Plane 607

(PL), Small Vehicle (SV), Large Vehicle (LV), Harbor (HA), 608

Swimming Pool (SP), and Basketball Court (BC), and report 609

the results of our method. We also re-implement some DPL- 610

based methods for reference. Results are shown in Table. VI, 611

where our method shows significant improvement compared 612

with the supervised baseline in all selected categories. For 613

small objects like ships, small vehicles, and large vehicles, our 614

method shows great improvement compared with SOOD [6]. 615

In fact, our method surpasses SOOD in all selected categories 616

except for the Plane. SOOD has a slight improvement in 617

this category. To better demonstrate our method’s multi-scale 618
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TABLE VI
THE PERFORMANCE OF THE PROPOSED DENSER TEACHER AND OTHER DPL-BASED METHODS ON SEVERAL REPRESENTATIVE CATEGORIES IN THE

VALIDATION SET OF DOTA-V1.5. THE BEST RESULTS ARE IN BOLD.

Setting Methods SH PL SV LV HA SP BC mAP

Supervised FCOS [36] 0.779 0.782 0.429 0.578 0.308 0.493 0.295 42.97

Semi-supervised
Dense Teacher [11] 0.695 0.776 0.403 0.525 0.365 0.535 0.400 46.78

SOOD [6] 0.778 0.791 0.477 0.646 0.410 0.453 0.376 47.93
Denser Teacher (Ours) 0.799 0.784 0.491 0.665 0.478 0.557 0.471 52.05

TABLE VII
EXTENSION TO QUERY-BASED BACKBONE. EXPERIMENTS ARE

CONDUCTED AT 10% SETTING.

Setting Method mAP

Supervised FCOS [36] 43.34

Semi-supervised
Dense Teacher [11] 46.46

SOOD [6] 47.73
Denser Teacher (Ours) 48.99

TABLE VIII
TIME COST ANALYSIS. EXPERIMENTS ARE CONDUCTED AT 10% SETTING.

Setting Method mAP Seconds

Supervised FCOS [36] 42.97 0.20

Semi-supervised
Dense Teacher [11] 46.90 0.36

SOOD [6] 48.63 0.54
Denser Teacher (Ours) 52.05 0.59

learning ability, we visualize the class-wise AP of our method 619

and other DPL-based methods in Fig. 7. The results show 620

that our method significantly improves scale adaptation, thus621

achieving better performance.622

4) Extension to other backbone: We also validate the623

effectiveness of the proposed method on other backbone.624

Specifically, we take Swin Transformer [48] as backbone, and625

implement our proposed method under the same experimental626

setting. We also implement Dense Teacher and SOOD as627

comparison. As shown in Table. VII, when extending to query-628

based backbone, our proposed method still achieves obvious629

improvement, showing great effectiveness.630

5) Time cost analysis: We report the time cost analysis631

of our method. Moreover, Dense Teacher [11] and SOOD632

[6] are also evaluated for comparison. The results are shown633

in Table. VIII. Our proposed method slightly increases the634

computational cost compared with SOOD but achieves obvious635

performance improvement. Moreover, our proposed method636

adopts teacher model for inference and thus no extra compu-637

tational expense is introduced compared to the base model in638

the inference stage.639

V. DISCUSSION640

Our method demonstrates strong performance in semi-641

supervised oriented object detection, particularly in addressing642

multi-scale learning challenges with the novel DMSL frame-643

work tailored for DPLs, which has been largely overlooked644

in previous works. However, its usage of the distinctive645

characteristics of aerial objects remains limited. Specifically,646

our method primarily leverages the dense distribution and647

multi-scale characteristics of aerial objects, which contribute648

to its success. However, other distinctive characteristics, such 649

as large scale ratios and complex backgrounds, are not explic- 650

itly addressed, potentially limiting the method’s applicability 651

in more diverse aerial scenarios. Moreover, the proposed 652

GDE method might face limitations in scenarios with sparse 653

distributions, as shown in Fig. 3. The results indicate that 654

the estimation of K becomes less accurate in such scenes, 655

potentially affecting overall model performance. Future work 656

could explore adaptive strategies to enhance GDE’s robustness 657

in handling sparse or heterogeneous distributions. 658

VI. CONCLUSION 659

In this paper, we analyze the shortcomings of existing DPL- 660

based methods in semi-supervised oriented object detection 661

and identify that these methods suffer from an imbalance 662

in obtaining potential positive samples and removing the 663

interference of inaccurate pseudo labels. To overcome this 664

problem, we introduce Denser Teacher, a novel method for 665

semi-supervised oriented object detection. In Denser Teacher, 666

we propose Global Dynamic K Estimation (GDE) to leverage 667

the information of potential objects to guide the selection of 668

DPLs in densely-distributed scene and mitigate scale variance 669

by introducing Dense Multi-Scale Learning (DMSL). Through 670

these designs, our Denser Teacher achieves significant im- 671

provements compared with the SOTA methods. Extensive 672

experiments demonstrate the effectiveness of our proposed 673

method. 674
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