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Abstract—PET scanners use scintillation crystals to stop high-
energy photons. The ensuing lower-energy photons are then
detected via photomultipliers. We study the performance of a
stack of monolithic silicon-pixel detectors as an alternative to
the combination of crystals and photomultipliers. The result-
ing design allows for pitches as small as 100µm and greatly
mitigates depth-of-interaction problems. We develop a theory
to optimize the sensitivity of these and other scanners under
design constraints. The insight is complemented by Monte Carlo
simulations and reconstructions thereof. Experiments and theory
alike suggest that our approach has the potential to move PET
closer to the microscopic scale. The volumetric resolution is an
order of magnitude better than that of the state of the art and
the parallax error is very small. A small-animal scanner is now
under construction.

Index Terms—Positron emission tomography, small-animal,
sensitivity, depth of interaction, optimization.

I. INTRODUCTION

The resolution of positron emission tomography (PET)
has evolved hand in hand with scintillator technology since
the 1950s [1]. Advances in manufacturing techniques have
allowed for scintillation crystals with a better balance be-
tween (photon) stopping power, signal output, and decay time.
They have also enabled the miniaturization of crystals into
arrays of increasingly smaller pitch [2]. Photon detectors—
and the electronics therein—are another key component of
PET scanners because they measure the scintillation of the
crystals. Accordingly, breakthroughs in detector technology
have translated into scanner improvements too [1]. For ex-
ample, photo-multiplier tubes are being replaced by faster
and smaller solid-state photodetectors, while the addition of
dual-side-readout electronics is improving depth-of-interaction
(DOI) accuracy [3], [4].

The particle-physics community has developed silicon-pixel
detectors [5]–[7]. They are used in many experiments, such
as in those performed at CERN’s Large-Hadron Collider [8].
A promising generation of silicon detectors is based on
monolithic active-pixel sensors (MAPS), wherein the sensor
is embedded directly onto the same silicon substrate as the
CMOS readout electronics [9], [10]. In contrast to hybrid
detectors, the lack of the expensive die-to-die interconnection
in MAPS simplifies the assembly process, reducing production
costs while allowing for great miniaturization.
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Fig. 1. Comparison between paradigms. a) In current technologies, a
crystal stops the high-energy photon. The resulting lower-energy photons are
then detected via a photomultiplier tube. b) Silicon pixels with individual
readouts stacked in layers (five layers are shown). Compton and photoelectric
interactions with the Si generate a photoelectron that is detected by pixel
diodes. The photon is not necessarily stopped. The separation between pixels
is marked by horizontal lines. Relative sizes between the crystals in (a) and
the detectors in (b) are scaled according to the smallest in the state of the art.

In this article, we argue that the MAPS technology is
now mature enough to be applied to PET and to expand
its current boundaries towards ultrahigh-resolution molecular
imaging. We study a scanner configuration wherein MAPS
are stacked in layers to accumulate sufficient stopping power.
This is in replacement of both the scintillation crystals and the
detectors deployed in conventional PET scanners (Figure 1a).
The resulting paradigm has a detector pitch of 0.1 mm with
a layer thickness of only 0.32 mm and a timing accuracy of
0.2 ns (Figure 1b), all at a reasonable power consumption [11],
[12]. MAPS also offer the possibility to trade pitch for timing.

We present a theoretical framework to optimize the sen-
sitivity and the resolution of our scanner. In particular, we
propose an expression for the sensitivity in terms of the x-
ray transform, which we then maximize under the design
constraints of the scanner. We also assess the effects of an
heterogeneous sensitivity by deriving a Cramér-Rao bound,
and propose a model for the parallax error. Our theoretical
approach can be applied to other scanners, too. We validate
our predictions with Geant4-Allpix2 Monte Carlo simulations
that span from positron emission to pixel readout [13], [14].

Our results confirm the potential of MAPS in small-animal
PET scanners. For a scanner with a transaxial field of view
(FOV) of 34 mm, a small diameter of 40 mm, and an ax-
ial coverage of 44 mm, we find an expected resolution of
0.22 mm at the center of the FOV, and of 0.24 mm close
to the edges (15 mm off-axis). This is for Fluorine-18-labeled
radiotracers and a filtered-back-projection reconstruction. The
volumetric resolution is of 0.01 mm3 at the center and of
0.014 mm3 at 15 mm. The sensitivity of the whole scanner
ranges between 3.3− 5.0 % depending on the introduction of
accessory stopping layers.

These simulations suggest that our configuration of silicon
pixels could improve the volumetric resolution by an order
of magnitude in comparison to the small-animal scanner
prototypes with the best resolution in the state of the art
(0.13− 0.22 mm3) [15]–[18]. The timing resolution could
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Fig. 2. The scanner. a) Top: Microscopic image of an array of 0.1 mm-pitch pixels manufactured for the scanner using SiGe BiCMOS. Bottom: zoom-in of
the electronic design showing seven (entire) pixels. b) Block of 60 stacked layers (black) and their readout electronics (green). The pipes of the cooling system
wind around the block. c) The scanner is made out of 4 blocks arranged around the field of view. Electrical connections (at the back) are also accounted for.

potentially improve by one order, too. Perhaps the most
enticing feature, however, is the DOI resolution (0.32 mm of
layer thickness), which greatly reduces parallax errors. This
prompted us to design the scanner with a very small diameter
to profit from the small pixel pitch by minimizing acolinearity
errors. Due to the peculiarities of the detection process, we are
still working on being able to identify which photons scatter
inside the FOV. Therefore, a factor to consider regarding the
sensitivity is that we do not use an energy window.

As a result of this promising analysis, we have undertaken
the task to build a prototype of the scanner (Figure 2).

In Section II, we give an overview of the state of the art
in small-animal PET. We continue with a detailed description
of the scanner in Section III. We then study the resolution
theoretically (Section IV). We follow with a general theory
for the estimation and optimization of the sensitivity of the
scanner in Section V. Finally, we perform simulations for
validation and provide further insight in Sections VI and VII.

II. STATE OF THE ART IN SMALL-ANIMAL PET

Small-animal PET scanners are tailored to mice and rats
for the purpose of preclinical studies. To achieve the same
relative resolution that is common in clinical human scanners
(2.5 mm for a 125 mm brain), a target resolution of 0.2 mm
was deemed necessary for mice (with a 10 mm brain) by [2].
This is in coincidence with the resolution needed to study
atherosclerotic plaques in mouse models of cardiovascular
disease [19], but it might be insufficient to study the equivalent
of some of the more intricate cerebral structures that are
resolvable with the latest human-brain scanners (1.3 mm of
resolution at the time of writing [20]).

The ensuing race for ultra-resolution has brought experi-
mental scanners to the half-millimeter mark. At the forefront,
there are a few scanners boasting a resolution of 0.5− 0.6 mm
at the center of their FOV, albeit this worsens towards the
edges [15]–[17]. Pinholes [15] or crystal arrays with small
pitches of around 0.5 mm are used to this achievement.
This results in a volumetric resolution of approximately
0.13− 0.22 mm3 at the center. The DOI resolutions of these

scanners range between 1.7 mm and 5 mm. More recently, a
scanner with an axial coverage that is long enough to image
the entirety of the mouse brain reached 0.55 mm of resolution.
It used crystal arrays in a DOI configuration with 3 layers [18].
There is also a proposition for a scanner that was projected to
have a resolution better than 0.5 mm at a big diameter using
Monte Carlo simulations [21]. A chart of several scanners
can be found in [21]; we have also compiled some values in
Table A1. For reference, current commercial scanners for mice
range between 1 and 2 mm in resolution [2], or ∼ 3 mm3.

Even with the introduction of the NEMA standard, a fair
comparison of scanners is not straightforward because the
resolution depends on many variables such as pitch, diameter,
and even reconstruction method (see Table A1). For example,
a wider diameter increases the acolinearity error, but it can
decrease the parallax error if the FOV remains (intentionally)
unchanged. This tradeoff of a wider diameter is more benefi-
cial for bigger detectors. Note that our choice of tradeoff is in
favor of a small diameter.

The sensitivities of PET scanners are difficult to compare,
too, because of differences in energy windows and (axial and
transaxial) coverage. The resolution of pinhole-based systems
often comes at the price of reduced sensitivity [15]. Scanners
based on small crystal pitches can also suffer in sensitivity due
to small depths and low packing fractions [16], albeit some
technologies do overcome these challenges [17], [18], [21].

III. DESCRIPTION OF THE SCANNER

We now describe the scanner design investigated in this
paper. We note that some design parameters are only justified
later (Sections IV-V) according to the optimization of resolu-
tion and sensitivity.

1) Characteristics of the Silicon Sensors: SiGe BiCMOS
technology can produce MAPS with a pixel pitch of 0.1 mm,
and with 0.02 ns of timing resolution [11]. We propose to
arrange multiple 0.1 mm-pitch pixel matrices into layers of
length 60 mm and (axial) width 44 mm (Figure 2a-b). This
amounts to ∼ 2.5 · 105 detection pixels per layer. Based on
[11], [12], we intentionally adopt a MAPS configuration with
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a worse [11] timing resolution of 0.2 ns in order to reduce
power consumption to a level that scales to a whole scanner
(see Appendix A). This corresponds to 4 µW per channel.
A more conservative estimate for the final timing resolution
upon construction is of 0.3 ns on account of the front-end
electronics and system-level effects such as calibration and
layer synchronization. Each layer is made of 0.27 mm of
Si on top of a flexible printed circuit (FPC), which can be
manufactured to be anywhere between 0.05 and 0.2 mm. This
translates into a potential thickness of only 0.32− 0.47 mm
per layer. An extra 0.05 mm of bismuth can be added on top of
each layer to double the stopping power. For a single layer, the
probability of detecting an orthogonal photon is 0.48− 0.73 %
(without, and with Bi). With stacks of 60 layers, we show
later that the sensitivity of the whole scanner to a photon
pair is roughly 3.3− 5.0 % (without, and with Bi). The thin
layering results in a very accurate DOI. The DOI is of special
importance because it improves resolution in two ways: by
reducing parallax errors, and by allowing for the detectors of
the scanner to be closer to the FOV, which in turn reduces
acollinearity errors.

MAPS offer great scalability. Such technology allows for
large areas of detectors to be manufactured commercially
by very-large-scale integration processes. Therefore, silicon-
pixel technology has now reached the right scale to make the
scanner not only possible, but also affordable.

2) Geometry of the Scanner: We designed the scanner rect-
angular to make it simple, scalable, and modular [22]. Other
scanners with a “box” shape have been developed [23]–[26].
We chose to make the sides overlap completely to improve
the angular coverage. This design facilitates the integration of
the cooling system and allows for a more uniform sampling of
the FOV. The sensitivity maps resulting from the rectangular
design are quite heterogeneous, but they can be compensated
for in the reconstruction step. The excellent DOI makes this
task easier.

The scanner consists of 4 rectangular detector blocks, each
comprising n = 60 layers of length l = 60 mm (Figure 2b).
The blocks are arranged with a rotational symmetry of 90◦

around the FOV (Figure 2c), totaling ∼ 6 · 107 pixels. The
radius of the transaxial FOV is RFOV = 17 mm. A cooling
system is wrapped around the detector blocks. In accordance
with finite-element simulations, the cooling system is designed
to dissipate the heat generated by the 240 W of power required
to run the electronics in each block. Its casing is built in
aluminum and is 3 mm-thick (Figure 2c). This makes the
scanner 2R = 40 mm in diameter. While the cooling system
introduces these small detector gaps of 6 mm between detector
blocks, these gaps do not face the FOV and, therefore, do not
result in significant sinogram gaps.

The 34 mm of transaxial FOV are meant to accommodate
small mouse beds, which are often 30 mm in inner diam-
eter [27], [Molecubes], [MR Solutions]. For example, they
should fit mouse strains such as the common C57BL/6J; or
the 129S1/SvJ and B6.129P2-Apoetm1Unc/J strains at standard
dosing times of 8− 12 weeks [28].

3) Detection Process and Energy Measurements: The de-
tection process in our silicon-pixel scanner is not standard

in PET. Instead, it is similar to that in a gas-ionization
chamber. After an incident photon interacts in the scanner, the
ensuing photoelectron loses its kinetic energy via ionization
by generating electron-hole pairs in the crystal lattice of the
silicon along its trajectory. These charges drift (and diffuse)
toward the electrodes of the pixel, ultimately producing an
electronic signal in the channel. The signal is proportional to
the amount of charge which, in turn, is proportional to the
energy deposited by the photon. It is possible that the random
walk of the photoelectron crosses into contiguous pixels and
ionizes them, too, albeit to a different degree. In such case,
the location of the different pixels that are triggered can be
combined by (possibly charge-weighted) averaging. This effect
increases the apparent pitch size slightly (see Section VII-3),
but the effect on the resolution is divided up into the three
spatial dimensions.

The current in the pixel is measured by an analog-to-digital
converter in time-over-threshold units, with a conservative
resolution of 1 ns. This translates into a charge resolution of
200 electrons, or into an energy of ∼ 0.72 keV in silicon
at 3.6 eV per electron-hole pair. These energy measurements
could be used to filter out noise (see Section VI-B), to assign
cluster weights to the pixels, and to alleviate time-walk effects.
However, we are still investigating how to distinguish events
that scatter within the FOV, and how the front-end accuracy
translates into the standard energy resolution quoted in PET.
(Find the spectrum in Figure S1.) For this article, we set a wide
energy window of 10− 850 keV that includes all interactions
and we do not exploit the energy measurements any further.

Due to the energy regime and atomic number, most photons
interact via Compton scattering in our scanner. The less
energy they deposit, the less movement of the photoelectron
across pixels, and the better the associated resolution (see
Section VII-3). The very few photons that undergo photo-
electric absorption instead deposit more energy. This worsens
their corresponding spatial resolution because the resulting
photoelectrons can move further across pixels. While we can
resolve Compton interactions better, we include both kinds
of interactions in our reconstructions. This is consistent with
the wide energy window: our scanner does not aim at stopping
photons, and Compton interactions can deposit small fractions
of the energy of the photon.

In the vast majority of cases, the initial incident photon
scatters once and then leaves our scanner without further inter-
action. Only a fraction of its energy is deposited and converted
to signal. This is in contrast to standard PET scanners, which
aim at stopping the incident photon entirely through the use
of scintillators [2]. Even then, the scintillator-based scanners
still suffer from inter-crystal scattering, whereby different
interactions caused by the same incident photon take place at
different crystals and are difficult to disambiguate [29]–[31].

Other semiconductors such as CdTe or CdZnTe have been
used in PET scanners [32], [33]. In principle, their higher
atomic number could provide more stopping power to our
scanner, thereby increasing sensitivity. Notice that the photo-
electron would lose energy faster, but there would be a higher
proportion of photoelectric interactions. Unfortunately, there
is no MAPS technology available for these materials. Hybrid
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approaches (such as bump-bonding a pixelated readout ASIC)
result in worse DOIs at much higher prices and usually require
bigger pitches.

The cost of building a prototype of our scanner is compara-
ble to the price of commercial small-animal PET scanners (see
Appendix B). The readout system is described in Appendix C.

IV. THEORETICAL RESOLUTION

We now reconsider the limits of resolution of PET scan-
ners [34], [35] in light of our proposal. This will explain many
of our design choices and provide a quantitative comparison
between silicon and scintillation-crystal technologies.

A. Limits of Resolution
We first review the limits imposed by physics:

a) Positron Range: Perhaps the most fundamental limit
in PET is the mean free path (MFP) of positrons before they
annihilate with an electron. This distance is a function of
the initial kinetic energy of the positron and thus depends
on the radiotracer. We chose the pixel pitch of the silicon
detectors in accordance with the most common radiotracer,
[18F]fluorodeoxyglucose (FDG). At rFWHM ≈ 0.102 mm of full
width at half maximum (FWHM) [36], the MFP of FDG in
water ranks among the smallest over many radiotracers. This
value corresponds to the projection of the MFP onto the lines
of response (LOR). In practice, the FWHM of the range of the
positron is estimated by modelling the underlying distribution
r(x) as the sum of two exponentials for x ≥ 0 [36], [37, Eq.
(16) and Table 1 (corrected units)]. Fitting this model to binned
data is sensitive, which might explain the slight discrepancy of
FWHMs across the literature [36], [38]. The positron limit may
be (partially) overcome using deconvolution techniques [37].
Radiotracers with a bigger MFP will benefit less from the
small pitch of our scanner.

b) Acollinearity: Photon pairs are not emitted in per-
fectly opposite directions upon annihilation. Instead, the an-
gular momentum of electron and positron introduce an un-
certainty with ϑ = 8− 10 mrad of FWHM [39] into the
antiparallel assumption of π rad. This translates into a spatial
error between LORs of sin (ϑ/2)R ≈ (ϑ/2)R, which cor-
responds to aFWHM ≈ 0.08− 0.1 mm for the first (and most-
often hit) layer of our scanner. The distribution a(x) of the
acollinearity error is modelled as a Gaussian with standard
deviation aFWHM/

√
8 ln 2.

The architecture of the scanner also affects the resolution:
c) Detector Pitch: The final resolution is tightly linked to

the accuracy with which photons can be localized. This follows
a triangular distribution d(x) = dFWHM max (0, 1− |x/dFWHM|)
with a FWHM of p/2, where p is the pitch of the pixels.
The silicon-pixel design allows for detector pitches that com-
pete with the FWHM of the physical limits. According to
the combination of errors, (3), a sensible tradeoff is to set
p = 0.1 to 0.2 mm (Figure 3). Therefore, we chose 0.1 mm
even though there exist smaller MAPS [40]. In comparison,
the smallest pitches in crystal-based technology are 0.32 mm,
0.43 mm, and 0.5 mm in the most recent of experimental
scanners [16], [17], [21].
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0.43 mm, and 0.5 mm in the most recent of experimental
scanners [?], [?], [?].

d) Parallax Error: The miniaturization in width afforded
by silicon also applies to depth. This results in a DOI between
0.32 and 0.47 mm. Silicon pixels with individual readouts can
be made only 0.27 mm thick (or even less [?], [?]) and
stacked in layers. An increase in the thickness of the FPC from
0.05 to 0.2 mm (Figure 3) decreases the price of production
with minor repercussions on off-axis resolution.

By contrast, crystal length is 5 mm, 13 mm, and
10 � 20 mm in the scanners [?], [?], [?]; albeit the latter two
can measure the depth of interaction (DOI) of the photon with
accuracies of only 1.7 mm and 1 � 2 mm by combining the
crystal arrays with dual-ended readout DOI encoding modules.

DOI accuracy is important because it affects both radial
and off-axis resolution. In conventional PET, photons are often
assigned to the face of the crystal in which they are detected.
However, when the sample is off-center, the angle of entry
can be slanted enough for a photon to cross multiple crystals
and be assigned to the wrong face. Another way to envision
this radial elongation is to consider the apparent width of the
detector. An approximation of the FWHM of this effect is
↵⇢/

p
⇢2 + R2 in [?], where ⇢ is the sample offset and ↵ is

an experimental constant. We propose another approximation
based on the observation that ↵ should depend on the width p
and h the thickness of the detector, as well as on ⇢. By means
of geometric arguments, this alternative perspective yields

dFWHM =
h⇢

2R
+

p
p

R2 � ⇢2

2R
. (1)

This includes the error p/2 of the detector pitch, which is re-
covered for ⇢ = 0. See Appendix D for more details. Note that
h/2 could be approximated by the DOI resolution (FWHM)
in other scanners, just as p/2 is the FWHM corresponding to
half the apparent pitch.

With silicon pixels, the improvement in DOI accuracy
effectively eliminates radial elongation (Figure 3). As a con-
sequence, the resolution is practically uniform over the FOV,
which means that the entire FOV is useful. In turn, this allows
for more compact scanners with smaller acollinearity errors.
By contrast, conventional PET scanners are made substantially
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(rescaled) portray the diminishing returns of making p smaller. All are in
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for a pitch of p = 0.1 mm and three different thicknesses of Si. They all
have an added 0.05 mm of FPC (total thickness is h) except the one with
the asterisk (0.2 mm).

d) Parallax Error: The miniaturization in width afforded
by silicon also applies to depth. This results in a DOI between
0.32 and 0.47 mm. Silicon pixels with individual readouts can
be made only 0.27 mm thick (or even less [40], [41]) and
stacked in layers. An increase in the thickness of the FPC from
0.05 to 0.2 mm (Figure 3) decreases the price of production
with minor repercussions on off-axis resolution.

By contrast, crystal length is 5 mm, 13 mm, and
10− 20 mm in the scanners [16], [17], [21]; albeit the latter
two can measure the depth of interaction (DOI) of the photon
with accuracies of only 1.7 mm and 1− 2 mm by combining
the crystal arrays with dual-ended readout DOI encoding
modules.

DOI accuracy is important because it affects both radial
and off-axis resolution. In conventional PET, photons are often
assigned to the face of the crystal in which they are detected.
However, when the sample is off-center, the angle of entry
can be slanted enough for a photon to cross multiple crystals
and be assigned to the wrong face. Another way to envision
this radial elongation is to consider the apparent width of the
detector. An approximation of the FWHM of this effect is
αρ/

√
ρ2 +R2 in [35], where ρ is the sample offset and α is

an experimental constant. We propose another approximation
based on the observation that α should depend on the width p
and h the thickness of the detector, as well as on ρ. By means
of geometric arguments, this alternative perspective yields

dFWHM =
hρ

2R
+

p
√

R2 − ρ2

2R
. (1)

This includes the error p/2 of the detector pitch, which is re-
covered for ρ = 0. See Appendix D for more details. Note that
h/2 could be approximated by the DOI resolution (FWHM)
in other scanners, just as p/2 is the FWHM corresponding to
half the apparent pitch.

With silicon pixels, the improvement in DOI accuracy
effectively eliminates radial elongation (Figure 3). As a con-
sequence, the resolution is practically uniform over the FOV,
which means that the entire FOV is useful. In turn, this allows
for more compact scanners with smaller acollinearity errors.
By contrast, conventional PET scanners are made substantially
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Fig. 4. Sampling uniformity. Sampling of the FOV (circle) by the LORs of a
crystal-based scanner (positive FOV, top) and those of silicon pixels (negative
FOV, top). The ratios between the DOI (and between) the pitch of the two
scanners are accurate (to scale) and were taken from the “best” combination of
features in the literature of crystal technology. Only the vertical sampling rate
is well represented by the schematic because only half-scanners are shown
for intelligibility. The circle-like geometry samples the center less than than
it does the edges, and the square-like geometry contains underlying uniform
grids of parallel rays with specially high sensitivity. Both statements hold for
the corresponding full scanners, albeit with less uniformity.

larger than the FOV to mitigate further problems with the
DOI [17], [21].

e) Nonuniform Sampling: The circular geometry of most
PET scanners results in nonuniform sampling along the radial
direction: less LORs per unit volume cross the center of the
scanner than do the outside. Experimentally, this has been
estimated to introduce a multiplicative factor of 1.25 to the
FWHM [42]. Together with the DOI, the rectangular geometry
of our proposed scanner greatly mitigates this effect (Figure 4).
In fact, a uniform grid is present within the sampling. The
geometry, however, results in an unconventional sensitivity
map in the sinogram domain (Section V).

f) Multiplexing: Some scanners multiplex several scin-
tillation crystals onto the same photodetector. This is a con-
sequence of the electronics becoming complex and costly. An
experimental example of the resulting decoding effect came
at the price of a FWHM of p/3 in [35]. Silicon pixels do not
suffer from multiplexing because each detection pixel has its
own readout-electronics channel.

Together, all uncertainties applicable to the silicon scanner
combine into the distribution

Γ(x; ρ, p,R) = (r ∗ a ∗ d) (x) (2)

with resolution

γ(ρ; p,R) = FWHM{Γ}. (3)

Expression (2) is based on the fact that the probability density
function (pdf) of a sum of independent random variables is the
convolution of their corresponding pdfs. See Appendix E for
more details. While (r ∗ a)(x) admits an expression in terms
of erf(x), further convolution with d does not seem to yield
a closed-form expression.

Considering FDG, our small radius, the thin FPCs (where
the parallax error is practically negligible), and a pitch be-
tween 0.1− 0.15 mm (Figure 3), we estimate that silicon-
based scanners can operate with a best resolution of γ ≈
0.28− 0.30 mm with the positron range in [36] for water,

and of γ ≈ 0.22− 0.25 mm in soft tissue similarly to [38]
(see Appendix H for a discussion about these two materials).

B. Noise and Uncertainty

We review four considerations that can affect the quality of
reconstruction in terms of signal-to-noise ratio (SNR).

a) Time of Flight: At δt ≈ 0.2− 0.3 ns, the timing
resolution of our silicon-based scanner remains too coarse for
time-of-flight (TOF) methods. The diameter 2RFOV = 34 mm
of the FOV of the scanner is small relative to the potential
localisation distance cδt/2 ≈ 30− 45 mm. The improve-
ment in SNR can be estimated to be SNRTOF/SNR¬TOF =√
4RFOV/cδt ≈ 1 in the best-case scenario where RFOV is

also taken as the size of the measured specimen [43]. Note
that the timing resolution of MAPS can be improved at the
price of power consumption; this requires a calibration of the
timing across pixels for maximal benefit.

b) Random Coincidences: With a timing resolution of
0.2− 0.3 ns, random coincidences in silicon technology are
much less prevalent than in crystal-based small-animal scan-
ners. For example, the state-of-the-art conventional scanners in
the previous comparisons manage timing resolutions of 4 ns,
40 ns, and 9.5 ns [16]–[18]. Since the number of coincidences
scales in direct proportion to δt, random coincidences occur
around one order of magnitude less frequently in our scanner.
The result of fewer random coincidences is less noise, or a
better SNR. This is especially interesting for higher radioac-
tivity doses because the scattering fraction depends mostly on
spatial distribution rather than on total activity.

c) Compton Scattering Inside of the FOV: As opposed
to crystal technology, silicon pixels cannot yet tell apart
photons that scatter within the FOV. However, the scattering
fraction is low in small-animal scanners precisely because of
their size. A naive calculation based on the mass attenuation
coefficient of adipose tissue (0.09 cm−1) at 511 keV yields
exp

(
−0.09 cm−1 · 1.7 cm

)
≈ 86 % of non-interacting pho-

tons1. In combination with the limited resolution of energy
windows in crystals, this often makes scattering in small-
animal scanners to be neglected or go unreported [46]. Typical
scatter fractions are 8 % and 17 % for mice and rat phantoms,
respectively [47].

d) Animal Movement: Experimental estimates of organ
movement in mice are in line with our choice of pitch.
For example, the movement of the abdominal and thoracic
aortas amounts to 50 µm and 150 µm, respectively, between
systole and diastole [48]. Whereas the radius of the renal one
appears to stretch by 80 µm with a centroid motion of around
100 µm [49]. In comparison, atherosclerotic plaques—a po-
tential target to study atherosclerosis with FDG—can reach
more than 200 µm in thickness [19], [50]. Since most motion
in sedated animals is periodic, they could be compensated dur-
ing reconstruction. In fact, this is done for random movements
in awake human patients [51]. Another perspective is gating.
Gating can be implemented by detecting the motion from the

1Technically, all interactions are included therein, but it is still a very good
approximation of Compton scattering because incoherent scattering dominates
at this regime, cf. [44], [45, Table 4].
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acquisition itself (intrinsically) [52]. Or from complementary
hardware (extrinsically), for example with electrocardiograms
to compensate for the beating of the heart or with piezoelectric
sensors [53], video cameras [54], [Sofie G8 PET/CT], or other
devices to compensate for respiratory motion [55].

C. Transition to Human Scanners

The scanner radius necessary to fit a mouse, RFOV ≈
15 mm [16], [17], [27], [28], and a human head, RFOV ≈
120 mm, are close to one order of magnitude apart. This
changes several of the design conclusions reached so far. With
the acollinearity becoming the limiting factor at ∼ 0.48 mm,
a better tradeoff under power-consumption constraints is to
increase the pitch size in exchange for better timing. Timings
down to 20 ps have been achieved with silicon pixels in this
way [11]. This could potentially be equivalent to 3 mm of in-
LOR resolution and it could more than double the SNR. In
lower-resolution systems, it would be enough to bypass tomo-
graphic reconstruction, as was done in [56] using collimation
and Cherenkov radiation. At this radius, however, scattering
would contribute a lot of noise to the measurements unless the
photons are collimated. Future research will therefore focus on
improving the detection of scattering to facilitate the scaling
of our scanner to humans.

V. THEORETICAL SENSITIVITY

Since MAPS are new in PET, it is important to study how
it affects the overall sensitivity. The rectangular geometry de-
serves attention too. To this end, we have derived an analytical
expression for the probability of detection of any LOR within
the FOV. There are two ingredients: a model of the probability
detection of photons; and the extension thereof to detector
blocks using the x-ray transform. We use the expression for
design optimization and for sinogram normalization.

A. Model of the Probability of Detection

Each silicon pixel has a measurable probability q of de-
tecting an orthogonal hit by an annihilation photon. This
probability is primarily a function of the attenuation caused
by silicon, but it also depends on the thickness of the FPC
and on the glue used to stack the layers. It can be measured

experimentally or estimated through simulations. Our aim is
to aggregate these effects into a single coefficient.

Each scanner block is organized in layers of pixels. The
probability of detecting the orthogonal hit of a photon at layer
m is therefore (1 − q)m−1q, and the cumulative probabil-
ity is

∑m
k=1(1 − q)k−1q = (1− (1− q)m). Consequently,

m ∼ Geo(q). By taking the limit to infinitely thin layers, we
extend the geometric distribution into a continuous exponential
distribution x ∼ Exp(λ) in terms of the length x of the
trajectory of the photon through the block. The equivalent rate
λ is then the probability after a single layer of thickness h,

λ = − log(1− q)/h. (4)

The corresponding cumulative distribution,
(
1− e−λx

)
, re-

covers standard photon attenuation, but with an apparent
coefficient. For our scanner, q = 0.48− 0.73 % (without,
and with Bi). Depending on the FPC, this translates into
a range of λ = 1.4− 2.3 · 10−2mm−1 with Bi, and into
λ = 1.0− 1.8 · 10−2mm−1 without.

Adjusting the cumulative-probability formula to the detec-
tion of two photons, (1− (1− q)m)

2, yields a naive upper
bound of 6.3 % for the sensitivity of the scanner with 60
layers and without Bi. In the next section, we will see
that our (more accurate) modelling yields a lower estimate
that is heterogeneous and in agreement with our subsequent
simulations.

B. Sensitivity Map

We now extend the probability model to any LOR as
parameterized by the sinogram variables (s, θ) of distance
and angle. This entails two steps: formulating the probability
model for any line segment; and considering the detection of
not only one, but two antiparallel photons.

We approach the probability model by using the x-ray
transform X . We consider a set of nb detector blocks with
domain Bm ⊂ Rd indexed by m ∈ M = {0, . . . , nb − 1},
d ∈ {2, 3}. We model any heterogeneity of the material in
the block with a weighting function bm(x) : Rd → R with
supp bm ⊂ Bm. We assume that the blocks are identical and
arranged in ϖ = 2π/nb orientations around the FOV. This
is formalized as bm+1(x) = bm(Rϖx), where Rϖ is the

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2024.3456241

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

1 60 150 300 500

0

5

15

25

Mean sensitivity [%] vs n [#]

ξ̄S(n)

ξ̄S(n)
′

20 60 100

40

60

80

n[#]

l[mm]

Mean sensitivity vs n, l [mm]
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corresponding rotation matrix. The probability that the block
Bm detects a photon along LOR (s, θ) is then

1− e−λX{bm}(s,θ). (5)

The second step of considering pairs of photons is more
challenging. Its derivation is in Appendix F. Here, we provide
a simplified version. We consider nb = 4 blocks that are uni-
form and rectangular, with b0 = 1B0(n,l). The sensitivity map
that expresses the probability that a pair of two antiparallel
photons along a LOR are detected by the scanner is

ξ(s, θ) = max
m∈M

((
1− e−λX1{b0}

)(
1− e

−λ
nb−1∑
k=1

X{b0}(θ+kϖ))

+ HOI
)
(θ +mϖ) , (6)

where X1 is a modified transform that incorporates the FOV
and where HOI are potential higher-order interactions, which
are often negligible (Appendix F).

The mean sensitivity over a domain Ω in the sinogram space
can be computed from (6) as

ξ̄Ω = |Ω|−1

∫

Ω

ξdsdθ. (7)

The mean sensitivity of the whole scanner is then ξ̄S with S =
[−R,R]× [0, π). Since the angle of emission of the photons is
distributed uniformly in [0, π), the mean sensitivity is a good
measure of the efficiency of the scanner. At the center of the
scanner, the mean sensitivity is ξ̄C = π−1

∫
[0,π)

ξ(s = 0, θ)dθ,
where C = {0}× [0, π). More generally, the mean sensitivity
of any other point (x, y) in the FOV can be computed by
integrating over Ω = Px,y with

Px,y = {(s, θ) | s = x sin(θ)+ y cos(θ) and θ ∈ [0, π)}. (8)

C. Sensitivity Optimization

Equations (6) and (7) open the door to an optimization of
the sensitivity of the scanner. For example, if we focus on
geometrical aspects, then we see that ξ depends indirectly on
both λ(q) and B0, which in turn is a function of the length
l, of the depth h, and of the number n of layers. The mean

Fig. 7. Simulation of several sources (and the emissions thereof) inside the
scanner built in Geant4-Allpix2 (zoom-in from Figure 2c). The sources are
superimposed for display but were not simulated together for our results.

sensitivity can act as a cost function ξ̄S in this context and can
be maximized in terms of the parameters we just identified.

We discuss three possibilities in this direction. i) The
gradient of ξ can be used in a sort of “sensitivity” analysis
to find where the biggest gains lie (Figure 5). This suggests
that the length of the layers contributes mostly to the stopping
power along the diagonals of the scanner. ii) We can take
into account the diminishing return of investment in certain
variables, because good tradeoffs are important in proof-of-
concept scanners. For example, adding layers increases the
sensitivity less and less after n = 60 (Figure 6, left). In fact,
the mean sensitivity ξ̄S saturates at around 25 % if one does
no more than just adding layers. iii) We can formulate full-
fledged optimization problems to reveal the best configuration.
Since sensitivity increases monotonically with both geometric
and stopping-power variables, further constraints are necessary
to strike a compromise within real-world limitations such as
power consumption, heat dissipation or budget.

We formulate the problem

argmax
q,B0

ξ̄S(q,B0) subject to c(q,B0) = 0, (9)

where c(q,B0) = 0 is the constraint. Here, we explored

c(B0) = nl − const. (10)

This keeps the total scanner volume constant, together with
the budget, the amount of silicon required, and the power con-
sumption of the system. According to the method of Lagrange
multipliers, an optimal tradeoff of (9) under constraint (10) is
to set 60 layers of approximately 60 mm (Figure 6, right).

The conclusion of our study of the sensitivity of the scanner
is that 60 layers is good in terms of diminishing returns,
and that 60 mm is optimal in terms of the sensitivity. This
complements the pitch and depth selected in Section IV.

An increase in λ(q) appears as a complementary surefire
way to boost the sensitivity. Unfortunately, this comes with
design compromises that involve the DOI and the detection
process, thereby affecting resolution. We explore these as-
pects in Section VI by way of simulations. Nevertheless, we
performed a preliminary analysis by expanding optimization
problem (9) to also include a cost γ̄S(h) = R−1

∫ R

0
γ(ρ;h)dρ

as a measure of resolution. Find a short report in Appendix G.

VI. SIMULATIONS

The aim of the simulations is threefold: to validate the
theoretical framework, to study additional parameters (e.g., the
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addition of bismuth), and to explore the potential quality of
reconstructions in the silicon-pixel approach. To these aims,
we rely on two different simulations. One (distribution-based
simulation, DS) is built according to the effects described
in Section IV. It encodes them as probability distributions
reported in the literature. The other (Geant4-Allpix2 sim-
ulation, AS) is based on detailed physical simulations of
particle interactions, but requires more computational power.
By comparing the two simulations, we can identify those
effects that have the biggest influence. We describe DS and AS
in this section, and present results thereof in Section VII. We
chose to use FDG in our simulations for two reasons: because
it is the most common radiotracer, and because we tailored
our pitch to its small MFP. Possible applications are imaging
the brain or atherosclerotic plaques [2], [19].

A. Distribution-Based Simulations

The generation of positrons by radioactive decay is sim-
ulated according to an inhomogeneous Poisson process with
an intensity proportional to the concentration of radiotracer in
the phantom image. We sample this process using rejection
sampling. The projected path length of the positron until
annihilation is drawn from r(x). We sample it as a mixed
Laplacian: C Laplace(0, k−1

1 )+(1−C)Laplace(0, k−1
2 ), where

C = c/(c+(1−c)k1/k2) and c, k1,2 are fitting constants (e.g.,
from [36], [38]). Two photons are then shot forming an angle
drawn from a uniform distribution in [0, π). An angular error
is added on top according to a Gaussian distribution with a
FWHM of ϑ. The number of pixels that each photon crosses is
drawn from a geometric distribution. If the photon is detected,
the event is associated to the center of the nearest pixel. This
is fast because all the pixels are on a regular grid, but cannot
reproduce scattering. Since the probabilities are independent,
we reordered the events to first draw from those for which the
most likely outcome is to not progress further.

B. Geant4-Allpix2 Simulations

We modeled the entire scanner inside the Allpix2 frame-
work [14]. All silicon detectors and their electronic readout
circuits were included. The aluminum cooling blocks and
other supporting elements were also added to the simulation
(Figures 2 and 7). The FOV of the scanner was filled with
water to simulate the scattering caused by a body.

Allpix2 interfaces with Geant4, which is the result of a
25-year-long worldwide collaboration that includes CERN
and SLAC [13]. Geant4 deploys Monte Carlo methods to
simulate the interaction of radiation with matter. The physics
models therein are able to reproduce annihilation, photon
propagation, scattering, and other electromagnetic phenomena.
The acollinearity was simulated by drawing from Gaussians
with ϑ of FWHM. The positron range results implicitly from
the ion energy spectrum of 18 F in Geant4, which peaks at
200 keV (c.f. [36] and [38], see Appendix H). On top of
this framework, Allpix2 takes on the energy deposition from
Geant4 and simulates the detection process inside the silicon
pixel all the way up to the digitization of the signal (see
Section III-3). This includes the propagation of the charge
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ξ
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Fig. 8. Theoretical sensitivity [%] compared (left) to DS, and (right) to AS
simulations w/wo the aluminum in the cooling blocks.

carriers by drift and diffusion, and the signal transfer to the
readout circuit. To ward off electronic noise (with a mean of
200 electrons), we set a threshold of 2778 electrons (10 keV of
energy deposition in silicon) collected at the pixel electrodes
to consider a hit or detection [22]. This is the lower bound of
the energy window. The upper bound is the maximal energy
among the photon interactions observed, 850 keV, which is
substantially below the upper limit of the electronics (1.3 · 106

electrons or 4680 keV). The only events we reject are those
that activate three (or more) non-contiguous clusters of pixels.
These events are rare and usually stem from photons that
interact more than once within the scanner.

We validated the Geant4 simulations by comparison to
recent literature (see Appendix H).

C. Tomographic Reconstruction of Phantoms

In conformity with the NEMA, reconstructions of simulated
PSFs were performed using the filtered back-projection (FBP)
instead of an iterative method, which can sometimes yield
estimates that are too generous [57]. No gap-filling was
necessary due to the lack of significant gaps in the sinogram.
We approached the step of rebinning the data into parallel
rays from the perspective of density estimation rather than
interpolation [58]–[60]. This is because the volumetric pitch
is very small in this scanner and results in point-cloud mea-
surements. We followed [61] to choose the angular sampling
p/2RFOV (Appendix I). Upon reconstruction of a point source
through the FBP (ASTRA toolbox [62], [63]), we measured
the FWHM of the point-spread function (PSF) by finding the
two abscissas corresponding to the half maximum by linear
interpolation on slices (NEMA).

The inhomogeneity of the sensitivity within the FOV of
the scanner is another challenge, and it is more important
to address than in conventional PET because of the rectan-
gular geometry. However, this inhomogeneity does not spoil
significantly the amount of information in the sinogram (Ap-
pendix J). When applicable according to the NEMA, we com-
pensate for the sensitivity by weighting the density estimation.

We also implemented an iterative reconstruction method
to assess the potential of the scanner with a Derenzo phan-
tom. We implemented a custom ordered subset expectation
maximisation (OSEM) algorithm [64] that we run on list-
mode data. The forward and back projectors are based on
the CuPy ray-tracing routine with Joseph-type interpolation
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Middle: FWHM over the radial offset ρ in AS for combinations of (pitch,
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scanner (RS). A bound on the standard deviation of the error of the FWHM
is 0.014 mm. Bottom: FWTMs for the different configurations.

provided by parallelproj [65]. For each coincident pair, a ray is
traced between the two detectors. We used this reconstruction
algorithm to reconstruct the AS simulations, which are com-
pletely independent and based on the alternative Monte Carlo
approach of Geant4. We set the distance between the center of
the rods in the Derenzo phantoms to twice the diameter of the
rods. We simulated the phantoms with an activity of 2 MBq
for 30 min. This is around half that in [66], but an order of
magnitude smaller than in [17]. For our OSEM, we always
used a fixed number of 10 iterations of the entire dataset,
drawing from 30 different subsets in observance of [57]. We
then applied a low-pass Butterworth filter following [67]. We
chose a non-regularized OSEM for our evaluation because of
its widespread use, but other approaches may further enhance
the reconstruction quality [68]. The size of the voxels for most
reconstructions was 0.1 mm×0.1 mm×0.1 mm, which led to
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Fig. 10. Slice of the PSF for AS simulations (p = 0.1 mm, R = 17 mm,
0.27 of Si) w/wo bismuth, and with further photon-count normalization for
shape comparison. Right: the theoretical PSF in (2) as errors compound. We
used c = 0.58, k1 = 23.55, and k2 = 3.75.
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Fig. 11. PSFs. FBP reconstruction (without normalization) of point sources
with and without bismuth. The rightmost image (norm.) is normalized
using the sensitivity ξ, which eliminates the star-like artifact related to the
rectangular shape of the scanner.

volumes of size (340×340×440). However, we chose smaller
voxels when taking measurements of the resolution such as for
the PSF. We did not use attenuation or scattering correction.
We did not exploit any time-of-flight information either.

D. Reference Scanner

For the resolution experiments in Section VII, we will com-
pare our proposed scanner design to a hypothetical reference
scanner (RS). We designed RS to reproduce the best resolution
(∼ 0.5 mm at the center) among prototype scanners [17], [18],
which is better than those of commercial ones (upwards of
1 mm). The RS matches the best parameters in the current
state of the art of crystal-based small-animal prototypes (see
Section II), but using silicon. Specifically, we used a pitch
of p = 0.5 mm and a smaller depth of h = 2 mm for the
RS design. We kept the higher sensitivity of our scanner for
the RS.

VII. RESULTS

1) Sensitivity: We started by studying the sensitivity of
the scanner. Both DS and AS were in agreement with our
theoretical predictions in (6). More precisely, we found an
average relative error of 0.02 (DS) and 0.06 (AS) between
theoretical and simulated curves (Figure 8). This validated our
detection model and thus our understanding of the physical
processes involved. The small difference between DS and AS
indicates that the physical considerations included in DS are
the most influential, with scattering playing a minor role. The
modeling refinements of the scanner build included in the AS
did not interfere in this agreement. This is with the exception

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2024.3456241

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



10

−8.5 8.5

−8.5

0

8.5

x [mm]

y
[m

m
]

p = 0.1 mm, no bismuth,
reconstructed with FBP

0

5

p = 0.1 mm, no bismuth,
reconstructed with OSEM

p = 0.1 mm, with bismuth,
reconstructed with OSEM

Reference scanner ∼ state of the art

p = 0.5 mm, no bismuth,
reconstructed with OSEM

Fig. 12. Reconstructions of a Derenzo phantom in the silicon-pixel scanner using the FBP and an iterative OSEM method. The phantoms are zoomed in. Rod
diameters are {0.2, 0.25, 0.3, 0.4, 0.5, 0.6}mm. For reference, the minimal size of standard Derenzo rods is usually 1 mm. The first three correspond to the
pitch of our scanner, the last is for comparison to the reference scanner (RS) that reflects the state of the art in prototypes for small-animal PET (p = 0.5 mm,
h = 2 mm).

of the aluminum casing of the cooling system, which altered
the shape of the dips slightly. A mean sensitivity of roughly
3.3 % was measured for the whole scanner. The addition of
bismuth increased2 it to 5.0 %. The sensitivity of our scanner
could be increased by stacking more layers, or by expanding
the angular coverage along the axial direction.

2) Resolution: The speed of our DS simulations allowed
us to test the resolution across the entire FOV by using
many point sources (Figure 9 top). The results show that
resolution follows a radial symmetry and confirms ρ as a
good parameterization of FOV resolution. The FWHMs were
in line with our theoretical predictions in (3). (Compare the
colormap on the left to the values of the blue dashed line on
the right.) AS were also in agreement with the theory (Figure
9 bottom). Precisely, comparing the two theoretical dashed
lines with the corresponding simulations (dots and crosses)
yielded an average relative error of 0.02. The parallax error
appears slightly flatter than predicted. We speculate that this
is because of the rectangular shape of the scanner, wherein
the LORs remain “more” perpendicular to the detectors as the
source moves away from the center; whereas we derived (1)
following Figure 18.

With a pitch of 0.1 mm and 0.27 mm of silicon thickness,
the FWHM was 0.22 mm at the center of the FOV, and
0.24 mm at the edges. The measurements of the FWHM along
the other directions in space (axial and tangential) yielded
practically the same values (< 0.01 mm differences). The
volumetric resolution was thus around 0.01 mm3. Doubling
the pitch to 0.2 mm led to expected results, with the resolu-
tion striking an appealing tradeoff at 0.26 mm and 0.27 mm
(center, edges). In comparison, the reference scanner RS had
a resolution ranging from 0.48 mm at the center to 0.81 mm
at the edges (Figure 9 bottom, orange plus sign). As expected
by design, the results of RS are similar to those in prototype
scanners with the best resolution, and twice as good as
available commercial scanners. Results for FWTM can be
found at the bottom of Figure 9.

The addition of bismuth worsened the resolution more

2These values were measured over all directions in AS. Only events with
two clusters in two different blocks were included in the count. Random
coincidences were discarded.
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Fig. 13. Left: slice through one of the inner diagonal lines of 0.25 mm rods
in the Derenzo of Figure 12. For the scanner of p = 0.1 mm without bismuth,
and for an iterative reconstruction. The valley-to-peak ratio is of 0.57 in this
example. Right: slice through 0.5 mm rods comparing our scanner (blue, ratio
of 0.25) to the RS (dashed orange, 0.6).

than we expected from the additional thickness (Figure 9,
middle). It did so with an equivalent FWHM of 0.12 mm.
One contributing factor is the relative increase in the number
of photelectric interactions, which deposit more energy and,
thus, travel further across the pixels (see Section VII-3).
Accordingly, the PSFs were wider with bismuth (Figures 10
and 11). A pitch of 0.2 mm is thus more convenient (less
power consumption) for the bismuth-silicon scanner because
the additional error is relatively less significant for the FWHM.

We remark that the fact that DS and AS are completely
independent—yet in substantial agreement—can be considered
further validation in itself. In our preliminary work [22], we
presented Geant4 simulations without acollinearity. Yet we
reported a worse resolution because we made a rough approx-
imation without reconstruction. It was based on measuring the
distribution of the distance between the simulated LORs and
the point source. The scanner design had not been optimized
for sensitivity or reconstruction either.

Thus far, all the measurements reported in this section were
based on the FBP.

We also studied Derenzo phantoms with the AS (Figure 12).
The reconstructions were performed using either the FBP or
the iterative method. The addition of bismuth to the scanner
resulted in reconstructions with better contrast, but also with
more blur. The scanner was able to recover clearly rods of
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Fig. 14. Simulation of the image-quality phantom. Radioactive material is
shown in green, water in blue, air in white, and some annihilation examples
are in red. The reconstruction of the phantom is in Figure S2.

0.25 mm both with, and without Bi. We measured the resolv-
ability [69], [70] of the Derenzo rods of 0.25 mm at 96 % with
a mean valley-to-peak ratio (VPR) of 0.62 (Figure 13 left). The
0.2 mm rods had an average VPR of 0.77, but only one third
of them were above the 0.735 mark dictated by the Rayleigh
criterion [69], [71]. We compared the reconstructions of our
scanner to that of the hypothetical scanner RS, which combines
the best parameters in the state of the art of experimental
small-animal PET (see Figure 12 rightmost, and Figure 13
right). This scanner was unable to recover rods smaller than
0.5 mm. Note that neither attenuation nor scattering are cor-
rected for in any of the experiments in this manuscript.

For completeness, we simulated and reconstructed
an image-quality phantom (Figure 14). The
uniformity had a relative standard deviation of 4.4 %
(see Figure S2). The recovery coefficients were
{0.63, 0.98, 1.01, 1.03, 1.04} ± {0.34, 0.31, 0.31, 0.30, 0.30}
for the rods of {1, 2, 3, 4, 5} mm. And the spill-over ratio,
which is meant to assess the accuracy of scatter correction,
was 0.24 ± 0.03 for air and 0.17 ± 0.03 for water. The
image-quality results should be interpreted in consideration
of the following: these measures have been criticized for
their dependency on the algorithm used [69]; the phantom is
barely smaller than the scanner diameter-wise and is longer
lengthwise; this is a simulation study; and the reconstruction
algorithm we used does not correct for scattering and corrects
only for the attenuation of the FOV as if it were full of
water. We chose this attenuation correction because we could
have otherwise achieved a perfect attenuation correction in
a simulation. The number of voxels used for these OSEM
reconstructions was (340× 340× 440).

3) Scattering and Activity Counts: We next tested the
intrinsic resolution of the pixel-detection process. To this end,
we performed the AS simulations without mean free path nor
acolinearity. We also filled the FOV with air instead of water.
We reconstructed the PSF at the center of the scanner. The
resulting FWHM was of 0.075 mm (0.1 mm with Bi) for a
pitch of 0.1 mm; and of 0.11 mm (0.13 mm) for a pitch of
0.2 mm. (Find a Derenzo under these conditions in Figure 15,
cf. Figure 12.) These results deviate slightly from the ideal half
pitch of 0.05 mm and 0.1 mm, respectively.

This is primarily due to the (random) inter-pixel walk of
the photoelectron resulting from a photon interaction. For the
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reconstructed with OSEM

Fig. 15. OSEM reconstruction of a Derenzo phantom in air with no
acollinearity and no positron mean free path.

smallest pitch of p = 0.1 mm, about 57 % of interactions
involved a single pixel, whereas 24 % involved two pixels. To
study the consequences of this in more detail, we projected the
distance traveled by the photoelectrons across the pixels. The
histograms of these distances (Figure 16) indicate that most
of them travel less than 0.1 mm. Since the inter-pixel walk
enlarges the apparent pitch, a pixel pitch somewhere between
0.1− 0.2 mm offers the best tradeoff, whereas a smaller pitch
would contribute little. This supports the conclusions that
we drew from our measurements on the acolinear, rangeless
PSF. The addition of Bi to the design worsens the apparent
pitch because of the resulting increase in the proportion of
photoelectric conversions, which generate photoelectrons of
higher energy that walk further. In particular, only 58 % of
interactions happen through Compton scattering in the scanner
with Bi in comparison to 95 % without.

On the other hand, inter-layer walks are rare. Photoelectrons
travel across layers only 1 % of the time. This is, in part, due
to the FPC. In the few occasions when a layer was crossed
by a photoelectron, we observed that the photon had almost
always interacted with the innermost layer, which provides
a robust criterion for pixel assignment. Note that the loss
in resolution stemming from inter-pixel and inter-layer walks
could be regarded to be somewhat equivalent to that incurred
by inter-crystal scattering in standard PET scanners, albeit they
happen through different mechanisms.

We then leveraged the full-fledged Monte Carlo simulations
(AS) to assess the effect of the placement of the cooling
system (Figure 2). We found that only 3.5 % of the photons
detected had been previously scattered thereby.

We also used the simulations of our scanner to study the
count rate as a function of the activity. In Figure 17, we present
a break down of the rates of the different possible events using
a coincidence window of 1 ns. We observe that the random
counts constitute a small fraction of the count rate for activities
as high as 30 MBq. This puts the noise-equivalent count rate
(NECR, see NEMA) in a (practically) linear regime. When
comparing this, one should bear in mind the long dead times
that are caused by the integration times of some standard PET
scanners.

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2024.3456241

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

0 0.1 0.2 0.3

0

0.5

1

Distance [mm]

N
um

be
r

of
ev

en
ts

[a
.u

.]

0.1 mm

0.2 mm

0.1 mm + Bi

Fig. 16. Histogram of the planar distance (projected onto 1D) between the
location where the photon interacted and the average position of the pixels
that were triggered by the travelling photoelectron. For different pixel pitches,
and with the addition of Bismuth. The shape of the histograms is reminiscent
of a Rayleigh distribution.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

Activity [MBq]

C
ou

nt
ra

te
[M

cp
s]

Total Rate
True Rate
NECR
Scatter Rate
Random Rate

Fig. 17. Count rate as a function of activity with a window of 1 ns. (The
timing resolution is of 0.3 ns.)

VIII. CONCLUSION AND DISCUSSION

Theory and simulations concur that our proposal of using
silicon pixels is promising. The resolution was measured at
between 0.22 and 0.24 mm (center, edge) without Bi, and
at 0.26 to 0.27 mm with Bi. The corresponding volumetric
resolutions are approximately 0.01 mm3 and 0.02 mm3. These
results are for FDG; the resolution of radiotracers with bigger
positron ranges will be more limited by their corresponding
MFP. We have shown that the excellent DOI resolution is
one of the spearheads of our scanner design because it
increases resolution in multiple ways. The sensitivities are
3.1 and 5.0 % with, and without bismuth. (Find a comparison
to the state of the art in Section II.) The scanner is under
construction (Figure 2).

The theoretical framework developed to optimize the res-
olution and sensitivity of our scanner translates well to the
design of other scanners. Alternative parameters could also be
considered. For instance, a model of heat diffusion could be
included as a constraint (or cost function) in (9) to further
limit the geometry of the scanner if necessary.

Future efforts will focus on improving the event discrim-
ination of silicon pixels to scale the scanner to a human-
compatible size. One could pursue this objective via hardware
or via software; for example, by exploiting the energy informa-
tion with neural networks [31]. Silicon MAPS are under active
development. They have been made smaller, thinner, and with
better timing [40], [41] than is necessary for our scanner. This
comes under different tradeoffs that did not suit our design,
but could benefit other architectures. A potential advancement
that would improve our small-animal scanner is a reduction
of the power consumption that is incurred by more accurate
timings because it may enable TOF in such small FOVs.

The MAPS-based design could also be useful in clustered-
pinhole PET scanners. These systems do not suffer from the
positron range when imaging isotopes with co-emission of
prompts, and could thus profit from our small pitches to
a greater extent at bigger MFPs. Alternatively, the blurring
introduced by the positron range might be able to be mitigated
by deconvolution effects given enough counts [37].

Overall, our conclusion is that small-animal PET could
benefit from silicon-pixel technology.

APPENDIX

A. Timing Resolution

In [11], we used a pion beam to measure a best timing
resolution of 0.02 ns for our MAPS. In the same setting, but
at a smaller power consumption similar to that of our scanner,
we measured 0.08 ns instead. In our past experiments with
a similar MAPS detector [72], the timing resolution that we
measured with a 22Na source (511 keV) was twice as good
as that measured using a pion beam. The results were 0.07 ns
and 0.13 ns, respectively. Note that we have also measured a
timing resolution of 0.14 ns with a 90Sr source (β− decay with
an energy of 546 keV) at similarly low power consumption.
We also recall that the timing resolution can be adjusted at the
price of power consumption.

In addition to this, we are working with a considerable
margin: We aim to run our scanner at 0.2 ns of timing
resolution. For the simulations, we extended this safety margin
even further to 0.3 ns and use a window of 1 ns.

B. Price of the Scanner

A prototype of the scanner is now under construction. The
cost of the prototype is of ∼ 400,000 AC. The bulk of the price
stems from the MAPS wafers, which costed ∼ 300,000 AC. The
rest is divided as follows: 33,000 AC for the cooling blocks;
31,000 AC for the super-module flex; and 42,000 AC for the
ensemble of the readout system (control tower, coincidence
board, etc.). Costs can be driven down by economies of scale
after the prototype phase, especially those of the MAPS. For
a rough comparison, the (commercial) price of small-animal
PET scanner systems ranges from around 400,000 AC to well
over 1,000,000 AC.

C. Readout of the Scanner

To facilitate the integration of the many layers of MAPS
in our scanner, we chose to use flip-chip bonding to interface
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FOV Diameter Axial coverage Resolution Res. off axis DOI Sensitivity Timing Built Reconstruction Reference
[mm] [mm] [mm] [mm] [mm] [mm] [%] [ns]

12 64 9 0.5 ? 9.5† 0.29 ? Yes OSEM [15] (pinhole)
10∗ 22.3 14∗ 0.6 0.75 (4) 5† 0.5 4 (16) Yes FBP [16]
30 61 7 0.5 0.56 (10)∗ 1.7 1.02 40 (60) Yes MLEM [17]
48 52.5 51.5 0.55 0.8 (15)∗ 4† 2.84 9.5 (10) Yes OSEM [18]
120 160 254 0.37∗ 0.4∗ 1-2 8.9 (4) Simulated MLEM [21]

TABLE A1
CHARACTERISTICS OF SOME STATE-OF-THE-ART SMALL-ANIMAL PET SCANNERS WITH RESOLUTIONS CLOSE TO 0.5 mm. VALUES WITH ASTERISKS

ARE NOT CLEARLY STATED IN THE WORKS; WE ESTIMATED THEM BASED ON FIGURES THEREIN. VALUES IN PARENTHESIS FOR THE
OFF-AXIS-RESOLUTION COLUMN REFER TO THE DISTANCE FROM THE CENTER WHERE THE PSF WAS MEASURED. DAGGERS IN THE DOI REFER TO THE
CRYSTAL THICKNESS INSTEAD OF THE DOI RESOLUTION. PARENTHESES IN THE TIMING REFER TO THE WINDOW. FIND THE PITCHES AND THE ENERGY

WINDOWS IN TABLE A2.

Pitch Energy Window Reference
[mm] [keV]

38† 410-610⋆ [15] (pinhole)
0.42 ? [16]
0.43∗ 150- [17]
1 400-600 [18]
0.5 250-750 [21]

TABLE A2
COMPLEMENTARY INFORMATION FOR TABLE A1. ∗ CRYSTAL SIZE

BECAUSE THE FINAL PITCH IS NOT MENTIONED (THE INTERCRYSTAL
REFLECTOR ∼ 0.05 mm MIGHT HAVE TO BE ADDED THERETO). † THE
PINHOLE DIAMETER IS 0.7 mm FOR THE CRYSTAL PITCH OF 38 mm. ⋆

FROM 20% AROUND THE PHOTOPEAK.

the four detection ASICs of each layer to the backend readout
circuit. This allows for a single readout circuit per silicon
layer that is thinner and results in a more compact design
than with wire bonding. The four ASICs in the layer module
are connected in a daisy-chain configuration to be read out by
a common line. Each ASIC has a unique ID that is included
in the digital output message. This message (∼ 143 bits) is
triggered when a particle signal is detected and also contains
the energy, timing, and pixel address (25,000 pixels per ASIC).
Under an injection dose with a remaining activity of 4.5 MBq
at acquisition time, we expect an output of ∼ 2.5 Mbps
per layer. This results in ∼ 150 Mbps per each of the four
detector blocks (towers) or in ∼ 600 Mbps for the full scanner,
which can be interfaced with a standard processing computer.
There is still considerable leeway remaining in the design to
accommodate higher activities.

D. Geometry
The derivation of (1) is based on the three similar triangles

in Figure 18 left, with h
u = R

ρ and p
v = R√

R2−ρ2
. One then

does (u+ v)/2.

E. Resolution
1) Variance of the Error Distribution: In equation (2) of

the main text, we obtained the distribution Γ of the final
error by convolving the multiple errors. We then computed
its FWHM (3). In this subsection, we compute the variance of
this distribution Γ. Notice that the variance of the sum of in-
dependent random variables is the sum of their corresponding
variances. Therefore, the standard deviation of Γ is

√
r2σ + a2σ + d2σ +m2

σ, (11)

Parallax Triangles

−17 17

Standard Deviation

3.9 4.0
Fig. 18. Left: A detector (slanted rectangle) on a circular scanner is projected
onto the axis at an offset ρ. The three right-angled triangles are similar. Right:
Scaling 1/

√
ξ̄P of the Cramér-Rao bound for the standard deviation in the

scanner.

where the subscript σ stands for standard deviation of the
corresponding distribution, and m for the distribution of the
multiplexing error. We remark that the multiplexing term is
not relevant to our scanner.

In the literature, (11) is often used to approximate the
FWHM. (Think of replacing the subscript σ by FWHM
therein.) This is a good approximation when the positron range
is negligible (or, instead, all the other errors are). If that is
not the case, (11) appears to act as a lower bound when the
subscripts are replaced. This is because the exponential cusp
of the positron distribution is mollified by the Gaussians.

In our silicon scanner, the positron range is comparable to
the other error source. Therefore, we have to use (2)-(3) to
compute the FWHM accurately.

2) Expressions for the Distributions: For documentation,
here we clarify the form of the individual error distributions
used in the convolutions of (2).

We model the distribution of the positron range as

r(x) =
c exp (−k1|x|) + (1− c) exp (−k2|x|)

C
, (12)

where C/2 = c/k1 + (1− c)/k2 is the normalizing constant.
The constants k1,2 and c are obtained by fitting the model
to simulated data. For the theoretical analysis in Section IV,
we used the constants in [36] and [38]. Those in [36] yield
a FWHM that appears slightly higher than those in more
recent literature [38], but a direct comparison is not possible
because the materials are different (see Appendix H). For
the comparison between our model for the resolution and
the resolution of our simulations (Figures 9 and 10), we
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used the values that resulted from fitting our simulations (see
Appendix H): c = 0.58, k1 = 23.55, and k2 = 3.75.

The distribution of the acollinearity error is given by

a(x) =
1

aσ
√
2π

exp

(−x2

2aσ2

)
(13)

with aσ = aFWHM/
√
8 ln 2. In both DS and AS simulations we

sample from this distribution.
We model the point-spread function of the detector with the

scaled triangle function

d(x) = dFWHM max (0, 1− |x/dFWHM|). (14)

This distribution is only used for the theoretical analysis.
Neither DS nor AS use it.

F. Derivation of the Sensitivity

The set of detector blocks Bm is indexed by m ∈ M =
Z/nbZ. They are equispaced around the FOV V ⊂ Rd.

We first present four properties that pertain to the combi-
nation of the x-ray transform with the cumulative distribution
of the exponential3. Consider a subset C ⊂ Ω. The proper-
ties are: 1C

(
1− e−λX{

∑
M bm}) = (1 − e−λ

∑
M 1CX{bm});

1X{
∑

M bm} = maxM{1X{bm}} for unions; 1∏
M X{bm} =∏

M 1X{bm} for intersections; and 1C

(
1− e−λX{

∑
M bm}) =

|M|− ∑
k∈M

e−λ1C

∑
m∈M\{k} X{bm} if

⋂
M suppX{bm}∩C = ∅.

Notice that the x-ray transform is agnostic to direction. This
complicates judging photon-pair interactions. To help us in
this endeavour, we build a set C0 ⊂ Rd, with c0 = 1C0

,
that excludes photons that cross multiple blocks before being
absorbed at B0 yet may retain the other photon of the pair.
The rotation of the function by mϖ is cm. We also build a set
Jm ⊂ M to consider only the necessary blocks. Using these
sets in combination with the four properties, we express the
probability ξ1(s, θ) of a pair of photons emitted in the FOV
being detected as a LOR when one of them interacts only
once. It reads

ξ1 = 1X{V } max
m∈M

1c
X{cm}

(
1− e−λX{bm}

)(
1− e−λX{bJm\{m}}

)
.

(15)

We then rewrite (15) as

ξ1 = 1X{V } max
m∈M

1c
X{c0}(θ+mϖ)

(
1− e−λX{b0}(θ+mϖ)

)

(
1− e−λX{bJ0\{0}}(θ+mϖ)

)

= max
m∈M

((
1− e−λX1{b0}

)

(
1− e−λ

∑
k∈J0\{0} X{b0}(θ+kϖ)

))
(θ +mϖ) , (16)

where X1{b0} = X{b0}1suppX{V }∩(suppX{c0})c . Example
sets that work in many situations are c0 = bI0 , Im = {m −
mb . . .m−1}, mb ≥ 1, J = Icm. The expression in terms of the

3We define 1X{bm} = 1suppX{bm} and its complementary 1c
X{bm} =

(1− 1X{bm}). We use bK =
∑

K bk for the indexing set K ⊂ Z.

maximum over all rotations is allowed due to the symmetry
of the scanner. Each rotation can either lead to a zero or to the
correct value. This highlights the role of max in the testing of
where each LOR lies with respect to the symmetry. In some
special cases with nb = 4, it might be necessary to add an
additional term HOI =

(
1− e−λX1{b0+b0(θ+ϖ)}

)(
1− e−λX{b0(θ+2ϖ)+b0(θ+3ϖ)}

)

(17)
that considers interactions with more than two blocks for each
photon of the pair. The total sensitivity is then ξ = ξ1 +HOI.
When there are more blocks, the angles between them are too
open for these interactions. The symmetries ξ(θ − π/2, s) =
ξ(θ, s), ξ(θ,−s) = ξ(θ, s) can be exploited to reduce the
computation cost. We remark that (16) is almost the same
in 2D as in 3D. In 3D, X1{b0} has to additionally exclude
the supp of the x-ray transform of two blocks at the two axial
ends.

1) Expression for X{bm}: Each block Bm can be ex-
pressed as the transformation bm = T {c} of a weighting
function c on a reference shape C, with supp c ⊂ C. The trans-
formation T is the composition rotation(mϖ) ◦ translation(x0)
◦ scaling(ax, ay). The x-ray transform of each block is then
X{bm}(θ, s) = X {T {c}} =

axay
κ

X {c}
(
arctan

(
ay
ax

tan(θ −mϖ)

)
,

s− x0 · (cos(θ −mϖ), sin(θ −mϖ))

κ

)
, (18)

where κ =
√

(ax cos(θ −mϖ))2 + (ay sin(θ −mϖ))2. This
is derived by concatenating the properties of the x-ray trans-
forms. The variables ax, ay are the two scaling factors, and
x0 the position of the center of block B0.

2) Expression for Rectangular Blocks: Notice that ax, ay
are the lengths of the sides in the case where B0 is a rectangle,
with the reference shape being a square. Consider a uniform
block c = 1S , where S is a centered, unit square. We now
derive the X-ray transform of the square as a function of our
particular parameterization.

We restrict ourselves to s ∈ R≥0, θ ∈ [π/4, π/2]. This
restriction arises from the square symmetries X {1S} (θ, s) =
X {1S} (mπ/2 + θ, s), X {1S} (θ, s) = X {1S} (π/2− θ, s),
and X {1S} (θ, s) = X {1S} (θ,−s). The transform is β0

(a B-spline of degree 0) at angles perpendicular to the face,
and β1 at the diagonals. Moreover, the x-ray transform has to
be continuous and must preserve the integral. Combining all
requirements we get that

X {1S} = c

(
β0

(
s

2s0

)
+ 1s≥s0β

1

(
s− s0
s1

))
, (19)

where c = csc θ is the intersection length of a line through
the origin, s0 = (sin θ− cos θ)/2 = (−

√
2 sin(π/4− θ)/2) is

the distance at which the parallel lines reach the first corner,
and s1 = cos θ is the distance at which they reach the last.
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Fig. 19. Left: Energy spectra of 18F. Comparison between the energy
spectrum resulting from simulations of the β+ decay in Geant4, the one
that we measure in our AS simulations of a positron source, and those in the
LNHB (theory). Right: The angle distribution of only one of the acollinearity
angles.

G. Sensitivity Optimization with Bismuth

In the interest of our study, we augmented the optimization
problem to also include a measure of resolution as

argmax
h,B0

ξ̄S(p,B0) + αγ̄S(h) s.t. c(q,B0) = 0, c1(h, q) = 0,

(20)
with γ̄S(h) = R−1

∫ R

0
γ(ρ;h)dρ and a parameter α ∈ R≥0

that controls the tradeoff between sensitivity and resolution.
We considered increasing λ(q) by including bismuth layers
sandwiched in-between the silicon layers. Experiments showed
that the incorporation of a layer of 0.05 mm to a single
detector almost doubled q. We derived the constraint

c1(h, q) = λBi(h−h0)+ log(1− q)− log(1− q0) = 0, (21)

where q0 and h0 correspond to the values without Bi. However,
setting α proved difficult because we could not find a good
characterization of the final reconstruction quality as a function
of both parameters. Most importantly, adding bismuth affected
the detection process.

H. Simulations

1) Tests of Positron Range and Acollinearity: The positron
range in our simulations results from the ion energy spectrum
of 18 F. We used the spectrum provided by the LNHB4. Our
simulations coincide with the theory therein, as well as with
the energy spectrum that can be obtained from Geant4 by
performing very detailed simulations of the β+ decay of
18 F (see Figure 19, left).

We implemented the acolinearity deviation to follow a 2D
Gaussian distribution of the two (polar and azimuthal) angles
defined relative to the case without acolinearity (see Figure 19,
right). We make this remark because it appears that some
GATE simulations underestimate the effect of acolinearity
by considering that the (combined) amplitude of the angles
follows a Gaussian distribution, when it should instead follow
a Rayleigh distribution [73].

4lnhb.fr/home/nuclear-data/nuclear-data-table

2) Comparison to the Literature: We validated the Geant4
simulations by comparison to recent literature. The FWHMs
of the positron range in cortical bone (63 µm), soft tissue
(85 µm), and lung tissue (160 µm) in [38] were close to those
of our simulations in the same materials (87 µm, 110 µm,
and 170 µm, respectively). We thank the authors of [38] for
providing the additional details that we needed to establish this
comparison. We also compared the FWHM in water (102 µm)
of [36] to ours (116 µm). Most of these materials are readily
available in Geant4. The fitting of model (12) to the data that
we simulated in Geant4 yielded c = 0.58, k1 = 23.55, and
k2 = 3.75 (cf. [36, Table 1 (corrected units)], [74, Table 1],
and [38, Table 2 and Table S1]). Our simulations in water fall
around the water in [36] and the soft tissue in [38].

This level of discrepancy is actually common in the lit-
erature5. See the wide ranges of values in [38, Table S1 in
Supplementary], for instance. Another example is that [74,
Section 3.1] find their FWHM of 160 µm in water to be
consistent with the 102 µm of [36]. They explain [74, Section
4.1] that the higher FWHM is due to a diffusion-based approx-
imation, as well as to the fixed step size in the computation
of energy losses and scattering. This approximation is known
as the continuous slowing down approximation (CSDA). It is
specially inaccurate when the positron is near the end of its
random walk because it has less energy. The PHITS simulation
framework, which has several different modes, is used in [38].
The authors in [36] use a full model that includes excitation,
ionization, multiple Coulomb scattering, and delta electron
production. We used Geant4 to implement a similar full model
of the physics for better accuracy, albeit at the expense of
longer simulation times.

Another possible explanation for the small discrepancies in
the literature is the fitting of the model (12), from which the
FWHM of the positron is usually derived. This process is
sensitive for exponential-like distributions due to their espe-
cially narrow cusps (see [38]). Even if small, these differences
are still worth exploring because they can be amplified upon
convolution with a(x). We therefore looked at the errors
introduced by the fitting. We found that fitting the sum of
exponentials was quite sensible when we used 105 events as
is usually done in the literature. We proceeded with 107 events
instead because the fitting became more stable. Under these
conditions, our computation of the analytical FWHM of the
fitted exponential yielded the same results as our computation
of the FWHM based on a linear interpolation of histogram
bins.

Overall, by the shape of our positron range, we expect our
results in water to fall somewhere around the water in [36] and
the soft tissue in [38]. This is because our water appears close
to our soft tissue, which already has a higher FWHM than that
in [38]. We remark that our distributions have a higher FWHM
and are less peaky. In principle, this should lead to a worse
resolution, thereby making our estimates rather conservative.

3) Implementation Details:

5All the FWHM values cited in this article correspond to the projection
of the MFP onto LORs. That is why they might appear significantly smaller
than some numbers reported in the literature for the 3D distribution [35]
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a) DS: We reordered the sequence of events described in
Section VI-A to first draw from distributions where the most
likely outcome was to not progress further. We chose to run the
geometric distribution first, to discard any photons that would
penetrate deeper than the longest distance in the scanner. This
was possible because the probabilities are independent. The
Poisson process was sampled using rejection sampling. The
π/2 rotational symmetry of the scanner was used to increase
the efficiency of the code. All these considerations allowed for
a simulation speed of 2 · 107 pair-detections per second on a
NVIDIA Tesla V100-SXM2 with 32 Gb of memory. The code
was developed in-house using CuPy.

To sample from (12) in the DS simulations, we rewrite it as a
mixture of two Laplacians. Conversely, for the AS simulations,
we simulate the spectrum energy of the positron in Geant4.

b) AS: After thorough optimization of the multithreading
process in C++, we achieved a simulation speed of 800 pair-
detections per second and thread on CPU (AMD Ryzen 9
5950X).

I. Sinogram Sampling

To choose the optimal sampling rate for reconstruction, we
follow [61]. The authors offer a characterization à la Nyquist
of the necessary conditions to recover a function from its
Radon transform within a target accuracy. This is done by
the analysis of the tomographic setups in terms of so-called
m-resolving sets, where no nontrivial harmonics vanish up to
order m. When we apply the same principles to our scanner
design, we obtain intuitive rates to sample the sinogram do-
main of LORs. To recover details of size c without aliasing, the
sampling must be ∆s = c/2 in distance and ∆θ = c/2RFOV
in angle, so that ∆θ = ∆s/RFOV. Also similarly to other PET
scanners, radial undersampling is expected to generate more
artifacts than angular undersampling.

J. Effect of Sensitivity on the Standard Deviation

To assess the effect that the heterogeneous sensitivity of our
scanner has on the information gathered in the sinogram, we
establish a statistical analysis of the estimation of the concen-
tration.

Let f(x) be the distribution of radiotracer inside the FOV,
x ∈ V ⊂ Rd. The emission of photons triggered by nuclear
decays behaves like a Poisson process with an intensity
proportional to the concentration. The intensity received in
the sinogram domain from a point source at x is ϕ(s, θ) ∝
f(x)δPx(s, θ)ξ(s, θ)/π, where Px is defined in (8). This quan-
tity corresponds to the expectation of the Poisson distribution
characterizing shot-noise-limited measurements. We used that
the angle of emission follows a uniform distribution.

The aim of PET is to recover f(x). The formalism of
Cramér-Rao bounds allows us to inspect the variance of an
unbiased estimator f̂(x). To this end, we compute the Fisher
information as

I(f) =

∫

Ω

1

ϕ

(
∂ϕ

∂f

)2

=

∫

P

ϕ

f2
∝ ξ̄P

πf
, (22)

where we enforced the Poisson likelihood in the first equality
[75]. The standard deviation can then be bounded as

σ2
f̂
≥ I(f)−1. (23)

This means that the bound of the standard deviation scales as
1/
√

ξ̄P (Figure 18 right), and the bound of the signal-to-noise
ratio as ξ̄P /ξ̄

−1/2
P = ξ̄

3/2
P .

We computed the ratio between the bound for the average
standard deviation in a reconstruction using the sensitivity of
our scanner ξ(x, y) and that for a scanner with uniform sensi-
tivity ν̄ = |V |−1

∫
V
ξ(x, y). It is

∫
V
ξ(x, y)−1/2/

∫
V
ν̄−1/2 =

1 + 1 · 10−3. This means that the effect is minimal from the
perspective of this statistical detection bound.
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