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Force Estimation of Five Fingers Using Infrared
Optical Sensors and an IMU and its Application

to Analysis of Sports Motion
Shota Miyake, and Tamon Miyake, Member, IEEE

Abstract— Research on scientifically analyzing human movements
for applications in sports and skill inheritance is actively conducted.
Particularly, methods for estimating human output through the
analysis of muscle deformation can be applied to static forces like
grip strength. However, when focusing on finger force analysis
through muscle deformation, traditional studies have only targeted
a single finger, and there are no examples of simultaneously esti-
mating the force of all five fingers. Furthermore, the most common
method for acquiring muscle deformation, using electromyography
(EMG), suffers from reduced accuracy due to the influence of sweat
and sebum on the skin, making it challenging to analyze intense
movements. Additionally, as the posture of the arm changes, the
muscle configuration within the arm also changes, making finger
force estimation difficult with conventional methods when there
is significant arm posture variation. Therefore, this study aims to
simultaneously estimate the force of all five fingers under varying arm postures by using optical sensors, which are less
affected by changes in skin condition, to measure muscle deformation, and a six-axis inertial sensor (IMU) to measure the
posture of the upper arm. By using the IMU to detect the posture of the upper arm, it is possible to indirectly estimate the
changes in muscle configuration within the arm. In the experiments, the accuracy of finger force estimation was compared
with and without the use of the IMU, focusing on sports movements, to discuss its effectiveness. Additionally, the study
demonstrated how the accuracy of force estimation decreases by applying saline solution to the skin to simulate sweat.
The results showed that the use of the IMU improved the accuracy of finger force estimation, and although the accuracy
decreased due to sweat, force estimation remained possible. This method, which involves attaching sensors only to the
upper arm, does not interfere with hand operations, suggesting its potential application for analyzing fingertip forces in
various scenarios that involve the use of hands.

Index Terms— Human–machine interaction (HMI), IMU, muscle deformation sensing, optical sensor, sensing methods.

I. INTRODUCTION

A. Background

RESEARCH on technologies for measuring forces gener-
ated by the human body is an important field expected to

have applications not only in sports but also in skill inheritance
and medical fields [2], [3], [11]. Traditionally, studies on
measuring these forces have used methods that analyze human
movements with cameras [4]. However, camera-based methods
face challenges in measuring static forces such as grip strength.
In response to these challenges, recent years have seen ex-
tensive research into methods that measure and estimate the
forces generated and exerted by the human body by directly
attaching sensors to the body or using wearable devices.
These new approaches aim to provide more accurate and
reliable data on the forces involved in various movements and
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activities, overcoming the limitations of traditional camera-
based methods [5]– [9]. This study focuses on methods for
estimating the physical output of a human using wearable
devices.

B. Related work

Methods for estimating and measuring the force generated
in the human body and the force output by the human body can
be divided into four main categories, depending on the sensors
and measurement methods. The first method is to attach a force
or pressure sensor directly to the point where force is to be
detected. Studies using this method include gait analysis by
installing pressure sensors on the soles of the feet [3], [5],
[10], analysis of foot pressure during running [14], a sensor
that can be attached to the fingertips to measure contact force
[12], and measuring punching force by installing a sensor on a
boxing glove [13]. This method of directly attaching sensors
to the human body or tools used by humans allows direct
measurement of the force occurring at the location where
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the sensor is installed. However, strong applied loads to the
sensors are generated when sports are performed, causing the
sensor to peel off, and measurement accuracy might reduce
[15]. In addition, it is also possible that the sensors installed
at the measurement points may cause discomfort to people
[16].

The second method is called Electromyography (EMG),
which estimates the output of the human body by measuring
myoelectricity using electrodes [8], [17]. Research using EMG
to estimate muscle strength includes force estimation during
walking [11], finger bending force estimation for quantification
of climbing techniques [18], muscle strength estimation during
squatting [19], and fingertip force estimation during plucking
[20]. However, changes in joint angles that alter muscle length
are synonymous with changes in sarcomere length, and it is
known that muscle strength varies with changes in muscle
length [21]. In addition, changes in muscle strength can also
occur due to nerve fatigue [22]. Perspiration causes partial
short-circuiting of electrodes for action potential measurement,
noise in EMG measurements, and unstable measurements due
to changes in impedance between electrodes and skin [23],
[24] and that the human body functions like an antenna,
generating noise due to fluorescent lights, electrical cords, and
electronic devices [25], [26].

The third method, called force myography (FMG), estimates
muscle force by measuring muscle deformation through the
placement of force sensors on the skin. Studies using FMG
include a study that analyzed muscle deformation during bi-
cycle pedal turning motion [28], a study that analyzed walking
motion [29], and a study that developed a sensor to perform
FMG [27]. Other studies that used FMG to estimate muscle
power include those that estimated the output of hand [30],
[31] and ankle joint power [32]. FMG is a commonly used
method for analyzing motor skills and output of the human
body. However, FMG has some problems, such as the loss
of measurement accuracy due to the influence of preload at
the time of sensor installation, and the difficulty of accurately
placing the sensor on the target muscle due to the different
physique and muscle tone of each sensor wearer [33].

The fourth method uses optical sensors to measure deforma-
tion of the human body or muscle deformation for estimation
of muscle force. There are studies that uses optical sensors to
measure deformation of the human body to estimate muscle
force by installing a sensor unit at the fingertips [34]– [36].
In these studies, fingertip force is estimated by measuring
the deformation of the finger as it is deformed by the load.
However, it is not possible to estimate muscle strength with the
finger closed because the sensors must be placed on the side
of the finger. Another study is a method of estimating muscle
strength by measuring muscle deformation in the arm using
optical sensors [37]. These studies used 14-channel optical
sensors to estimate fingertip force. Estimating the force at the
fingertip using optical sensors leaves the hand free because
the sensors are installed on the arm. In addition, since the
sensors do not require pre-pressure to be applied, they remain
comfortable during measurement and do not interfere with
human movement. Hence, optical sensors are suitable for ana-
lyzing sports movements that use the hands. However, because

muscle force estimation using optical sensors is affected by
changes in muscle length due to exercise, force estimation
accuracy may be low when analyzing sports movements with
large changes in arm posture.

C. Research Objectives
In this study, it is verified whether fingertip force es-

timation is possible even when playing sports with large
arm movements using optical sensors and IMU. It is known
that combining methods such as EMG and FMG with IMU
improves accuracy in gesture estimation [38]– [40]. These
studies show that the use of arm posture data measured by
IMU is effective, and it is assumed that the use of IMU
together with muscle deformation sensors will improve the
accuracy of force estimation. Fingertip strength was chosen as
the target of estimation in this study because fingertip strength
and hand strength have been analyzed by many researchers
[12], [18], [20], [30], [31], [34]– [37]. In addition, optical
sensors were selected as muscle deformation sensors for the
following reasons.

1) The optical sensors are worn on the arm, so it does not
interfere with hand-related sports activities.

2) Optical sensors do not require pre-pressurization and
remain comfortable when installed.

3) Proven fingertip force estimation in static conditions.
4) The optical sensing method is resistant to perspiration.
5) Optical sensors are inexpensive.

In the experiment, the fingertip force is estimated from the
index finger to the thumb, respectively, and compared with
and without the IMU. In addition, the case where a saline
solution is applied to the skin, assuming perspiration during
sports will be examined.

II. SYSTEM
The system developed in this study uses optical sensors to

acquire the deformation of muscles and estimate the magnitude
of the force generated at the fingertips during sports activities.
To measure finger movement, the deformation of the forearm
muscles, which correlates with finger movement, is acquired
using infrared optical sensors. Infrared optical sensors are
commonly used for musculoskeletal monitoring [41]– [45]
because near-infrared light is strongly scattered when passing
through biological tissue [46], allowing the reflected light
to contain information from relatively deeper muscle layers.
However, measuring muscle deformation alone is insufficient
for accurately estimating forces generated by the human body.
This limitation arises because muscle tension changes non-
linearly with muscle length [21], and the geometric arrange-
ment of the skeleton and muscles shifts with body posture,
altering the direction of force generation by muscles relative
to the body.

To address this, a six-axis inertial sensor (IMU) is utilized
to measure forearm posture, aiming to build a fingertip force
estimation model that accounts for the influence of arm pos-
ture. The IMU, which detects changes in rotation, orientation,
and axial velocity, is equipped with three translational axes
and three rotational axes, forming a six-axis configuration. In
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this study, the IMU measures the three-dimensional rotation
angles of the arm and outputs data in quaternion format
to prevent gimbal lock. Consequently, the IMU can provide
angle information about the forearm, enabling the estimation
of muscle length and internal muscle arrangement changes
corresponding to variations in forearm posture.

In this study, a band-type sensor called FirstVR [51],
equipped with 14-channel infrared optical sensors and IMU
was used as a sensor worn on the forearm. An explanation
of FirstVR is shown in Figure 1. FirstVR has previously
been used as a sensor to measure muscle deformation in the
forearm and has successfully estimated fingertip force using
only the optical sensor in conditions where the forearm posture
does not change [37]. The single-channel infrared optical
sensor on the FirstVR consist of one infrared optical emitter
and one receiver. This optical sensor detects the intensity
of reflected infrared light at the receiver when the infrared
emitted from the emitter is reflected by the skin or biological
tissue. Consequently, when skeletal muscles or skin deform,
the readings of each optical sensor channel on the FirstVR
change. Therefore, the FirstVR can measure deformations in
the arm’s muscles and skin. The reflected light at the receiver
is recorded as 8-bit data, with infrared intensity values ranging
from 0 to 255. The IMU on FirstVR outputs data in the form
of quaternions of three-dimensional rotations, which represent
the posture of the forearm. The arm’s reference position is set
with the arm positioned in front of the body, perpendicular
to the line connecting both shoulders, with the palm facing
upward, as shown in the image of step 1 in Figure 4. The
quaternion is output as a four-dimensional float data type. The
data detected by FirstVR is transmitted to the PC via Bluetooth
Low Energy.

Infrared optical sensors and IMU values do not directly
represent muscle status. Since hemoglobin and myoglobin
absorb near-infrared light [47], [48], the reflection of near-
infrared light is influenced by the oxygenation activity of
muscles involved in deformation and changes in the reflectance
caused by skin deformation [49], leading to complex variations
in near-infrared reflectance. As a result, the measurement
values from the optical sensors also exhibit complex behavior
depending on the state of the muscles. Additionally, mus-
cle output is nonlinear in relation to muscle length [21].
Furthermore, muscle fibers are not always aligned parallel
to the muscle; during muscle contraction, muscle bundles
spread radially [50], leading to a nonlinear relationship be-
tween muscle tension and muscle deformation. Therefore, the
relationship between the optical sensor readings of the FirstVR
and muscle deformation is expected to be nonlinear, as is the
relationship between muscle deformation and fingertip force.
To overcome these challenges, the present study employs
SVR, a method capable of learning nonlinear models and
estimating continuous values, as used in previous research
[37], to estimate fingertip force.

An explanation of FirstVR is shown in Figure 1. In this
study, Support Vector Regression (SVR) is used to determine
the correlation between fingertip force and FirstVR data. The
input data for the SVR are the 14-channel infrared optical sen-
sors and the 4-dimensional data of the quaternion output from

Fig. 1. Device explanation of FirstVR.

Fig. 2. Fingertip force estimation system in this study.

the IMU, a total of 18 variables. SVR has high regressivity by
using acceptable errors and kernel function transformations of
the input data, and it is adaptable to complex data structures
for a small number of input variables (18 in this study) [52].
Therefore, SVR is suitable for regression modeling of complex
models such as muscle deformation with a small number of
input data, as in this case. The regression equation f(x) for
SVR is as follows.

f(x) = wTϕ(x) + b. (1)

x is a vector of input data (18 in total, consisting of infrared
optical sensor measurements transmitted and IMU data from
FirstVR), ϕ is a kernel function, w is a vector of weight
parameters, and b is a bias parameter. The Radial Basis
Function is implemented as a kernel function as follows in
order to handle nonlinear data.

ϕ(x) = exp(−γ||x− x′||2). (2)

x′ is the mean value of the input training data and γ is a
Gaussian function. The objective function L(w) is expressed
by the following equation.

L(w) =
1

2
||w||2 + C

N∑
i=1

max(0, |yi − f(xi)| − ϵ) (3)

To learn the parameters w and b, minimize the objective
function involving C. ϵ represents the tolerance and penalty
for errors. N is the total number of vectors, i is the sample
number, and yi is the target value. L(w) is minimized based
on Lagrange multipliers with slack variables [53].
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III. EXPERIMENT
A. Subjects

There were 6 subjects (2 females and 4 males) with a
mean age of 33.3 (23-40) years. Participants were selected
with a minimum of two males and two females to account
for differences in experimental results based on gender. Ad-
ditionally, to avoid potential interference of subcutaneous fat
with muscle deformation measurements using optical sensors,
only healthy adults with an average body type were chosen.
While this study focuses on the analysis of sports movements,
prior experience in sports was not a selection criterion for
participants. All participants were informed of the experiment
and their consent was obtained before the experiment was
conducted. Instructions were also provided on how to interrupt
the experiment so that participants could stop the experiment
at any time. However, the purpose of the experiment was not
explained. This experiment was approved by The Japanese So-
ciety for Wellbeing Science and Assistive Technology (ID:22-
13).

B. Purpose of experiment
The purpose of this study is to estimate the force generated

at the fingertips during sports activities by using optical
sensors and IMU. Therefore, the following two items should
be verified.

1) To estimate fingertip strength when performing sports
movements.

2) To estimate fingertip strength in sweaty conditions.
In the experiment on the estimation of fingertip forces during
sports movements, it was confirmed that data on fingertip
force estimation during movements in which the arm posture
changes significantly. Through this experiment, the effect of
IMU on estimation accuracy can be confirmed. In addition,
since humans perspire during exercise, it is necessary to verify
the measurement of force estimation in sweating conditions
to analyze sports movements. Therefore, the difference in
fingertip force estimation with 0.5 % concentration of saline
[54] applied to the skin, simulating sweat, and having nothing
applied to the skin, respectively is discussed.

C. Experiment Device and Methods
Figure 3 shows the experiment device. The experiment

device consisted of a glove for measuring fingertip force, a
data acquisition platform for measuring data from the glove, a
PC, a FirstVR, and a Bluetooth module. A pressure sensor
(FRS402, Interlink Electronics Inc.) was mounted on the
fingertips of the glove to enable measurement of the force
generated at the tip of each finger. This sensor has a property
where its resistance changes when force is applied, and in the
experiment, a voltage divider circuit is used to convert force
into an analog voltage signal. This voltage is then converted
to digital data by an Arduino UNO (Arduino S.R.L.) based
data acquisition platform, with an A/D conversion maximum
frequency of 9.6 kHz. The resolution of the pressure sensor
for converting data into force is 1 gf, rounding to the nearest
tenth. Additionally, the force data obtained from the sensor is

transmitted to a PC via serial communication. The data from
the FirstVR’s optical sensors and IMU were transmitted to the
PC through a Bluetooth module (UB500, TP-Link).

In this experiment, it is essential to acquire fingertip force
values and muscle deformation data in sync as closely as
possible. Therefore, once the PC receives data from FirstVR, it
sends an acquisition command to the data acquisition platform
for the force information, and the PC then receives the fingertip
force data. Using this method, the delay between FirstVR data
and force data is kept below 200 µs. Since the data acquisition
frequency of FirstVR is 40 Hz, the entire experimental setup
also acquires data at 40 Hz.

The experiment was performed according to the following
procedure, as shown in Figure 4.

1) Attach the FirstVR and the glove to the subjects on the
left arm and the left hand.

2) Record the FirstVR and fingertip force data while play-
ing sports.

3) Integrate the data of all subjects.
4) Split the integrated data into training data and test data.
5) Perform training (SVR) using the training data.
6) Estimates fingertip force using test data with the trained

SVR and compares it to the measured fingertip force.
In this study, fingertip force was estimated in kendo, baseball,
and golf swinging as sports activities in which the arm posture
changes significantly. An overview of each practice swing
movement is shown in Figure 5. In this study, data were
collected across a variety of arm postures to evaluate whether
fingertip force can be estimated by combining forearm muscle
deformation with IMU data, regardless of arm posture. To
achieve this, three movements were selected: kendo swings,
which involve moving the arm above shoulder height; baseball
swings, which involve arm movement around shoulder height;
and golf swings, which involve moving the arm below shoul-
der height. These three movements also involve significant
forearm motion, allowing for the collection of data across var-
ious arm postures. During data acquisition, subjects performed
each of the three types of movements once for 45 seconds. In
each trial, at least 10 swings were performed. Additionally,
a minimum 3-minute break was taken after each movement,
which was extended as needed until the participant declared
they felt no fatigue.

For data integration, any data where the FirstVR values were
negative despite not being expected to be, data with empty
fields in the FirstVR readings, or cases where fingertip data
could not be acquired due to errors were deemed invalid and
excluded from the dataset.All other data points were included
in the integrated dataset. The total number of data points was
approximately 32,000. In this study, parameter tuning was
performed using k-fold cross-validation.

For k-fold cross-validation, commonly used values for k
are 5 or 10 [67]- [69]. In methods utilizing support vector
machines (SVMs), which employ a calculation process similar
to the SVR used in this study, k = 5 or k = 10 is often
recommended [69]. Generally, k values and computational cost
have a trade-off relationship [68], so it is preferable to set k
as small as possible. Additionally, results for k = 5 and k =
10 often show little difference [70], and the same trend was
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Fig. 3. Experiment device diagram.

Fig. 4. Experimental procedure.

confirmed in this study. Therefore, this study adopted k = 5,
utilizing 5-fold cross-validation.

D. Fingertip force estimation during sports movements
In addition to investigating the possibility of estimating fin-

gertip force during sports activities using muscle deformation
measured by optical sensors and arm posture data by IMU,
the estimation accuracy was checked both with and without
the IMU data. SVR was trained using training data from both
cases of using only optical sensors and using both optical
sensors and IMU, and its regression accuracy was verified.

Figure 6 shows the relationship between the fingertip force
measured by the pressure sensor during sports and the es-
timated fingertip force. The red dotted lines in Figure 6
show that the estimated fingertip force is consistent with
the measured values. To verify the regression accuracy, the
correlation coefficient, coefficient of determination (R2), and
root mean square error (RMSE) were derived. The RMSE is
calculated as follows, where N is the total number of samples,
F is the measured fingertip force, and F̂ is the estimated value.

Fig. 5. Practice swing movements in kendo, baseball, and golf.

These results are shown separately for each finger in Table I
(with IMU) and Table II (without IMU).

RMSE =

√√√√ 1

N

N−1∑
i=0

(Fi − F̂i)2 (4)

To verify the validity of the correlation coefficients, a statis-
tical test was conducted under the null hypothesis that the
correlation coefficient is zero. As a result, the p-values for all
correlation coefficients shown in the tables were p < 0.001.
The experimental results for those using the IMU and optical
sensors as input data showed that the coefficients of determi-
nation for the measured and estimated force values exceeded
0.5 except for the index finger. The index finger, which had
the lowest coefficient of determination, also exceeded 0.49. On
the other hand, without IMU, the coefficient of determination
was below 0.5 except for the middle finger. In addition, for
all fingers, the coefficient of determination was larger and
the RMSE was smaller when the IMU was used as input
data. Additionally, the correlation coefficients for each finger
were examined to determine whether there was a significant
difference between cases with and without IMU data. The data
with and without IMU were trained using the same dataset,
differing only in the utilization of IMU data. Since the ground
truth data for fingertip forces was identical, Williams’ Test, a
commonly used method for testing differences in dependent
correlation coefficients, was applied to assess the significance
of the differences. The results showed p < 0.001 for all
fingers, indicating a significant difference in the correlation
coefficients between the cases with and without IMU data.
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Fig. 6. Relationship between estimated fingertip force and measured

E. Fingertip force estimation when sweat is on the skin
surface

values.

The accuracy of fingertip force estimation by measuring
muscle deformation with an optical sensor when sweat is
present on the skin is verified. In this experiment, fingertip
force estimation was performed both with and without using
the IMU. However, when the subject is in a state of sweating,
muscle fatigue occurs, which places a burden on the subject.
Therefore, a 0.5% saline solution was applied to the subject’s
skin to measure the data. The saline solution was applied
before the FirstVR was applied, and the application area

TABLE I
RESULTS ON FINGERTIP FORCE ESTIMATION USING OPTICAL SENSORS

AND IMU.

Finger Thumb Index Middle Ring Pinkie
Correlation coefficient 0.834 0.702 0.804 0.765 0.746
R2 0.695 0.492 0.646 0.586 0.557
RMSE [N] 1.70 1.95 1.34 1.28 1.56

TABLE II
RESULTS ON FINGERTIP FORCE ESTIMATION USING ONLY OPTICAL

SENSORS.

Finger Thumb Index Middle Ring Pinkie
Correlation coefficient 0.683 0.643 0.712 0.680 0.664
R2 0.467 0.414 0.507 0.462 0.440
RMSE [N] 2.25 2.10 1.59 1.47 1.75

was the entire circumference of the arm where the FirstVR
was applied. Therefore, the optical sensors measured muscle
deformation through the saline solution.

Figure 7 shows the relationship between the fingertip force
measured by the pressure sensors during sports and the esti-
mated fingertip force with sweat on the skin. The red dotted
lines in Figure 7 show that measured values are consistent
with measured values, as in Figure 6. In addition, the cor-
relation coefficient, R2, and RMSE are shown separately for
each finger in Table III (with IMU) and Table IV (without
IMU). To verify the validity of the correlation coefficients, a
statistical test was conducted under the null hypothesis that the
correlation coefficient is zero. As a result, the p-values for all
correlation coefficients shown in the tables were p < 0.001.
Even with sweat on the skin, fingertip force estimation using
the IMU resulted in larger coefficients of determination and
smaller RMSE for all fingers.

IV. DISCUSSION
A. The Force estimation for each finger

To ensure a comparison free from external disturbances,
this discussion focuses on experimental results obtained under
conditions without the influence of sweat. Additionally, the
thumb is discussed separately from the other four fingers, as
it has independent flexor muscles. The index, middle, ring,
and pinkie fingers are flexed primarily by the flexor digito-
rum superficialis (FDS) and the flexor digitorum profundus

TABLE III
RESULTS ON FINGERTIP FORCE ESTIMATION USING OPTICAL SENSORS

AND IMU WITH SWEAT ON THE SKIN.

Finger Thumb Index Middle Ring Pinkie
Correlation coefficient 0.778 0.631 0.732 0.577 0.646
R2 0.606 0.400 0.537 0.333 0.417
RMSE [N] 1.43 1.74 1.54 1.36 1.61

TABLE IV
RESULTS ON FINGERTIP FORCE ESTIMATION USING ONLY OPTICAL

SENSORS WITH SWEAT ON THE SKIN.

Finger Thumb Index Middle Ring Pinkie
Correlation coefficient 0.664 0.568 0.587 0.521 0.631
R2 0.441 0.323 0.344 0.271 0.398
RMSE [N] 1.69 1.85 1.83 1.80 1.74
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Fig. 7. Relationship between estimated fingertip force and measured
values with sweat on the skin.

(FDP). However, the flexion of these fingers is not entirely
independent [57]. While FDS and FDP are not completely syn-
chronized, it is known that specific muscle bundles primarily
control the movement of each finger [58]. Figure 8, based on
the study by Franziska et al. [58], illustrates the arrangement
of these muscle bundles responsible for finger movement
alongside the placement of the FirstVR optical sensors. This
Figure is a cross-sectional diagram of the forearm, with labels
indicating the muscles involved in finger flexion. The optical
sensors measure muscle deformation, capturing information
from both superficial and deeper layers. However, due to their

reliance on reflected light, they are likely more sensitive to
the properties of superficial layers. Based on Figure 8, it can
be inferred that the optical sensors ch1 and ch2 correspond
to the pinkie finger, ch2, ch3, ch5, and ch6 correspond to
the ring finger, ch6, ch7, ch8, and ch9 correspond to the
middle finger, and ch9, ch10, and ch11 correspond to the
index finger. Additionally, the relative positions of muscles
vary across the channels of the optical sensors. As a result,
the muscle deformation data recorded by each channel likely
represent a composite of deformations from multiple muscles,
each contributing with varying weights. By calculating the
relationship between differences in information from adjacent
sensors and the forces of each finger, it becomes possible to
extract deformation data specific to the flexion of individual
fingers. This approach enables accurate estimation of indi-
vidual finger forces, even in the context of complex, multi-
muscle movements. However, individual differences, such as
variations in arm thickness and muscle development, may
introduce discrepancies, potentially reducing the accuracy of
fingertip force estimation.

When comparing the correlation coefficients for the index,
middle, ring, and pinkie fingers using IMU and optical sensors,
it is observed that the correlation coefficients follow the order:
middle finger > ring finger > pinkie finger > index finger
(Table I). From Figure 8, The muscle bundle that moves
the index finger is located further away from the epidermis
than the muscle bundles that move the other fingers among
the major muscle bundles for finger bending. Since the ac-
quisition of muscle deformation in this study is performed
by optical sensors, it is considered that more information
about superficial muscle deformation is captured compared
to deep muscle deformation. Therefore, it is challenging to
accurately capture muscle deformation located farther from
the epidermis, resulting in the index finger having the lowest
correlation coefficient among all fingers. On the other hand,
the muscle bundles that move the middle and ring fingers are
particularly located near the epidermis, resulting in a more
accurate measurement of muscle deformation and a higher
correlation coefficient. The muscle bundle that moves a pinkie
finger is also located near the epidermis. However, Franziska
et al. mention that some subjects may not show clear activation
of the pinkie finger muscle bundle, and the pinkie finger is less
independent than the other fingers [58]. Hence, the relationship
between muscle deformation and pinkie finger force estimation
is lower than for the middle and ring fingers, presumably
resulting in a lower correlation coefficient for the pinkie finger
than for the middle and ring fingers. Thus, the estimation
accuracy of fingertip force estimation using optical sensors
for muscle deformation measurement and IMU is considered
to be higher in the order of middle finger > ring finger >
pinkie finger > index finger.

B. Improvement in Grip Force Estimation Accuracy
Using IMU

First, the differences between the cases with and without
IMU are discussed. Comparing the RMSE, an index to eval-
uate the error between measured and estimated values, for
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Fig. 8. The arrangement of muscle bundles controlling the flexion of
each finger and the placement of the optical sensors are based on F. L.
Hodde et al., 2019 [58].

each finger using Table I–IV, the RMSE was smaller for the
model with IMU, both with and without the effect of sweat.
Additionally, the correlation coefficients with and without the
use of the IMU showed p < 0.001, indicating a significant
difference. Furthermore, the coefficient of determination, a
measure of the accuracy of the prediction model, was higher
using the IMU regardless of the effect of sweat, as was the
RMSE. The comparison of these two indices shows that the
regression model with IMU has smaller errors and higher
regression accuracy than the model without IMU.

The maximum grip strength is known to vary depending
on the angles of the elbow and wrist [55]. This is primarily
because the flexor digitorum superficialis (FDS) and flexor
digitorum profundus (FDP), which are responsible for finger
flexion, connect the finger bones to the humerus, radius, and
ulna. As a result, flexion, extension, pronation, and supination
of the elbow and wrist alter the muscle length and configura-
tion, leading to nonlinear changes in muscle output as the mus-
cle length varies [21]. Additionally, changes in muscle length
cause nonlinear variations in muscle deformation, making it
difficult for optical sensors to distinguish between deformation
caused by muscle tension and those resulting from changes in
posture.

Using an IMU to measure the posture of the human body
facilitates the estimation of muscle configuration and length.
Muscle length, which significantly impacts muscle deforma-
tion, is geometrically determined by musculoskeletal models
[56]. By utilizing the IMU to measure the three-dimensional
angles of the forearm, it becomes possible to obtain a more
accurate understanding of the geometric state of muscles like
the FDS and FDP, thereby accounting for the nonlinear pat-
terns of muscle deformation. By integrating posture data from
the IMU with muscle deformation data obtained via optical
sensors, it is possible to differentiate between posture-induced

deformation and muscle-tension-induced deformation. This
integration ultimately enhances the accuracy of fingertip force
estimation under dynamic and diverse posture conditions.

Additionally, the configuration of forearm muscles changes
with pronation and supination of the forearm. Figure 8 il-
lustrates the relationship between the arrangement of muscle
bundles responsible for flexing each finger and the optical
sensors. During pronation or supination, it is expected that
the muscle configuration rotates and shifts according to the
forearm’s posture. Consequently, the optical sensor channels
corresponding to each finger are likely to change. Since the
IMU measures the forearm’s posture, it can capture pronation
and supination movements. Therefore, by adjusting the refer-
enced optical sensor channels based on the IMU data, it is
possible to achieve more accurate fingertip force estimations
for each finger.

The correlation coefficient of the thumb was not as high as
that of the other fingers when the IMU was not used (Table I),
but the correlation coefficient was the highest when the IMU
was used for estimation (Table II). The muscle deformation
measurement using the optical sensors in this study is not
effective at measuring muscle deformation at a position far
from the epidermis. The flexor pollicis longus muscle (FPL),
which flexes the thumb, is located farther from the epidermis
than the FDS and the FDP, which flex the other four fingers.
Hence, force estimation at the fingertip of the thumb by
muscle deformation is considered more difficult than for other
fingers. Nevertheless, the highest correlation coefficient was
obtained by using the IMU because the FDS and FDP muscle
deformations due to arm posture were partially canceled by
combining the IMU data, and the FPL muscle deformations
were estimated more accurately from the arm surface muscle
deformations than when the IMU was not used. The above
results suggest that the IMU can be used to construct a model
that takes into account changes in muscle deformation when
the arm posture changes, and that the use of the IMU can
improve the accuracy of motion estimation in general.

C. The impact of sweat on grip strength estimation using
optical sensors

To begin, this discussion examines the differences in the
impact of 0.5 % saline solution and sweat on optical sensor
measurements. Sweat plays a crucial role in regulating body
temperature during activities such as exercise and is essentially
a filtrate of plasma. Its primary component is water, with trace
amounts of substances such as sodium, chloride, potassium,
and lactate [60]. During exercise, the concentration of sodium
chloride increases, reaching up to approximately 0.4 % by
weight [61]. Generally, an increase in solute concentration in
water results in a higher refractive index. However, even in
a 1.0 % saline solution, the refractive index differs from that
of pure water by only about 0.3 %, which is negligible [62].
While sweat contains components other than sodium chloride,
their concentrations are minimal [61] and do not significantly
influence the refractive index compared to water. Thus, 0.5
% saline solution is considered a suitable substitute for real
sweat, with a negligible impact on experimental results.
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When comparing the coefficients of determination for each
finger, it was found that the coefficients were smaller when
sweat was present on the skin compared to when it was not.
On the other hand, no trend was observed in RMSE. The
coefficient of determination is one indicator of the regression
performance of SVR, and the fact that the coefficient of
determination is reduced by sweat means that sweat has a
negative effect on the measurement of muscle deformation
and fingertip force estimation by the optical sensors. The
data from the optical sensors of one channel when a subject
was swinging a baseball bat with and without sweat, and the
results of the Fourier transform of the two data are shown in
Figure 9. The two optical sensors in Figure 9 are the same
channel. Baseball swinging is a cyclic exercise, indicating
that cyclic muscle deformation data is acquired by the optical
sensors when there is no sweat. On the other hand, when
sweat was present on the skin, there was little periodicity in
the data. The Fourier transform results show that the spectral
intensity was small when sweat was present. The cause of
this phenomenon was that some of the infrared optical used
by the optical sensors were diffusely reflected by sweat on the
skin surface, reducing the accuracy of the muscle deformation
measurement. Therefore, it is assumed that the accuracy of
the fingertip force estimation decreased because the data that
should have been acquired could not be acquired partially due
to sweat.

D. Analysis of HGC Applicability and Dataset Bias

Hand Grip Control (HGC), which represents grip control
ability, is typically evaluated at 30–70 % of the Maximum
Voluntary Contraction (MVC), the maximum force a muscle
can exert [55], [63], [64]. This evaluation range is adopted
for several reasons. First, assessments using maximum MVC
output pose risks of excessive stress on muscles and tendons,
making such tests challenging to conduct safely for partic-
ipants. Additionally, maintaining conditions near the upper
limit of MVC can increase intramuscular pressure, restricting
blood flow and reducing oxygen supply, thereby compromising
the endurance and stability of muscle tension [63], [65] ,
[66]. It has been reported that grip forces exceeding 50 % of
MVC lead to oxygen levels in the muscle reaching a lower
limit with no further changes [63]. Even at 10 % MVC,
prolonged exertion can adversely affect muscle strength [65].
These factors indicate that higher MVC levels significantly
impact grip endurance.

An examination of the dataset reveals that individual finger-
tip force maxima range between 10N and 15N, with over 90
% of the data being below 6N. This suggests that most of the
collected data corresponds to forces below 50–60 % of MVC.
This trend can be attributed to sports swinging motions, where
maximum grip force is not continuously applied, and the
majority of the movement involves lightly gripping the object.
From the perspective of HGC practicality, the predominance
of data below approximately 50 % of MVC is natural, and its
impact on the applicability of this study is minimal.

However, the bias in the dataset may have influenced the
learning outcomes. Specifically, as data above 6N accounts for

less than 10 % of the total, the insufficient training data for
higher force levels might have limited the regression accuracy.
Nonetheless, as previously mentioned, collecting data near
the upper limits of MVC is challenging. Therefore, studies
focusing on fingertip force estimation at outputs near MVC
would require experimental setups distinct from those aimed
at evaluating sports-related movements, as in this study.

Fig. 9. Optical sensor data with and without sweat and Fourier
transform results.
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E. Impact of Experimental Conditions on Force
Estimation

In this study, participants were selected regardless of their
previous experience with the target sports. In addition, the
objects used for the swinging motions, the bat, the golf
club, and the wooden sword, each featured different grip-
ping methods. As a result, inconsistencies in data collection
may arise due to the variability in swing stability and grip
techniques, potentially leading to reduced force estimation
accuracy. Furthermore, differences in the shape and weight
of the swinging objects could influence muscle deformation
patterns, adding complexity to the analysis.

On the other hand, this study successfully collected and
analyzed data under a wide range of conditions, enabling
the development of a highly versatile force estimation model
capable of adapting to diverse scenarios. Such an approach
is expected to serve as foundational data for motion analysis
across various situations. Moving forward, more detailed anal-
yses targeting specific motions and grip techniques, combined
with the integration of refined models, are anticipated to
further enhance estimation accuracy.

F. Limitations of This Study
The first limitation is related to device constraints. The study

utilized FirstVR, a device integrating muscle deformation
sensors and an IMU. While this device is convenient and
easy to use, it is limited to measuring only the posture of
the forearm. To more accurately capture changes in muscle
length and arrangement caused by body posture variations,
it would be necessary to measure the posture of the upper
arm and wrist as well. However, increasing the number of
measurement points may lead to a more complex and less
user-friendly system. Balancing ease of use with high-accuracy
estimation will require careful consideration and innovation in
future research.

The second limitation concerns the estimation of forces near
the MVC. Near MVC levels, data collection is challenging,
and muscle output tends to be unstable. Consequently, the
current method, which does not rely on prior data, may not
account for the effects of muscle fatigue, potentially limiting
its applicability for estimating forces near MVC. To address
this, approaches that incorporate past force estimation data to
model fatigue-induced reductions in muscle output could be
considered to enhance estimation accuracy near MVC levels.

V. CONCLUSION AND FUTURE WORK
In this study, a FirstVR equipped with infrared optical

sensors and an IMU was used to estimate fingertip force during
movements involving significant changes in arm posture and
the application of a saline solution, simulating sweat dur-
ing sports activities. The results showed experimentally that
the accuracy of fingertip force estimation was increased by
using an IMU to measure arm posture and optical sensors
to measure muscle deformation. In addition, the possibility
that the accuracy of the estimation was increased by using
the IMU to indirectly measure changes in muscle length due
to arm posture, suggests that the use of the IMU may be

generally effective in estimating human body output using
sensors that measure muscle deformation. Furthermore, it was
demonstrated that some finger forces can be estimated when
sweat adheres to the skin, although the diffuse reflection of
optics from the sensors due to sweat reduces the accuracy of
the estimation.

Future work is described. In this study, muscle deformation
was measured by wrapping a band around the arm, but it may
be more accurate to measure muscle deformation by placing
the sensors at an angle to the arm, as in the UnlimitedHand
[59]. Therefore, it will be confirmed whether the accuracy
can be improved by using sensor arrangements that measure
muscle deformation more precisely. In addition to sports, the
social implementations of this study will be promoted by
applying it to the analysis of craftsmen’s movements, such as
knife handling during cooking and hand usage by craftsmen,
as well as to rehabilitation.
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