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Abstract—Recently, 3D human pose 
estimation (HPE) from a monocular RGB image 
has attracted much attention following the 
success of a deep convolution neural network. 
Many algorithms take 2.5D heatmaps as the 3D 
coordinate, whose X-axis and Y-axis 
correspond to the image coordinate, and the Z-
axis corresponds to the camera coordinate. 
Therefore, the camera matrix or the distance 
between the root skeleton and the camera (the 
ground-truth information) is usually adopted 
to transform the 2.5D coordinate to 3D space.  Since 2.5D heatmaps ignore the conversion between 2D and 3D 
positions, they lose some conversion features and limit their applicability in the real world. In this paper, we present 
an end-to-end framework that can utilize the contextual information in RGB images to directly predict 3D space 
skeletons from a monocular image. Specifically, we use the multi-loss method that depends on 2D heatmaps and 
volumetric heatmaps and a refinement block to locate the root-relative 3D human pose. Our approach takes 2D 
heatmaps and volumetric heatmaps as features to compute the loss and combine the loss from relative 3D locations 
to generate the total loss. The model can learn the 2D heatmap feature and 3D location jointly and focus on the root-
relative 3D position in the camera coordinate. The experimental result shows that our model can predict relative 3D 
human pose well on Human3.6M. 

 
Index Terms—3D human pose estimation, deep convolution neural network, root-relative 3D human pose, volumetric 

heatmap 

 

 

I. INTRODUCTION 

HIS purpose of 3D human pose estimation (HPE) is to 

locate single-person or multiple-person skeletons in 3D 

coordinates. In recent years, 3D HPE has progressed 

significantly under the great development of neural networks. 

Estimating the accurate 3D human pose from a monocular 

image attracts lots of attention because HPE is important in 

many applications, such as action recognition [1], human-

computer interaction [2], surveillance [3], and sports analysis 

[4]. However, it is a challenging task due to the inherent 

ambiguity of the skeleton, the self-occlusion, or the occlusion 

by other objects with various human poses. Traditional pose 

estimation methods use specialized equipment or wearable 

devices with high-precision systems to mark human skeletons. 

These methods require complex setup processes and incur high 

costs, limiting the application of skeletal tracking. Besides 

wearable devices, various sensors such as radio frequency (RF), 

radar [5], and RGB cameras are also used in this field. However, 

we prefer using RGB cameras because they are cost-effective. 

Compared to RF and IR sensors, RGB cameras are cheaper, 

making them suitable for large-scale applications and allowing 

for more economical system deployment and expansion. 

Additionally, RGB cameras have the advantage of widespread 

availability. They are commonly found in devices such as 

smartphones, laptops, and surveillance cameras. This 

widespread presence allows us to utilize existing hardware 

resources for pose estimation without needing to purchase 

specialized sensors, thus reducing overall costs and deployment 

complexity. 

 HPE can mainly be divided into two types, one is to estimate 

2D pose [6], [7] and the other is to estimate 3D pose [8]. 

Although the difference between these two types is only the 

dimension issue, the 3D human pose estimation is more 

difficult than the 2D human pose estimation. In the 3D 

processing  

domain, the spatial relationships in the depth axis are difficult 

to express on a plane. It can utilize a camera matrix (including 

camera extrinsic and camera intrinsic parameters) to convert 

image coordinates and camera coordinates to each other, whose 

coordinates are completely different. Because the camera 

matrix of each RGB image is different, the range of camera 

coordinate distribution is large. Therefore, this greatly increases 

the difficulty of estimating 3D coordinates. 

As for 3D human pose estimation, there are single-view 

methods and multi-view methods [9]. The single-view method 

means that it takes one monocular image as input. It only adopts 

one camera image and outputs the human skeleton position. The 

multi-view method means that it will have a multi-camera 

system, and capture synchronized images from each camera. 

Then, the model will output the human skeleton in each view 
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and overlap the skeleton to calculate the 3D human skeleton. 

The main disadvantage of the multi-view method is the 

requirements of specific devices to establish the multi-camera 

system. Besides, the multi-camera system is assumed to be 

synchronized and calibrated in most multi-view approaches. 

With the rapid growth of the convolution neural network 

(CNN), there are many methods to estimate 2D or 3D human 

pose based on deep neural network (DNN). Most of the CNN 

methods use 2D heatmaps and volumetric heatmaps as features 

to represent the possible locations of a human skeleton and then 

regress these features to 3D spatial coordinates by convolution 

neural network.  

In this paper, we propose the multi-loss method combined 

with 2D heatmaps to construct a 3D HPE. We use the 

volumetric heatmaps and root-relative camera coordinates to 

locate relative space coordinates based on the CNN method. 

The meaning of root-relative coordinates is to subtract the root 

coordinate from each skeleton joint, with most root coordinates 

being the central skeleton joints of the human body, such as the 

chest or pelvis. First, calculate the depth of the root skeleton 

joint and the value of the root-relative coordinates. Then, by 

adding the relative value to the root coordinate, the absolute 

coordinates in space can be obtained. Finally, the depth of each 

coordinate is determined using the known camera distance. 

Although volumetric heatmaps have been adopted in many 

algorithms, few methods focus on the loss generated by 

volumetric heatmaps. We take the loss from volumetric 

heatmaps and combine it with pixel loss and camera coordinate 

loss. Also, we present a refinement block to fine-tune the 3D 

skeleton. We evaluate this model on the Human3.6M dataset 

and achieve a better result than other algorithms. It means that 

the multi-loss and refinement blocks are efficient methods for 

3D human pose estimate. 

The rest of the paper is as follows: Section 2 introduces 

related work; Section 3 presents the proposed method; Section 

4 presents the experiment result and Section 5 concludes this 

paper. 

II. RELATED WORK 

Human pose estimation, both in 2D and 3D, has been greatly 

studied in these years as it is useful for many applications. There 

are many solutions to locate the position of the human skeleton. 

In this section, we will introduce deep learning approaches for 

2D HPE and 3D HPE. 

A. 2D human pose estimation 

DeepPose [10] is the first paper that utilized a deep neural 

network (DNN) to estimate 2D human pose. It takes 2D human 

pose estimation as a regression problem and defines how to use 

DNN for 2D HPE. The overall model of DeepPose only 

includes convolution operation and fully connected layers. 

Furthermore, the authors adopt a cascaded DNN-based pose 

detector. The concept of cascading also influences the latter 

methods, such as stacked hourglass networks [11]. Stacked 

hourglass networks process features between different scales to 

capture spatial relationships between joints efficiently. Besides, 

the stacked architecture integrates the information between 

different scales and refines the skeleton position well. A 

cascaded pyramid network (CPN) [12] uses the concatenation 

of a variety of feature maps of different scales to learn the 

human keypoints. The method of CPN integrates rich feature 

information, including high-level feature maps with low 

resolution and low-level feature maps with fewer features but 

high image resolution to obtain a target detection system with 

accurate identification and positioning. 

Bottom-up and top-down methods all can predict multi-

person 2D skeletons well. The bottom-up approach localizes the 

skeleton of all subjects and then associates them with 

individuals. It is usually used for multi-person pose estimation. 

The bottom-up method [13] utilizes part affinity fields (PAF) to 

find out all skeletons in the picture and group them to output an 

individual subject. PAFs are 2D vectors that can link each joint 

to its parent joints. Through PAFs, the neural network can 

quickly and greedy part association to achieve real-time multi-

person 2D pose estimation. [14] is another bottom-up method 

that directly regresses human keypoints instead of detecting 

each keypoint and grouping them into individuals. It presents a 

disentangled keypoint regression (DEKR) to estimate human 

pose. Different from the bottom-up approach, the top-down 

approach [15] crops the people from an image first and then 

uses heatmaps to match the skeleton position. HRNet [16] is 

another top-down method that maintains the high-resolution 

branch. And it achieves rich high-resolution representation by 

repeat fusing each of the high-to-low resolution features. 

Therefore, the predicted keypoint is potentially more accurate 

and more precise in spatial. Heatmap matching is another 

popular and effective solution to obtain skeleton features. It 

gives a probability to each pixel position in the picture, which 

represents the probability of the skeleton.  Compared to 

regressing the skeleton coordinate directly, heatmap matching 

is easier to converge and heatmap matching can be simulated 

by the corresponding function. In addition, Gaussian heatmaps 

can provide a better correlation between joints in pixel 

coordinates resulting in higher precision results [17]. 

 

B. 3D human pose estimation from single-view 

In 2D HPE, most of the RGB images are used as input and 

the heatmaps are used to directly regress X and Y coordinates 

in the plane coordinates of the same dimension. However, in 3D 

HPE, it is rare to directly regress the RGB image to the camera 

coordinate, because there is an additional Z-axis spatial 

coordinate. There are many approaches for 3D HPE, including 

the top-down and bottom-up methods. Besides, it also can be 

distinguished by input. It can be divided into multi-view images 

single-view images or video as the input of the neural network. 

The multi-view method takes RGB images from multiple 

angles as input and outputs a set of 3D skeletons. However, the 

multi-view method is not easy to adapt to most applications. 

Using video as input means that the time sequence is used as 

the input of the neural network, and the output is a series of 

joints. Here we mainly discuss the method of generating a 3D 

skeleton with a single view. 

The 3D pose estimation by single-view image is divided into 

the end-to-end method and the two-stage lifting method. The 

end-to-end method can directly predict skeleton position 

through neural network operations without generating 2D 

coordinates in the middle. One representative work is [18], 

which uses hourglass architecture to gradually increase the 
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resolution of the depth dimension and finally regress to the 

spatial coordinates. [19] is a framework for training with root 

and root-relative coordinates respectively, and uses the camera 

parameters to return the skeleton coordinates. [20] present a 

tiny-HourglassNet that can estimate 3D human pose with 

smaller hourglass architecture and guarantee the performance. 

It combines two types of ShuffleNet blocks and develops two 

feature enhancement modules to improve the accuracy of 3D 

human pose. [21] present a volume representation to transform 

the highly nonlinear 3D coordinate regression problem into a 

prediction problem form in discrete space. The voxel likelihood 

of each joint in the volume is predicted by the convolutional 

network. The ordinal depth relationship of the human joints is 

used to alleviate the need for accurate 3D ground truth poses. 

Although it is feasible to directly predict coordinates in space, 

this still is a challenging problem because the mapping of RGB 

images to 3D space is a highly nonlinear and difficult problem.  

The two-stage lifting method is to predict the 2D skeleton 

and then convert it to 3D space. [22] proves that it is possible to 

convert from planar joints to spatial coordinates. It directly 

inputs 2D coordinates and then maps them to three-dimensional 

space through the residual hierarchy. [23] applies CNN 

architecture to generate 2D skeletons and 3D skeletons 

sequentially through a complex network. [24] proposed a new 

transform re-projection loss, which is an effective method to 

explore consistency from different views for training the 2Dto-

3D lifting network. It only input multi-view during training, and 

input single-view in inference time. [25] focused on learning 

mapping 2D pose to 3D pose and it used the SMPL model [26] 

as an intermediate feature to suppress unreasonable 3D pose 

prediction. Specifically, it regresses the parameters of the low-

dimensional SMPL model which are used to compose a 3D 

pose. This kind of lifter module largely relies on the accuracy 

of the 2D skeleton. Once a wrong 2D skeleton is generated, it 

will cause serious damage to the subsequent 2D-3D lifter. 

C. 3D human pose estimation from multi-view 

The 3D pose estimation from a multi-view means that there 

are multiple camera views to capture images. In general, 

multi-view 3D HPE combines the information and features 

from 2D images to generate a 3D skeleton. [27] present new 

solutions for multi-view 3D HPE based on learnable 

triangulation. The volumetric triangulation can improve the 

performance of multi-view pose estimation. [28] present a 

new fusion algorithm to combine 2D keypoints from 

different camera views and lift to 3D coordinate with a 

differentiable Direct Linear Transform (DLT) layer. This 

method reduces the computational complexity and achieves 

real-time 3D pose estimation from multiple cameras. 

VoxelPose [29] proposed a method to directly infer in the 3D 

coordinate instead of solving the challenging association 

problems in the 2D space. This method can estimate the 

human pose stably in the scenes with a lot of occlusions.  

Although the multi-view approaches can estimate the 3D 

pose well, this method usually requires an advanced multi-

view environment and a camera synchronization system. In 

general scenarios, such settings are rarely complete. In most 

applications, there is only a single view. Multi-view methods 

provide another way to generate a 3D skeleton, but at the 

same time, it also has many restrictions, which greatly affect 

the generality of this method. 

III. PROPOSED METHOD 

To our knowledge, there are seldom methods that combine 

2D heatmaps and volumetric heatmaps as feature loss. We 

especially focus on the volumetric heatmaps and adopt 

combinational loss to calculate the total loss. In summary, we 

present an end-to-end approach based on multi-loss and 

refinement blocks to estimate 3D human pose from a sing-view 

RGB image. In this section, we explain the proposed method in 

detail.  

A. Network architecture 

3D HPE mainly outputs the coordinates of the human body 

in 3D space. Since we aim to perform single-person pose 

estimation from a monocular RGB image, we only need to 

focus on the relationships between the skeletons in a person. It 

is natural to estimate the root-relative 3D position.  

Our network architecture is shown in Fig. 1. Initially we 

input an RGB image I and use ResNet-50 to extract the features 

from the input. Because there are only some positions in an 

image that we need to focus on, we encode the RGB image to a 

smaller size and then decode it to the same size as the 2D 

heatmaps through the deconvolution layers. There are efficient 

residual architectures in ResNet-50. Therefore, we can obtain 

robust 2D heatmap features at the beginning. After ResNet-50, 

we utilized three de-convolutional layers to decrease the 
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Fig. 1.  The overall neural network architecture of proposed method. It contains a ResNet-50 architecture to extract RGB image feature, a set of 
deconvolution layer and convolution layer to scale the small dimension feature, and utilize soft-argmax and refinement block to generate 3D human 
skeleton. 
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channel number and increase the feature map size to fit the 

dimensions of 2D heatmaps. Next, instead of directly outputting 

the 2D heatmaps into X and Y coordinates, we keep the original 

2D heatmaps information and use convolution operations to lift 

our features to three-dimensional space.  

As shown in Fig. 2., the initial 2D heatmaps 𝐻2𝐷 ∈ ℝ𝐽×ℎ×𝑤 

consists of J joint coordinates where J is the total number of 

joints 18 (we add another joint as thorax between the left 

shoulder and right shoulder as an additional joint manually). Fig. 

3. shows the 17 skeleton joints. Through a series of convolution 

operations, we can resize the feature map to 𝐻3𝐷 ∈ ℝ𝐽×𝑑×𝑤×ℎ, 

where d is the dimension along the depth axis of the volumetric 

heatmaps of 64 in our method. We expand the number of 

channels to 𝐽 × 𝑑 to represent the depth in 3D space. Then we 

can predict the human pose of X, Y, and Z coordinates in the 

camera coordinate through the soft-argmax, and finally, use the 

refinement block as shown in Fig. 4. to calibrate the generated 

3D coordinates. 

B. Volumetric heatmaps 

Assume X, Y, and Z are random vectors corresponding to the 

x, y, and z coordinates of the predicted particular human pose 

joint in 3D space. By thinking of a voxelization of X, Y, and Z 

coordinates, we call it a volumetric heatmap with the size 

𝐷 × 𝐻 × 𝑊, where 𝐷 is the depth dimension, while 𝐻 and 𝑊 

represent the height and width of the image respectively. The 

volumetric heatmaps represent the confidence map of the 

probability of the human joints. Through the soft-argmax 

calculation of pose estimation, we can transmit the volumetric 

heatmaps into estimated joints, which is the expectation of the 

random vectors. All values in the volumetric heatmaps must be 

positive to present the probability. To create the volumetric 

feature, we utilize convolution to enhance the feature 

dimensions.  

The advantage of using volumetric heatmap representation is 

that it transforms highly non-linear problems into simple 

predictive problems in discrete spaces. In other words, human 

pose estimation does not predict the position of the skeleton 

directly, instead predicts per voxel confidence, which makes it 

easier for neural networks to learn the target function. It is a 

difficult task for deep neural networks to regress the skeleton 

position directly in the image because the connection between 

each skeleton is not as tight as general pixel-to-pixel image 

tasks. Therefore, it is more intuitive to adopt volumetric 

heatmaps for the 3D HPE task. 

Although volumetric heatmap is useful in 3D HPE, it still 

causes another problem. The major drawback of volumetric 

representation is the amount of computation and memory, 

leading to some limitations during implementation. For 

example, we utilize smaller heatmap resolution which has low 

quantization errors, or complex training strategies with coarse-

to-fine predictions through the refining of network outputs. 

C. Refinement block 

 Although the soft-argmax can express the 3D joints from a 

volumetric heatmap, the predicted 3D coordinate outputs are 

not accurate enough. Because soft-argmax directly converts the 

low-resolution voxel probability into the 3D coordinate, it will 

lose most information, resulting in inaccurate skeleton points. 

Therefore, we propose a refinement block to refine the 

predicted skeleton generated from the soft-argmax function to 

obtain a more accurate result.  

Fig. 4. shows the architecture of the refinement block. After 

the soft-argmax initially generates the 3D skeleton position, we 

use the refinement block to make the skeleton more accurately 

represented in 3D space. First, we flatten the 3D skeleton into a 

representation vector of dimension 𝑑 = 54 (18 × 3 joints) and 

then refine the predicted skeleton by fully-connected layers to 

generate a vector of dimension 𝑑 = 512 . After each fully-

connected layer, we apply the batch normalization (BN in Fig. 

2.), ReLU, and dropout, with parameter 0.5 and 2 residual 

blocks to regress the feature to the 3D skeleton position. 

Although the operation of the fully connected layer is very 

simple, we found that this can effectively calibrate the predicted 

human skeleton in camera coordinates. It means that we can 

predict 3D human pose more precisely through the simple 

refinement block. 

D. Combinational loss function 

In terms of calculating loss, we use mean square error (MSE) 

to calculate multiple losses for different features to compose the 

final required loss. In general, the 3D coordinate loss is adopted 

in the pose estimation task. Some algorithms also include loss 

from 2D heatmap in the loss calculation. Most of the methods 

use the 2D loss to estimate position in image coordinates and 

then convert it to camera space. Despite our main task being to 

estimate the human skeleton in camera space and we do not 
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Fig. 2.  The heatmaps in different dimension. Volumetric heatmap has 
depth dimension of z axis. (a) 2D heatmap (b) Volumetric heatmap. 

 
Fig. 3.  Skeleton definition and connection relationship. The amount of 
skeleton is 17 provides from Human3.6M as usual. 
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generate image coordinates, we still adopt 2D loss from the 2D 

heatmap. There is a translation between the image coordinate 

and camera coordinate, as shown in (1), x𝑖 and y𝑖 are the x and 

y coordinates in the image coordinate, 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐 are the x, y, 

and z coordinates in the camera coordinate(root-relative 

skeleton coordinate), and F and C are the focal length and 

principal point coordinates, respectively. We utilize 2D 

heatmaps to produce volumetric heatmaps, so we retain the 2D 

feature which has rich feature information, and calculate the 2D 

loss. Besides, we also take the loss from volumetric heatmaps 

which can present the space relationship as well as our loss. As 

for the 3D coordinate loss from the 3D skeleton, we multiply it 

by a parameter λ. Because the skeleton position is our final 

target output, we set a weight to increase the importance of the 

calculation process. 

We will explain in detail how the volumetric heatmap is 

calculated. First, we convert the camera coordinate in the 

dataset into image coordinates through the camera parameters 

by (1) and then generate 2D Gaussian heatmaps. As shown in 

(2), 𝐻2𝐷  is the 2D heatmap ground truth, and �̂�2𝐷  is the 

predicted 2D heatmap with the size of 𝐽 × ℎ × 𝑤, where 𝐽 is the 

number of joints, ℎ,  and 𝑤  are the height and width of 2D 

heatmaps. Besides, we also calculate the volumetric loss from 

volumetric heatmaps as shown in (3). In (3), 𝐻3𝐷  is the 

volumetric heatmap ground truth, and �̂�3𝐷  is the predicted 

volumetric feature with the size of 𝐽 × 𝑑 × ℎ × 𝑤, where 𝑑 is 

the depth axis we defined. Finally, we keep the initial values of 

the camera coordinates to calculate loss with the features we 

refined in (4).  𝐾 is the ground truth of the 3D skeleton, and �̂� 

is the predicted skeleton. As in (5), our total loss 𝐿𝑡𝑜𝑡𝑎𝑙  is 

composed of three kinds of loss. 

It is hard for neural networks to regress the human skeleton 

position directly because it is a non-linear problem. In most 

studies, volumetric heatmap loss is not specifically calculated. 

However, we found that the volumetric heatmap can represent 

the correlation between the depth axis well and it can solve the 

inherent non-linear problem of 3D HPE. Accordingly, we 

employ the volumetric heatmap as one of the features to be 

computed. In addition to the common loss term (2D heatmap 

loss and 3D coordinate loss), we further utilize volumetric 

heatmap loss which is rich in spatial information and translates 

the non-linear problem into a probability problem. Finally, we 

combine these loss terms and take 𝐿𝑡𝑜𝑡𝑎𝑙 in (5) as our neural 

network goal. In summary, we especially calculate the loss of 

the volumetric heatmap to have better results. 

 

𝑥𝑖 =  
𝑥𝑐

𝑧𝑐
× 𝐹 + 𝐶,      𝑦𝑖 =   
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× 𝐹 + 𝐶 (1) 
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𝐽
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𝐽
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𝐿3𝐷𝐻𝑀 =
1

𝐽
∑ ‖𝐻3𝐷

𝑖 − �̂�3𝐷
𝑖
‖

2
𝐽
𝑖  (3) 

𝐿3𝐷𝑃𝑂𝑆𝐸 =
1

𝐽
∑ ‖𝐾𝑖 − �̂�𝑖‖

2𝐽
𝑖  (4) 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿2𝐷𝐻𝑀 + 𝐿3𝐷𝐻𝑀 + λ ∗ 𝐿3𝐷𝑃𝑂𝑆𝐸 (5) 

*𝐿2𝐷𝐻𝑀: 2D heatmap loss 

*𝐿3𝐷𝐻𝑀: volumetric heatmap loss 

*𝐿3𝐷𝑃𝑂𝑆𝐸: 3D coordinate loss 

IV. EXPERIMENT RESULTS 

A. Humam3.6M dataset 

We validate our approach on the Human3.6M dataset [30] 

which is a large dataset including 3.6 million single-person 

RGB images with accurate 3D human skeletons annotated by a 

high-speed motion capture system. There are 11 subjects in 

total (6 males and 5 females,) and we generally select subjects 

1, 5, 6, 7, and 8 as training data, 9, and 11 as testing data. 

Besides, there are 15 action annotations such as walking, eating, 

directions, making a phone call, etc. in this dataset. For each 

action, accurate 2D and 3D skeleton locations and the camera 

parameters are provided. Furthermore, they also include a 

multi-view of the human pose. In this paper, we only take a 3D 

skeleton from the dataset.  

In testing time, we do not utilize 2D skeleton position and 

camera parameters. The 3D pose estimation containing 32 

joints is to be applied in the Human3.6M dataset. We follow the 

standard training and testing strategies and we adopt a 17-joint 

skeleton as our estimated skeleton target. In the testing stage, 

we calculate all joints except “thorax”, which is added at 

training. We use the standard protocol for the evaluation as 

usual. Protocol-I is the mean per-joint position error (MPJPE), 

in millimeters which is the mean Euclidean distance between 

predicted joint positions and ground-truth joint positions. In (6), 

𝑁𝑆  is the number of joints in skeleton,  𝑚𝑝  is the predicted 

skeleton, and 𝑚𝑔𝑡  is the skeleton ground truth. Protocol-II 

employs a rigid alignment to the estimated pose first, then 

computes the MPJPE. Protocol-I directly measures the model 

error in the camera coordinate system, suitable for raw 

predictions; whereas Protocol-II performs rigid alignment 

(including translation and rotation) before measurement, 

eliminating viewpoint effects and more accurately assessing the 

model's generalization across different positions. 

𝑀𝑃𝐽𝑃𝐸 =
1

𝑁𝑆
∑ ‖𝑚𝑝(𝑖) − 𝑚𝑔𝑡(𝑖)‖

2

𝑁𝑆
𝑖=1  (6) 

B. Training and Implementation 

During the training stage, we use the common random color 

jitter on RGB images for the pre-processing strategy. We use 

camera parameters to convert the 3D skeleton into a 2D 

skeleton to generate a 2D heatmap and utilize a 3D skeleton to 
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Fig. 4.  The operation after soft-argmax and the detail of refinement 
block. The top: Flatten all joints and input them to a refinement block. 
The middle: The architecture of the refinement block. The bottom: The 
architecture of residual block. 
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generate a volumetric heatmap. We take 256 × 256 as the size 

of the input image. In terms of loss functions, as we mentioned, 

𝐿𝑡𝑜𝑡𝑎𝑙 is our final loss which is composed of multiple losses. As 

described in Section 3, our 3D HPE network is ResNet-50, and 

other modules, ResNet-50 are mainly to learn the image feature, 

and the following modules are computing the 3D human 

skeleton position and refining the prediction. About the 

implementation details, we train our model on NVIDIA 

Geforce RTX 3080Ti GPU with PyTorch deep learning 

framework. And we train 25 epochs with a batch size of 32. We 

set a learning rate of 0.001 at the beginning, and then at epoch 

11 the learning will decrease by a factor of 10 with the Adam 

optimizer. Besides, our model can run at 48 frame-per-second 

(fps) and an execution time of 20.1 ms on an NVIDIA Geforce 

RTX 3080Ti GPU. 

C. Comparison Results 

Table I reports the MPJPE without rigid alignment for each 

action on the Human3.6M dataset. The action “SitD” (sitting 

down) exhibits the highest error, primarily due to its complexity 

and the significant changes in body posture involved in the 

motion. During the sitting process, various joints, such as the 

hips, knees, and ankles, undergo rapid movements, which can 

lead to misinterpretations of joint positions. Moreover, self-

occlusion is a major issue; as the legs can obscure the torso and 

other body parts, the model struggles to accurately predict the 

positions of hidden joints. Since 2D RGB images provide only 

planar information and lack depth cues, this self-occlusion 

complicates the estimation. Additionally, the model may not 

fully capture the relationships between joints during the 

dynamic action. For example, if the torso is obscured, the model 

might fail to correctly estimate the angles of the knees in 

relation to the hips.  

To improve performance, future approaches could 

incorporate multi-view perspectives to provide more context or 

utilize depth information from sensors to enhance spatial 

awareness. These strategies could help mitigate the challenges 

posed by occlusions and improve the accuracy of joint 

TABLE II 
THE ABLATION STUDY ON HUMAN3.6M WITH DIFFERENT MODULES. A: 
BASELINE WITHOUT VOLUMETRIC HEATMAP LOSS AND REFINEMENT 

BLOCK. B: ADD VOLUMETRIC HEATMAP LOSS. C: ADD REFINEMENT BLOCK. 
PROTOCOL-I AND PROTOCOL-II ARE IN MM. 

Method Protocol-I Protocol-II 

A 142.23 123.02 

A + B 100.24 90.95 

A + C 135.8 110.85 

A + B + C 74.73 65.1 

 

TABLE III 
THE NUMBER OF PARAMETERS AND COMPUTATIONS IN THE NEURAL 

NETWORK. A: BASELINE WITHOUT VOLUMETRIC HEATMAP LOSS AND 

REFINEMENT BLOCK. B: ADD VOLUMETRIC HEATMAP LOSS. C: ADD 

REFINEMENT BLOCK.  

Method Parameters Operations (FLOPs) 

A 24.46M 7.00045G 

A + B 24.46M 7.00045G 

A + C 25.5M 7.00156G 

A + B + C 25.5M 7.00156G 

 

TABLE I 
COMPARING MPJPE AND P-MPJPE VALUES BETWEEN DIFFERENCE APPROACHES ON HUMAN3.6M USING RGB IMAGE AS INPUT. BEST RESULTS ARE SHOW 

IN BLOD. 

 Dir. Diss. Eat. Gre. Phn. Pose Pur Sit. SitD. Smo. Pht. Wait Walk WD. WT. 

Protocol-

I 

Avg.. 

Protocol-

II 

Avg. 

[31] 71.6 66.6 74.7 79.1 70.0 67.6 89.3 90.7 195.6 83.5 93.2 71.2 55.7 85.9 62.5 82.7 114.2 

[32] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5 97.5 

[33] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5 NA 

[34] 69.2 75.2 75.8 73.6 75.4 99.6 76.1 73.6 75.0 109.6 73.7 88.9 71.8 55.6 73.5 77.8 NA 

[35] 68.4 77.3 70.2 71.4 75.1 86.5 69.0 76.7 88.2 103.4 73.8 72.1 83.9 58.1 65.4 76.0 NA 

[36] 77.5 85.2 82.7 93.8 93.9 101 82.9 102.6 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9 65.1 

[37] 70.4 83.6 76.6 77.9 85.4 106.1 72.3 102.9 115.8 164.9 82.4 74.3 94.6 60.2 70.7 88.8 NA 

[38] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 120.9 90.8 

[39] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 97.8 86.2 

OURS 58.7 71.3 58.4 67.7 71.8 62.2 66.6 90.04 128.4 66.32 94.88 72.63 58.4 84.96 73.2 74.7 65.1 

*Note: NA means these metrics are not provided by the original paper with the source code 

TABLE IV 
ABLATION STUDIES FOR DIFFERENT HYPERPARAMETERS DURING 

NETWORK LEARNING. WEIGHT DENOTES THE WEIGHT COEFFICIENT 𝜆 IN 

(5). THE MPJPE ON HUMAN3.6M WITH DIFFERENT 𝜆. 

Weight  MPJPE (mm) 

10 91.7 

15 74.99 

20 74.73 

25 78.82 

30 90.74 

35 77.35 

40 85.41 

45 82.93 

50 86.36 
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estimation in actions like “SitD.” As for actions “Walk”, “WD” 

and “WT”, we conjecture that the length feature of the body is 

effective for these actions. In Table I, we also compare the 

average of MPJPE and the average of P-MPJPE values with 

other methods. In the results, it can be seen that our model 

outperforms other models. It is beneficial that our model uses 

multiple losses and refinement blocks to predict the root-

relative skeleton in the camera coordinate well. We also 

visualize the outputs of our model as shown in Fig. 3. In most 

cases, our model can predict the 3D skeleton well except for 

some unusual actions. 

D. Ablation Study 

Our ablation study is conducted on Human3.6M and the 

results are shown in Table II. All the ablation study uses 
λ = 20. It shows that adding volumetric heatmap loss (B) and 

adding refinement block (C) outperform the baseline (A). Table 

II shows that volumetric heatmap loss is useful for 3D HPE. 

Unlike most methods that regress the skeleton location in the 

spatial coordinate directly, we do not ignore the volumetric 

heatmap feature but regard it as one of the loss functions. 

Although there are three kinds of loss in our loss function, 

volumetric heatmap loss is still an important element in our 

method. It proves that the volumetric heatmap well represents 

the relationship between the skeleton joints in the space. As for 

the refinement block, the architecture without the refinement 

block can estimate the human pose, but the results are not good 

enough. The predicted skeleton has a larger error than the 

architecture with the refinement block. It proves that our 

refinement block can correct the human skeleton and output 

more accurate results. In summary, our volumetric heatmap loss 

and refinement block can improve the performance of 3D HPE. 

Table III shows the number of parameters and operations in 

our neural network architecture. The additional calculation of 

volumetric heatmap loss does not increase the number of 

parameters in the overall architecture. Therefore, methods A 

and A+B in Table III have the same number of parameters and 

operations because they differ only in whether they compute 

volumetric heatmap loss or not, and methods A+C and A+B+C 

have the same number of parameters and operations. Because 

our refinement block has only a small calculation of the fully 

connected layer, the number of parameters and operations 

generated doesn’t increase significantly, and it doesn’t cause a 

burden to the overall neural network architecture. This shows 

that our refinement block is very effective for the task of 

estimating human pose. 

To make the neural network pay attention to learning the 3D 

human skeleton, we set a weight on 3D skeleton loss. From 

Table IV, we found that the parameter, λ in (5) has a slight 

effect on accuracy. In general, the more important the loss term 

is, the larger the hyperparameter is. We made an experiment 

with hyperparameter settings, and the result is shown in Table 

IV We respectively set the magnification of 10, 15, 20, 25, 30, 

35, 40, 45, and 50 times for the 3D skeleton loss term. Because 

the 3D skeleton position is the main target in pose estimation, 

we only set the hyperparameter on this loss function. As shown 

in Table IV, we obtain the lowest error when λ = 20. As λ is 

adjusted, the error also changes but the error does not scale up 

or down regularly. This may be because the neural network 

needs to learn the 2D heatmap feature and 3D volumetric 

feature and the skeleton location together. These three kinds of 

information are necessary for HPE. Finally, we get 74.73 

MPJPE (mm) on average to prove that our model can predict 

the 3D human skeleton well and the visualization as shown in 

Fig. 5. 

V. CONCLUSION 

In this paper, we propose a refinement block that is composed 

    
  

      

      

      
 
Fig. 5. The visualization results for Human3.6M dataset. The left: RGB images of neural network inputs. The middle: The 3D skeleton of ground 
truth. The right: The predicted 3D skeleton from out model. 
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of the fully-connected layer and two residual blocks based on 

deep learning to estimate root-relative 3D human pose in 

camera coordinates. We utilize the loss from 2D heatmaps and 

volumetric heatmaps and 3D skeletons to calculate the total loss. 

We take these heatmap features as a part of our loss, allowing 

the neural network to learn more feature weights. The 

experiment results show that the volumetric heatmap loss and 

refinement block are effective for the 3D HPE task. Then we 

evaluate our model on the Human3.6M dataset, which is one of 

the biggest datasets with RGB images and a corresponding 3D 

skeleton. Finally, we get the 74.73 MPJPE (mm) on average.  

Since 3D HPE can be applied in many fields such as action 

recognition, virtual reality, human-computer interaction, and 

sports analysis. By connecting an action recognition task, we 

can develop our architecture into a complete system. In the 

future, we will develop other tasks such as action recognition, 

and combine it with our 3D HPE to form a fully functional 

human-computer interactive system. 
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