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Abstract—Diffusion and Poisson flow models have shown
impressive performance in a wide range of generative tasks,
including low-dose CT (LDCT) image denoising. However, one
limitation in general, and for clinical applications in particular,
is slow sampling. Due to their iterative nature, the number of
function evaluations (NFEs) required is usually on the order of
10 − 103, both for conditional and unconditional generation. In
this article, we present posterior sampling Poisson flow generative
models (PPFMs), a novel image denoising technique for low-dose
and photon-counting CT that produces excellent image quality
whilst keeping NFE = 1. Updating the training and sampling
processes of Poisson flow generative models (PFGMs)++, we
learn a conditional generator which defines a trajectory between
the prior noise distribution and the posterior distribution of
interest. We additionally hijack and regularize the sampling
process to achieve NFE = 1. Our results shed light on the benefits
of the PFGM++ framework compared to diffusion models. In
addition, PPFM is shown to perform favorably compared to
current state-of-the-art diffusion-style models with NFE = 1,
consistency models, as well as popular deep learning and nondeep
learning-based image denoising techniques, on clinical LDCT
images and clinical images from a prototype photon-counting CT
system.
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I. INTRODUCTION

COMPUTED tomography (CT) is a widely used medical
imaging modality providing cross-sectional images of the

patient used to detect pathological abnormalities. CT is used
as a tool both for diagnosis and treatment planning for a wide
range of disease, such as stroke, cancer, and cardiovascular
disease. However, the potential risk associated with ionizing
radiation [1], [2] has spurred on a huge research endeavor to
achieve images of high diagnostic quality while keeping the
dose as low as reasonably achievable [3], [4]. Photon-counting
CT (PCCT), based on the latest generation of CT detector
technology, inherently contributes toward this objective as it is
able to reduce dose via photon energy weighting and by largely
eliminating the effects of electronic noise. This novel detector
technology, in addition to improved low-dose imaging, yields
major improvements in spatial and energy resolution [5], [6],
[7], [8], [9], [10] both extremely valuable to provide accurate
diagnosis. However, obtaining high resolution in either space
or energy decreases the number of photons in each respective
voxel or energy bin, and this unavoidably increases image
noise. Hence, to materialize the full potential of the latest in
X-ray CT detector technology there is an even higher demand
for high quality image denoising techniques.

Existing image denoising techniques can roughly be cat-
egorized into: 1) iterative reconstruction [11], [12], [13],
[14], [15], [16], [17]; 2) preprocessing methods [18]; and
3) postprocessing methods [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33]. Iterative
reconstruction have proved to be successful in generating
images with low noise levels while keeping important details
intact. However, these methods are usually computationally
expensive. Preprocessing methods approach the problem in
the sinogram domain, prior to image reconstruction. The
advantage of this method is that it will be agnostic to specific
parameters used in the image reconstruction (kernel, matrix
size, field of view (FOV), etc.). However, as the sinogram
is in general of higher dimension than the reconstructed
image, these approaches impose a higher compute require-
ment and may simply be unfeasible in certain applications.
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Postprocessing alleviates these issues by operating directly in
the image domain. Popular postprocessing methods include
nonlocal means (NLMs) [19], [20] and block-matching 3D
(BM3D) [28] filtering, as well as deep learning-based meth-
ods [21], [22], [23], [24], [25], [26], [27], [29], [30], [31],
[32], [33]. In particular, deep generative models have proved
exceptionally capable in suppressing noise while preventing
over-smoothing and thereby generating processed images with
appealing noise characteristics [22], [23], [32], [33], [34],
[35], [36], [37], [38]. It is also possible to combine pre- and
postprocessing by considering both the image and sinogram
domain within one method, as done in [39].

Diffusion and Poisson flow models are relatively recent
deep generative models that have shown excellent performance
on a wide range of tasks, showing remarkable success for
unconditional [40], [41], [42], [43], [44], [45], [46], [47] and
conditional image generation [32], [33], [43], [48], [49], [50],
[51], [52], [53]. These families of generative models, lend
themselves very well for inverse problem solving, ubiquitous
in medical imaging, and have already been demonstrated on a
range of problems in medical imaging [32], [33], [50], [53],
[54]. Despite being based on two widely different underlying
physical processes, EDM [45] (diffusion models) and Poisson
flow generative models (PFGMs)++ [47] are intimately con-
nected in theory and in practice. The generative processes both
work by iteratively denoising images, starting from an initial
prior noise distribution, following some physically meaningful
trajectory. The former is inspired by nonequilibrium thermo-
dynamics and the latter by electrostatics. PFGM++ realizes
a generative model by treating N-dimensional data as electric
charges in an N + D-dimensional augmented space. Tracing
out the resulting electric field lines yields a trajectory, defined
by an ordinary differential equation (ODE), from an easy-to-
sample prior distribution to the data distribution of interest.
Amazingly, the training and sampling processes of PFGM++
converges to that of EDM in the D → ∞, r = σ

√
D limit [47].

In other words, PFGM++ contains diffusion models as a
special case. In addition, EDM and PFGM++ are also tightly
connected in practice. As show in [47], the training and
sampling algorithms introduced for EDM [45] can directly
be applied to PFGM++ with just an updated prior noise
distribution and a simple change of variables.

The iterative sampling process is a key feature of diffusion-
style models, such as diffusion and Poisson flow models. This
allows for a flexible tradeoff between compute and image qual-
ity as well as zero-shot editing of data. However, this is also a
key limitation as more compute means slower sampling which
may limit their use in real-time applications. Compared to
single-step models, such as GANs [55], diffusion-style models
may required on the order of 10 − 103 times more compute
to generate a sample, both for unconditional and conditional
generation. Considering clinical CT image denoising as an
example, a full 3-D volume may contain hundreds of slices
that promptly need to be processed. Efforts to reduce the
number of function evaluations (NFEs), and improve sam-
pling speeds, include moving to efficient ODE samplers [44]
and distillation techniques [57]. A recent development is

consistency models [56], which builds upon of probability
flow diffusion models and learns to map any point at any
time-step to the trajectory’s initial point. This is achieved
by enforcing self-consistency: any two points on the same
trajectory maps to the same initial point. A consistency model
can be trained in distillation mode [consistency distillation
(CD)], where a pretrained diffusion model is distilled into
a single-step sampler, and in isolation mode (consistency
training), where a consistency model is trained from scratch
as a stand-alone model. Although yielding impressive results,
there is a noticeable drop in performance when comparing
the output from the consistency model with NFE = 1 to
the underlying diffusion model with NFE>1. This drop in
performance is smaller for CD than for consistency training
and can be mitigated by taking a few more steps in the
sampling process.

In this article, we propose a novel postprocessing denois-
ing method that exploits the added robustness afforded by
choosing D in the PFGM++ framework to achieve high
image quality without the penalty of computationally costly
sampling. The main contributions are as follows.

1) We present posterior sampling poisson flow generative
models (PPFMs), a novel framework for image denois-
ing in low-dose and photon-counting CT that produces
excellent image quality whilst keeping NFE = 1. Using
PFGM++ [47], originally developed for unconditional
generation (noise-to-image), as starting point, we update
the training and sampling processes, utilizing paired
data to learn a conditional generator (image-to-image).
Intuitively, instead of estimating an empirical electric
field as in PFGM++ [47], we exploit the additional
information afforded by paired data to estimate a “condi-
tional” empirical electric field, which defines a trajectory
from the prior noise distribution to the posterior distribu-
tion of interest. While not strictly necessary in order to
get a sample from the desired posterior, we additionally
hijack and regularize the sampling process. Using this
formulation we can choose the hyperparameters such
that NFE = 1.

2) We shed light on the benefits of using the PFGM++
framework with variable D compared to diffusion mod-
els with D → ∞ fixed for the task of image denoising.
The corresponding posterior sampling method based on
diffusion models is contained as a special case (D →
∞) in our proposed method and our results indicate
that the PFGM++ framework, with D as an addi-
tional hyperparameter, yields significant performance
gains.

3) We show that our proposed method outperforms current
state-of-the-art diffusion-style models with NFE = 1,
consistency models [56]. In addition to the state-
of-the-art from the AI literature, we also compare
our proposed method to previous popular supervised
(RED-CNN [21], WGAN-VGG [23]), and nondeep
learning-based (BM3D [28]) image denoising tech-
niques. Our results indicate superior performance on
clinical low-dose CT (LDCT) images and clinical
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images from a prototype photon-counting CT scanner
developed by GE HealthCare, Waukesha [60].

Code used for this article is available at:
https://github.com/dennishein/cpfgmpp_PCCT_denoising.

II. METHODS

A. Problem Formulation

The objective in this article is to generate high-quality
reconstructions ŷ ∈ R

N of y ∈ R
N from noise degraded

c = F(y) ∈ R
N, where F : R

N → R
N denotes the

noise degradation operator, including factors, such as quantum
noise [21], and N := n × n. In the case of LDCT, y
corresponds to the normal-dose CT (NDCT) and c to the
LDCT image. In the case of photon-counting CT, c is the thin
unprocessed slice and y is its noise suppressed counterpart.
The problem of generating high-quality reconstructions ŷ of
y from measurements c is typically ill-posed. It helpful to
treat this as a statistical inverse problem, and we will assume
that the data follow some prior distribution y ∼ p(y). Our
high-quality reconstruction is then a sample from the posterior
ŷ ∼ p(y|c). This strategy for solving inverse problem is called
posterior sampling. In this article, y will be treated as “ground
truth” despite the fact that it may contain noise and artifacts.

B. Diffusion Models

Diffusion models [40], [41], [42], [43], [44], [45], originally
inspired by nonequilibrium thermodynamics, work by first
slowly transforming the data distribution to a noise distribu-
tion by iteratively adding Gaussian noise, and subsequently
learning to run the process in reverse, slowly removing the
noise. Building on the continuous-time probability flow ODE
formulation in [43], Karras et al. [45] described this process as

dx = −σ̇ (t)σ (t)∇x log pσ(t)(x)dt (1)

where σ(t) ∈ [σmin, σmax] is a predefined, time-dependent,
noise scale, and ∇x log pσ(t)(x) is the time-dependent score
function of the perturbed data distribution. Moving the ODE
forward and backward in time nudges the sample away from
and toward the data distribution, respectively. Crucially, the
ODE in (1) only depends on the data distribution via the
time-dependent score function, an estimate of which can
be obtained by minimizing the weighted denoising score
matching [58] objective

Eσ∼p(σ )Ey∼p(y)Ex∼pσ (x|y)[
λ(σ)||fθ (x, σ ) − ∇x log pσ (x|y)||22

]
(2)

where λ(σ) is a weighting function, p(σ ) is the training
distribution of noise scales, p(y) is the data distribution, and
pσ (x|y) = N (y, σ 2I) is the Gaussian perturbation kernel,
which samples perturbed data x from ground truth data y.
Once equipped with this estimate, we can generate an image
by drawing an initial sample from the prior noise distribution
and solving (1) using some numeric ODE solver.

C. PFGM++
Instead of estimating a time-dependent score function, as

for score-based diffusion models, the objective of interest in
PFGM++ is the high dimensional electric field

E
(
x̃
) = 1

SN+D−1(1)

∫
x̃ − ỹ

||x̃ − ỹ||N+D
p(y)dy (3)

where p(y) is the ground truth data distribution, SN+D−1(1)

is the surface area of the unit (N + D − 1)-sphere, and
ỹ := (y, 0) ∈ R

N+D and x̃ := (x, z) ∈ R
N+D are the

augmented ground truth and perturbed data, respectively. The
electric field lines, generated by the data treated as electric
charges in the augmented space, define a surjection between
the ground truth data distribution and a uniform distribution
on the infinite N+D-dimensional hemisphere. Importantly, the
electric field is rotationally symmetric on the D-dimensional
cylinder

∑D
i=1 z2

i = r2 ∀r > 0 and therefore a dimensionality
reduction is possible [47]. In particular, it suffices to track the
norm of the augmented variables r = r(x̃) := ||z||2 and we can
redefine ỹ := (y, 0) ∈ R

N+1 and x̃ := (x, r) ∈ R
N+1. Hence,

the ODE of interest is

dx = E
(
x̃
)

x · E
(
x̃
)−1

r dr (4)

where E(x̃)x = [1/SN+D−1(1)]
∫

(x − y/[||x̃ − ỹ||N+D])p(y)dy,
and E(x̃)r = [1/SN+D−1(1)]

∫
(r/[||x̃ − ỹ||N+D])p(y)dy, a

scalar. Crucially, this symmetry reduction has converted
the aforementioned surjection into a bijection between the
ground truth data placed on the r = 0 (z = 0) hyperplane
and a distribution on the r = rmax hypercylinder [47].
PFGM++ employs a perturbation-based objective, akin to the
denoising score matching objective in score-based diffusion
models [43], [45]. In particular, for the perturbation kernel
pr(x|y), the objective is

Er∼p(r)Ey∼p(y)Ex∼pr(x|y)

[∥∥∥∥fθ
(
x̃
) − x − y

r/
√

D

∥∥∥∥
2

2

]
(5)

where p(r) is the training distribution over r. The key idea is
that we can choose the perturbation kernel such that the mini-
mizer of (5) matches (4). In particular, for pr(x|y) ∝ 1/(||x −
y||22 + r2)(N+D/2), it is possible to show that the minimizer
of (5) is f ∗

θ (x̃) = √
DE(x̃)x · E(x̃)−1

r . Starting with an initial
sample from prmax one can generate a sample for the target data
distribution by solving dx/dr = E(x̃)x/E(x̃)r = f ∗

θ (x̃)/
√

D
using some numeric ODE solver. Notably, Xu et al. [47]
proved that the training and sampling processes of PFGM++
converges to that of EDM in the D → ∞, r = σ

√
D limit.

Hence, PFGM++ accepts diffusion models as a special case.

D. Posterior Sampling Poisson Flow Generative Models

Our proposed method, PPFM, builds on PFGM++, by
updating both the training and sampling processes. There are
many ways to obtain a conditional generator for diffusion
models, as shown in [48]. The most straightforward of which
is to simply feed the condition image c as an additional input
to the network estimating the time-dependent score function.
This has been used with great success empirically [51], [52],
and [48] showed mathematically that this “trick” has a solid
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Algorithm 1: Proposed PPFM Training. Adapted From
PFGM++ [47] With Adjustments Highlighted in Blue

1 Sample Data {yi, ci}Bi=1 from p(y, c)
2 Sample standard deviations {σi}Bi=1 from p(σ )

3 Sample r from pr: {ri = σi
√

D}Bi=1
4 Sample radii {Ri = pri(R)}Bi=1
5 Sample uniform angles {vi = ui||ui||2 }Bi=1, ui ∼ N (0, I)
6 Get perturbed data {ŷi = yi + Rivi}Bi=1
7 Calculate loss �(θ) = ∑B

i=1 λ(σi)||Dθ (ŷi, σi, ci) − yi||22
8 Update network parameters θ using Adam

theoretical background and does yield a consistent estimator of
the conditional time-dependent score function. We will move
from an unconditional generator to a conditional one following
this strategy. For conciseness, we will leave a theoretical
treatment to future work and instead illustrate empirically that
this adjusted objective generates samples from the desired
posterior. In practice, as is the case for PFGM++, we will
employ the training and sampling algorithms from EDM [45]
using an updated prior noise distribution, the r = σ

√
D

hyperparameter translation formula, x̃ := (x, r), and the fact
that EDM sets σ(t) = t. Since dr = dσ

√
D = dt

√
D, by a

change of variable we have that dx = f ∗
θ (x̃)/

√
Ddr = f ∗

θ (x̃)dt.
The training process of PPFM is presented in Algorithm 1
with updates to the original formulation in PFGM++ [47]
highlighted in blue1.

Formally, the updates in Algorithm 1 are sufficient to
get a conditional generator. However, we found that addi-
tionally updating the sampling process can yield significant
improvements in terms of sampling speed, a key issue for
diffusion-style models. Hence, we propose to hijack and
regularize the sampling process. Instead of running all the
way from a sample from the prior noise distribution, we will
hijack the sampling process at some i = τ ∈ Z+, τ < T by
simply inserting our condition image xτ = c. Intuitively, this
approach relies on the assumption that there exists a σ ∗ =
t∗ ∈ [σmin, σmax] such that the condition image approximately
matches a point on the solution trajectory, that is c ≈ xσ ∗
where we have used the notation xσ ∗ to emphasize that the
perturbed x depends on the σ. Recall that in this setting t and σ

can be used interchangeably. We get the corresponding r∗ via
the alignment of hyperparameters formula r = σ

√
D. Despite

applying to CT images reconstructed with a softer kernel, our
results indicate that this assumption is satisfied in practice.
Consequently, the for-loop will then run from i = τ instead
of i = 0. With this additional hyperparameter τ we have that
NFE = 2 · (T − τ) − 1, where T is the total number of steps,
or noise-scales. Initial results injecting a forward diffused
condition image using the Gaussian perturbation kernel, as in
done in e.g., [49] for diffusion models, did not seem to improve
the results whilst introducing additional stochasticity. Thus, we
decided to go with this more simplistic, and novel, approach
of directly injecting the condition image c. Since T is inversely

1Note that fθ is estimated indirectly via Dθ .

Algorithm 2: Proposed PPFM Sampling. Adapted From
PFGM++ [47] With Adjustments Highlighted in Blue

1 Get initial data xτ = c
2 for i = τ , . . . , T − 1 do
3 di = (xi − Dθ (xi, ti, c))/ti
4 xi+1 = xi + (ti+1 − ti)di

5 if i < T − 1 then
6 d′

i = (xi+1 − Dθ (xi+1, ti+1, c))/ti+1

7 xi+1 = xi + (ti+1 − ti)(
1
2 di + 1

2 d′
i)

8 end
9 xi+1 = wxi+1 + (1 − w)xτ

10 end
11 return xT

proportional to the step size, hi = |ti+1 − ti|, employed in the
ODE solver, choosing a small T is equivalent to setting a large
step size. More formally, following [45], we set ti = (σ

(1/ρ)
max +

(i/T − 1)(σ
(1/ρ)

min −σ
(1/ρ)
max ))ρ, i = 0, . . . , T−1. This means that

we get quite aggressive denoising but it comes at the cost of a
larger local error as the local error using the 2nd order method
scales as O(h3) with step size h. As noted in [47], PFGM++
is relatively less sensitive to step size than EDM [45] and our
results will show that using PFGM++ framework allows us
to push the hyperparameters to an extreme where we have a
large step size yet achieve good performance. Finally, we add a
regularization step. The particular regularizer used will depend
on the inverse problem at hand. Since we are here interested
in image denoising, simply applying the identity map suffices.
Initial results using a low-pass filtered version of xτ , as in
e.g., [53] for diffusion models, did not improve performance.
Hence, we opted to go with this more simplistic formulation.
In other words, we will mix xi+1 with xτ = c, the input image
we seek to denoise, using weight w ∈ [0, 1]. Our proposed
PPFM sampling is shown in Algorithm 2, again with updates
to PFGM++ [47] highlighted in blue. Together, Algorithms 1
and 2 yields our proposed method, PPFM.

III. EXPERIMENTS

A. Datasets

1) Mayo Low-Dose CT Data: The dataset from the Mayo
Clinic, used in the AAPM LDCT grand challenge [59], is
used for training and validation. This publicly available clinical
dataset contains images from 10 patients reconstructed using
two different kernels and two different slice thicknesses on a
512×512 pixel grid. In this article, we use the data with slice
thickness 1 mm and reconstruction kernel D30 (medium). We
split the data into a training set containing the first 8 patients,
with a total of 4800 slices, and a validation set containing the
final 2 patients with a total of 1136 slices.

2) Photon-Counting CT Data: For test data, we use images
gathered as a part of a clinical study of a GE prototype photon-
counting system [60]. The patients were scanned at Karolinska
Institute, Stockholm, and Sweden (case 1, effective diameter
28 cm and CDTIvol = 10.12 mGy) and at the University of
Wisconsin–Madison, Madison, WI (case 2, effective diameter
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TABLE I
KEY PARAMETERS USED FOR SCANNING PATIENTS ON PROTOTYPE

PHOTON-COUNTING CT SYSTEM. THE PCCT DATA ARE USED FOR

TESTING ONLY

36 cm and CDTIvol = 27.64 mGy) with parameters listed
in Table I. We reconstructed 70 keV virtual monoenergetic
images with filtered backprojection on a 512 × 512 pixel grid
with 0.42 mm slice thickness.

B. Implementation Details

We train a network for each D ∈ {64 128} and for D →
∞ for 100k iterations using Adam [61] with learning rate
2 × 10−4 and batch size of 32 on one NVIDIA A6000
48GB GPU. D → ∞ is an important special case as this
corresponds to the equivalent method based on diffusion
models instead of PFGM++. We borrow the majority of
the hyperparameters directly from [47]. We use DDPM++
with channel multiplier 128, channels per resolution [1, 1,
2, 2, 2, 2, 2], and self-attention layers at resolutions 16, 8,
and 4. The only adjustment to the network architecture to
move from a unconditional to a conditional generator, is to
adjust the number of channels. The suggested preconditioning,
exponential moving average (EMA) schedule, and nonleaky
augmentation from [45] is used with an augmentation prob-
ability of 15%. We in addition set dropout probability to
10%. Following [47], we set σmin = 0.002, σmax = 380, and
ρ = 7. The network is trained on randomly extracted 256 ×
256 patches. Training on patches will lead to efficient training
(lower graphics memory requirements) and additionally help
prevent overfitting as training on randomly extracted patches
serves as additional data augmentation. We train the network
using mixed precision to further reduce the graphics memory
requirements. τ , T , and w are crucial hyperparameters in
Algorithm 2. As we only consider setups with NFE = 1 for
our main results, τ = T −1 and hence, completely determined
by T. We set T and w by grid search over T ∈ {4, 8, 16, 32, 64}
and w ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} using learned perceptual
image patch similarity (LPIPS) [63] on the validation set as
selection criteria for each D ∈ {64 128} and for D → ∞.
This yields T = 8 and w = 0.7. We note that even though
NFE = 1, this “single-step” configuration will also blend in
the condition image, a second step. However, the time required
for this operation is negligible and thus we still refer to this a
single-step.

C. Comparison to Other Methods

Consistency models [56] are the current state-of-the-art
diffusion-style models with NFE = 1. However, as for the
case of EDM [45] and PFGM++[47], the original formulation
is for the problem of unconditional image generation. To the
best of our knowledge, consistency models have never been
used for conditional generation. Nevertheless, since they build

upon diffusion models, and the CD approach in particular
distills said diffusion model to a consistency model, one can
reasonably surmise that the strategy of feeding the condition
images c as additional input to the network to get a conditional
generator will work well. Our empirical results support this
hypothesis. Starting from the official implementation2 we
employ minimal adjustments in order to learn a conditional
consistency model with c as additional input using the, CD
approach. We opt for the CD, instead of consistency training,
as this is the top performing approach in [56]. We train the
networks on randomly extracted 256×256 patches from the 8
patients in the Mayo LDCT training data. All hyperparameters
for training and sampling are set as in [56] for the LSUN
256 × 256 experiments3, except for batch size with had to be
reduced to 4 to fit on a single NVIDIA A6000 48GB GPU. We
first train an EDM for 300k iterations, and subsequently distill
it into a consistency model during 600k iterations. For data
augmentation, we applied random rotations and mirrorings.
It is worth pointing out that the network used for CD [56]
has about 530M parameters whereas the network we use in
this article has 47M parameters. In addition, it is trained
for considerably more iterations. Hence, both sampling and
training are considerably more time consuming. In particular,
despite both achieving NFE = 1, our proposed PPFM offer
2.5 times faster sampling. Following [56], we will refer to this
consistency model as CD.

In addition to the state-of-the-art from the AI literature, we
also compare our proposed method to previous popular super-
vised and nondeep learning-based image denoising techniques.
As an example of a popular nondeep learning-based technique
we use a version of BM3D [28]. BM3D was shown to be the
top performer for Mayo LDCT denoising in the category of
nondeep learning-based image denoising techniques in [21].
We used bm3d.py4 and set the parameter σBM3D equal to
the standard deviation of a flat region-of-interest (ROI) in
the LDCT validation data. For supervised techniques, we
use RED-CNN [21] and WGAN-VGG [23]. RED-CNN was
trained on over 106 extracted overlapping 55 × 55 patches
from the 8 patients in the Mayo LDCT training data. The
architecture is set as specified in [21]. WGAN-VGG was
trained on randomly extracted 64×64 patches from the training
set, with network architecture and other hyperparameters as
in [23]. For both networks, we augment the data by applying
random rotations and mirrorings during training. WGAN-VGG
is an interesting comparison case as it is very similar in
principle to the method proposed in this article. Both methods
achieve image denoising via posterior sampling by adjusting
the training processes of deep generative models, and thereby
acquire conditional generators. The major difference is the
deep generative model itself. WGAN-VGG [23] is based on
GANs, which were the state-of-the-art deep generative models
until the event of diffusion models and PFGM++, whereas our

2https://github.com/openai/consistency_models
3As specified in https://github.com/openai/consistency_models/blob/main/

scripts/launch.sh.
4https://pypi.org/project/bm3d/
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proposed method is based on PFGM++, a current state-of-the-
art deep generative model. Despite being similar in principle,
this difference leads to a myriad of important differences
in practice. Notably, PFGM++ does not require adversarial
training and is therefore much more stable to train.

D. Evaluation Methods

In addition to image quality assessment via visual inspec-
tion, we also consider three quantitative metrics of image
quality. We employ the two most commonly used metrics in
the CT denoising literature, namely structural similarity index
(SSIM [62]) and peak signal-to-noise ratio (PSNR). These
metrics are easy to use and very well established but they
do not necessarily correlate well with human perception [63].
PSNR is inversely proportional to the �2 Euclidean distance.
This simple pixel-wise metrics does not adequately capture
nuances of human perception. This is particularly most evident
for the case of blurring as a result of over-smoothing, which
is inadequately penalized. On the other hand, SSIM is per-
ceptually motivated; however, it is very difficult to model the
complex processes underlying human perception and therefore
is also falls short. Zhang et al. [63] suggested using pretrained
convolutional neural networks (CNNs) as feature extractors, as
is the case for perceptual loss functions, to develop a metric of
image similarity that closely corresponds to human perception.
They call this metric LPIPS and demonstrate on a series
of different datasets, using different pretrained CNNs, how
LPIPS better corresponds to human perception than traditional
metrics, such as SSIM and PSNR. In this article, we use
the official implementation of LPIPS5 with AlexNet [64] as
feature extractor. To move from RGB to grayscale images,
we use the standard approach of simply feeding a triplet of
repeated grayscale images as input to the pretrained network.

E. Results

Qualitative results, along side with LPIPS, SSIM, and
PSNR, for a representative case from the Mayo LDCT val-
idation data are available in Figs. 1 and 2. This patient is
of additional interest due to a metastasis in the liver. To
emphasize this lesion, we include a magnified version of the
ROI in Fig. 1 in Fig. 2. BM3D, shown in (c), does a good job
suppressing noise and recovering details. However, this comes
at a cost of artifacts that makes the image appear smudgy.
RED-CNN, shown in (d), does an exceptional job of sup-
pressing noise whilst keeping key details intact. Nevertheless,
the denoising is too aggressive and the noise is suppressed
well below the level in the NDCT image, shown in (a). This
over-smoothing is expected since RED-CNN is trained with a
simple pixel-wise �2-loss. WGAN-VGG, shown in (e), on the
other hand, does a very good job at suppressing noise while
producing noise characteristics aligned with that of the NDCT
image. At first glance, CD, shown in (f), seems to perform
exceedingly well. However, at closer inspection, especially in
Fig. 2, one can see several details that appear different for CD
than for all the other images, including NDCT and LDCT. We

5https://github.com/richzhang/PerceptualSimilarity

Fig. 1. Results on the Mayo low-dose CT validation data. Abdomen image
with a metastasis in the liver. (a) NDCT. (b) LDCT. (c) BM3D [28]. (d) RED-
CNN [21]. (e) WGAN-VGG [23]. (f) CD [56]. (g) PPFM (D → ∞).
(h) PPFM (D = 128). (i) PPFM (D = 64). Yellow box indicating ROI shown
in Fig. 2. 1 mm-slices. Window setting [−160, 240] HU.

highlighted one such detail with a yellow arrow. CD seems
to have added a feature that is not visible in the LDCT nor
NDCT image. Seemingly convincing, but factually inaccurate,
claims are commonly referred to as “hallucinations” in the
large language models (LLMs) literature.6 We will adopt
this terminology to mean inaccurate addition, or removal, of
features. Results for our proposed method are available in
(g)–(i). PPFM, with D = 128 and D = 64, does an exceptional
job of suppressing noise whilst keeping key details intact and
accurately reproducing the noise characteristics of the NDCT
image. Comparing (g), with D → ∞, to D finite, in (h) and
(i), emphasizes the effect of the added robustness afforded
by choosing D in PFGM++ framework. For small T, or
equivalently a large step size, PPFM with D → ∞ breaks
down whereas PPFM with D finite yield good results.

The mean and standard deviation of LPIPS, SSIM, and
PSNR over the entire Mayo LDCT validation set are available
in Table II. We additionally include the average time, in
seconds, per slice for each method. The top performer in
terms of SSIM and PSNR is RED-CNN. This is not entirely
unexpected since RED-CNN is trained to minimize the �2-loss
between patches from the NDCT and LDCT images. However,
as noted above, SSIM and PSNR do not necessarily correspond
well with human perception—in particular when it comes
to over-smoothing. WGAN-VGG combines a perceptual loss
with an adversarial loss in order to generate a denoised
image from a posterior that is “close,” in a certain sense,
to the distribution of the NDCT images. The overall noise
characteristics, texture, and level, more closely resembles that

6See, for instance, reference [65] for an overview.
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TABLE II
MEAN AND STANDARD DEVIATION OF LPIPS, SSIM, AND PSNR IN THE LOW-DOSE CT VALIDATION SET. IN ADDITION TO AVERAGE TIME, IN

SECONDS, TO EVALUATE A SINGLE SLICE. ↓ MEANS LOWER IS BETTER. ↑ MEANS HIGHER IS BETTER. BEST RESULTS IN BOLD

Fig. 2. ROI in Fig. 1 magnified to emphasize details. (a) NDCT. (b) LDCT.
(c) BM3D [28]. (d) RED-CNN [21]. (e) WGAN-VGG [23]. (f) CD [56].
(g) PPFM (D → ∞). (h) PPFM (D = 128). (i) PPFM (D = 64). Yellow
circle added to emphasize lesion. Yellow arrow placed to emphasize detail.
1 mm-slices. Window setting [−160, 240] HU.

of the NDCT image for WGAN-VGG than for RED-CNN.
We can see that, accordingly, the LPIPS is significantly lower
(better) for WGAN-VGG than RED-CNN. The overall top
performer in terms of LPIPS is our proposed method, PPFM,
with D = 64.

To shed light on the individual components of our proposed
sampler, we conduct an ablation study with results available
Fig. 3(a) and (b) shows the NDCT and LDCT images, respec-
tively. In (c), we turn off hijacking and regularization. As
was also seen in Fig. 4, the sampler breaks down in this
setting. The same holds true in (e), where we regularize
but have turned off the hijacking. Comparing (c) to (d), we
can see that hijacking plays a pivotal role in our proposed
sampler. For the setting consider here, with T = 8, hijacking
allows us to move from a total breakdown to a very pleasing
image. Regularizing is also shown to be beneficial, it helps
prevent over-smoothing resulting from aggressive denoising, a

consequence of choosing a large step size, as can be seen when
comparing (d) to (f). Hence, hijacking and regularization,
hijacking in particular, is what enables excellent image quality
whilst keeping NFE = 1. In order words, hijacking can help
break the dependence on large T for good image quality.

The proposed method is trained in a supervised manner to
directly yield a conditional estimator. Hence, as mentioned
above, neither hijacking nor regularization is strictly necessary.
Instead, one can simply draw an initial sample from the
prior noise distribution and then solve the ODE to generate
a sample from the desired posterior. To illustrate empirically
that this is indeed the case, we set τ = 0, w = 1, and
replace the first line with an initial sample from the prior noise
distribution, prmax , in Algorithm 2. Hence, except for the fact
that the network takes the condition image as an additional
input, Algorithm 2 is exactly as in PFGM++ [47]. We show
results for T ∈ {40, 100, 250, 500} in Fig. 4. Consistent with
expectations, the performance improves as T , the total number
of steps, gets larger for the D → ∞ case. Interestingly, for
the D = 64 case, LPIPS improves, SSIM is slightly worse,
and PSNR roughly stays the same. Crucially, for D = 64,
we can see that for T ≥ 40 our high-quality reconstruction
is a good approximation of the ground truth image, that is
ŷ ≈ y. For the D → ∞ case a significantly larger T is
required to get good results. Moreover, comparing results in
Figs. 1 and 2(i) with Fig. 4(f) illustrates the added benefit of
the proposed sampler. In Fig. 4, a sample from the desired
posterior is generated by starting from an initial sample from
the prior noise distribution and then running Algorithm 2
with τ = 0 and w = 1. This corresponds to employing
the PFGM++ (D = 64), updated to the conditional case
via supervised learning, as is. Compared to our proposed
method in Figs. 1 and 2(i), SSIM and PSNR are marginally
worse whereas LPIPS is better. Notably, NFE = 1 for (i) in
Figs. 1 and 2 whereas NFE=999 in Fig. 4(f). In other words,
the proposed sampling algorithm achieves comparable results
quantitatively, and arguably superior results qualitatively, with
up to 999× faster sampling. These improvements are made
possible by our proposed sampling method which greatly
regularizes the sampling process, enforcing consistency with
the LDCT image, c. As also shown in the ablation study
in Fig. 3, the key part is the hijacking, which converts the
sampling problem from a stochastic mapping from a noise
vector to a deterministic mapping from the LDCT image.
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Fig. 3. Ablation study of PPFM sampler with D = 64 and T = 8. (a) NDCT. (b) LDCT. (c) No hijacking and no regularization. (d) Hijacking but no
regularization (τ = T − 1, w = 1). (e) No hijacking but regularization (τ = 0, w = 0.7, and x0 is a sample from the prior noise distribution). (f) Hijacking
and regularization (τ = T − 1, w = 0.7). Yellow circle added to emphasize lesion. 1 mm-slices. Window setting [−160, 240] HU.

Fig. 4. Results without hijacking and regularization (i.e., w = 1, τ = 0, and xτ = x0 is a sample from the prior noise distribution in Algorithm 2). (a) NDCT.
(b) LDCT. (c) T = 40 (D = 64). (d) T = 100 (D = 64), (e) T = 250 (D = 64). (f) T = 500 (D = 64). (g) T = 40 (D → ∞). (h) T = 100 (D → ∞).
(i) T = 250 (D → ∞). (j) T = 500 (D → ∞). Yellow circle added to emphasize lesion. 1 mm-slices. Window setting [−160, 240] HU.

This greatly reduces the complexity of the mapping and thus
enables high image quality with significantly fewer NFE. Of
particular interest in medical imaging, this greatly reduces
small variations in the output that leads to worse pixel-wise
consistency, negatively effecting the quantitative metrics. In
addition to hijacking, we also have the regularization step
which further enforces pixel-wise consistency, in addition to

ensuring consistency in the noise characteristics, as also shown
in Fig. 3. Notably, the same conclusion does not hold true for
the D → ∞ case as can be seen comparing Fig. 4(j) with
Figs. 1 and 2(g). In this case, the NFE=999 setup outperforms
our proposed sampling. That we get good results for D finite,
but not with D → ∞ (EDM) is likely attributed to the added
robustness over diffusion models of the PFGM++ framework.
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Fig. 5. Results for the PCCT test data: case 1. (a) Unprocessed.
(b) BM3D [28]. (c) RED-CNN [21]. (d) WGAN-VGG [23]. (e) CD [56].
(f) PPFM (D → ∞). (g) PPFM (D = 128). (h) PPFM (D = 64). No ground
truth available. Yellow box indicating ROI shown in Fig. 6. 0.42 mm-slices.
Window setting [−160, 240] HU.

Fig. 6. ROI in Fig. 5 magnified to emphasize details. (a) Unprocessed.
(b) BM3D [28]. (c) RED-CNN [21]. (d) WGAN-VGG [23]. (e) CD [56].
(f) PPFM (D → ∞). (g) PPFM (D = 128). (h) PPFM (D = 64). No ground
truth available. Yellow arrow placed to emphasize detail. 0.42 mm-slices.
Window setting [−160, 240] HU.

Hence, using PFGM++ instead of diffusion models is key in
making the NFE = 1 case viable.

Results for a representative case from the PCCT test data,
case 1, are available in Figs. 5 and 6. Since these data are
clinical images from a prototype photon-counting system,

Fig. 7. Results for the PCCT test data: case 2. (a) Unprocessed.
(b) BM3D [28]. (c) RED-CNN [21]. (d) WGAN-VGG [23]. (e) CD [56].
(f) PPFM (D → ∞). (g) PPFM (D = 128). (h) PPFM (D = 64). No ground
truth available. Yellow box indicating ROI shown in Fig. 8. 0.42 mm-slices.
Window setting [−160, 240] HU.

there are no images available to play the role of ground
truth, and we will therefore have to resort to visual inspection
as means of accessing image quality. Larger details can
reasonably be distinguished from statistical variation in the
noise; however, this is very difficult for smaller, lower contrast,
details. With that caveat, since no ground truth is available,
we simply define a good result as an image which preserves
details visible in the unprocessed image, shown in (a), but
with a lower noise level. BM3D, shown in (b), seems to
generalize quite poorly. The noise level in (b) similar to that
in (a) with additional artifacts that makes the image appear
smudgy. This may be due to differences in noise characteristics
in the validation data, where we measured σBM3D, and the test
data. RED-CNN, WGAN-VGG, and CD, on the other hand,
shown in (c)–(e), respectively, seem to generalize well from
the LDCT data to the photon-counting CT test data. We have
placed a yellow arrow on a detail of interest. This feature is
clearly visible is all cases, including the unprocessed image,
but it is missing for CD, shown in (e). Hence, although it is
difficult to say definitively without a ground truth, this seems
to indicate that CD removed a genuine feature. The proposed
method is shown in (f)–(h). As was the case for the Mayo
LDCT validation data, there is a major performance boost for
D finite, shown in (g) and (h), compared to D → ∞, shown
in (f).

We show the results on the second PCCT test case in Fig. 7,
with a magnified version of the ROI shown in Fig. 8. We
have also placed a yellow arrow in Fig. 8 to draw attention
to specific details. We note that BM3D, shown in (c), seems
to be doing a better job in terms of noise suppression that in
Fig. 5. Differences in performance in the two test cases is most
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Fig. 8. ROI in Fig. 7 magnified to emphasize details. (a) Unprocessed.
(b) BM3D [28]. (c) RED-CNN [21]. (d) WGAN-VGG [23]. (e) CD [56].
(f) PPFM (D → ∞). (g) PPFM (D = 128). (h) PPFM (D = 64). No ground
truth available. Yellow arrow placed to emphasize detail. 0.42 mm-slices.
Window setting [−160, 240] HU.

likely due to differences in noise characteristics. RED-CNN,
WGAN-VGG, and CD, shown in (c)–(e), respectively, all do
a good job suppressing the noise while preserving details. The
main difference is the characteristics, texture, and level, of
the resulting noise. In particular, RED-CNN, is notably very
smooth. The D → ∞ case, shown in (f), over-smooths the
image, reducing the contrast of key details, while introducing
a strange texture. On the other hand, for finite D, PPFM results
in images with realistic noise level and texture, and preserve
key details. Moreover, we can see that the contrast of the fat in
the back muscle, marked by the yellow arrow, is significantly
better preserved using the proposed method with finite D,
shown in (g) and (h), than for WGAN-VGG, shown in (d).

IV. DISCUSSION AND CONCLUSION

Despite appearing similar to a conventional end-to-end
denoising method in the NFE = 1 case, our proposed approach
is fundamentally different since the network is trained to
estimate a high dimensional electric field (D finite, PFGM++
case) or a score function (D → ∞, diffusion model case)
and a sample from the posterior is subsequently obtained by
following a solution trajectory via a discretized ODE. Our
proposed method hijacks said solution trajectory in order to
achieve NFE = 1 sampling. In addition, even though we show
results for the special case for τ = T − 1, Algorithm 2 is
more general and thus the suggested approach also accepts
NFE>1 sampling.

It is likely the case that one achieves better performance
using a multistep sampler, trading off compute for image
quality. Since we were here interested in the single-step case,

only limited time was spend exploring the hyperparameters
space for τ �= T − 1. In this preliminary search, we were
unable to find a combination of T, τ and w outperforming
our current hyperparameters in terms of LPIPS on the Mayo
LDCT validation set. Notably, enforcing τ = T − 1 greatly
reduces the size of hyperparameter space since we only need
the tuple (T, w) instead of (τ, T, w). It is left to future research
to explore the extent to which there is a penalty in performance
due to enforcing τ = T − 1, and thereby achieving NFE = 1.

The added robustness of PFGM++ has already been
demonstrated in previous work [47]. However, the results in
Fig. 4 seem to be somewhat exaggerated given the authors
experience with diffusion and Poisson flow models. In partic-
ular, given the ODE formulation in EDM [45], it is definitely
possible to produce decent results for EDM with T ≈ 40. In
this case, we required around T = 500 to achieve reasonable
results. We additionally validated these results by training a
network with D = 256 × 256 ∗ 103 >> 256 × 256 = N
to approximate the D → ∞ case whilst staying the in the
PFGM++ framework. This produced results roughly on par
of what can be seen Fig. 4. This large discrepancy could be
due to, for instance, robustness to network size. We leave it
to future work to investigate how much this gap is narrowed
by hyperparameter tuning.

Since we are interested in PCCT, the ultimate objective is
to get an image denoising technique that works for spectral
CT. Extending PPFM to the spectral case can be done in
many different ways. One possibility is to simply expand
the number of channels for each data point. Instead of
feeding a single-energy image, one can use pairs of basis
images or virtual monoenergetic images at two different
energy levels. Assessing whether such an update would be
sufficient, or if further updates are required to obtain a
spectral CT denoiser is an interesting avenue for future
research.

Finally, this is a 2-D image denoising method. As such,
due to the nature of CT data, we are leaving an abundance
of useful information on the table by not considering adjacent
slices. We surmise that it should be relatively straight forward
to extend the proposed method to a 3-D denoiser and thus
leave this to future work.

In conclusion, we have presented PPFM, a novel image
denoising technique for low-dose and photon-counting CT.
Our proposed method updates the training and sample
processes of PFGM++ [47] to get an conditional generator
which is able to achieve high image quality without the penalty
of computationally costly sampling. In particular, our proposed
method is a single-step sampler, that is NFE = 1. Our results
shed light on the benefits of building upon the PFGM++
framework, where D is a tunable hyperparameter, compared
to diffusion models where D → ∞ is fixed. In particular,
we demonstrate that the corresponding setup with a diffusion
model fails. Our results demonstrate favorable performance
compared to current state-of-the-art diffusion-style models
with NFE = 1, consistency models, as well as several
popular deep learning-based and conventional postprocessing
techniques on clinical LDCT images and clinical images from
a prototype photon-counting CT system.
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