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Abstract— The proliferation of Internet of Things (IoT) devices
has exponentially increased data generation, placing substantial
computational demands on resource-constrained sensor nodes at
the extreme edge. Task offloading presents a promising solution
to tackle these challenges, enabling energy-aware and resource-
efficient computing in Wireless Sensor Networks (WSNs). Despite
its recognized benefits, the exploration of task offloading in ex-
treme edge environments remains limited in current research. This
study aims to bridge the existing research gap by investigating
the application of computational offloading in WSNs for reducing
energy consumption. Our key contribution lies in the introduction of
optimization algorithms explicitly designed for WSNs. Our proposal,
focusing on bandwidth allocation, employs metaheuristic and itera-
tive algorithms adapted to WSN characteristics, enhancing energy
efficiency and network lifespan. Through extensive experimental
analysis, our findings highlight the significant impact of task offloading on improving energy efficiency and overall
system performance in extreme-edge IoT environments. Notably, we demonstrate a remarkable up to 135% reduction
in network consumption when employing task offloading, compared to a network without offloading. Furthermore,
our distinctive multi-objective approach, utilizing particle swarm algorithms, distinguishes itself from other proposed
algorithms. This implementation effectively balances individual node consumption, resulting in an extended network
lifetime while successfully achieving both specified objectives.

Index Terms— Task Offloading, extreme edge of IoT, Wireless Sensor Networks, Edge Computing.

I. INTRODUCTION

AS technology advances, electronic devices have become
a ubiquitous part of people’s daily lives, generating a

constant stream of real-time data. This influx of information
is a valuable resource in a wide range of applications, from
medicine to strategic decision-making in business.

In this context, the Internet of Things (IoT) is poised
to be one of the most transformative technologies of the
21st century. IoT presents itself as a logical and promising
approach to addressing the challenges and opportunities of
the digital age. It enables a wide range of devices and systems
to be connected via the network, facilitating data collection,
transmission, and analysis in real-time. This further increases
efficiency and adaptability in a wide range of applications [1]
[2].

As shown in Figure 1, the IoT has a layered structure
that categorizes its component devices into different levels of
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complexity with their associated constraints. Although there
is no unanimous agreement, it is widely accepted that the
following four layers exist: Cloud, Fog, Edge, and extreme
edge [3]. Different computing strategies can be distinguished
depending on the layer responsible for the data processing.

Cloud computing is based on offloading the processing of
data collected at the edge to cloud servers. Its application to
IoT brings some limitations in terms of latency, security issues
and reduced fault tolerance. In addition, the surge in data
collected can lead to network bottlenecks. Therefore, the trend
in recent years has been to bring data processing closer to its
source, giving rise to fog and edge computing [4]. These strate-
gies succeed in reducing latency, therefore enabling real-time
applications. However, they also introduce new constraints due
to the limitations of the devices responsible for processing the
data.

Unlike fog computing, edge computing is independent of
the cloud, giving it autonomy in decision-making and enabling
collaboration between IoT devices at the edge and the extreme
edge participating in the Wireless Sensor Networks (WSN).
These are networks of spatially distributed autonomous sensors

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3419558

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

placed at the extreme edge that communicate with each other
and or a central control system at the Edge or the extreme
edge through wireless connections [5].

Wireless sensor networks (WSNs) are widely used for
monitoring and surveillance applications. However, the pro-
liferation of IoT has led to the development of more com-
plex applications that require advanced computing capabilities
for sophisticated data analysis and decision-making. These
applications implement advanced algorithms such as target
recognition and object tracking, which require more processing
power and energy consumption. This demand highlights the
limitations of WSN sensor nodes, which are typically small
and battery-powered. Therefore, a new challenge arises where
strategies are needed to reduce the power consumption of these
devices and thereby extend the lifetime of the networks [6].

Optimal sensor selection is crucial not only to improve
system performance and reduce costs but also to overcome
the energy constraints of the nodes. In their study on sensor
selection for target recognition, the authors in [7] highlight the
complexity of balancing rich sensor data with the limited com-
putational resources of energy-constrained nodes in WSNs.
They propose using less complex sensors, but this approach
presents challenges in dealing with the imperfect nature of
sensor outputs.

To the best of the authors’ knowledge, there is limited
research on the integration of task offloading in WSNs.
Nonetheless, this strategic solution shows promise. By incor-
porating task offloading, nodes can potentially handle richer
sensor outputs without compromising energy constraints. This
allows the selection of sensors based on their suitability
for their task rather than being limited by individual node
capacities. Optimisation of the overall performance of the
WSN becomes achievable. Additionally, task offloading can
be implemented through a collaborative approach, allowing
devices to share resources for an equitable distribution that
ensures optimisation.

The proposal focuses on leveraging servers with high pro-
cessing capacity in proximity to the network. These servers
will engage in resource sharing by distributing idle computing
resources among the devices, as discussed in prior surveys
[8]. The efficacy of this resource-sharing strategy depends
on various parameters, including the bandwidth of the base
station and the volume of data exchanged over the network.
Notably, our work delves into strategies aimed at optimizing
bandwidth allocation in computational offloading scenarios,
with a specific focus on edge IoT networks [9]. In these
networks, characterized by devices closely located to data
sources, resource-constrained sensor nodes actively participate
in the Wireless Sensor Network (WSN).

The primary focus of the proposed algorithms is to address
the resource distribution challenges arising from applying task
offloading in WSNs. The aim is to minimise energy consump-
tion in WSNs while adapting to variations in the number of
devices and the bandwidth shared between the network base
station and the participating sensor nodes. To this end, we have
tailored existing optimisation algorithms, specifically Genetic
Algorithms (GA), Particle Swarm Optimisation Algorithms
(PSO), and iterative methods, meticulously adapting them to
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Fig. 1: Schematic overview of IoT layers.

suit the requirements of our resource distribution problem.
The choice of these algorithms is justified by their proven
effectiveness in handling complex optimisation tasks, making
them well-suited for addressing the complexities inherent in
our computational offloading scenario involving variations in
the number of devices and shared bandwidth between the
network base station and sensor nodes.

In this way, the main contributions of this work are as
follows:

• Propose an underexplored approach for energy saving on
WSNs by applying collaborative task offloading strate-
gies. This approach offers a promising route for extending
the operational lifespan of sensor nodes.

• Present a set of optimisation strategies to select the most
suitable offloading strategy throughout the network’s life-
cycle, with a primary goal of conserving battery power
in the sensor nodes. These strategies are organised into
two main approaches: iterative methods and metaheuristic
algorithms (GA and PSO). Furthermore, each strategy
includes a spectrum of variations for the proposed al-
gorithms, enhancing adaptability. Extensive experimental
analysis on WSN has been conducted, encompassing var-
ied bandwidth scenarios and sensor node configurations.

• Provide a selection guideline framework to aid in choos-
ing the most suitable strategy based on the network’s
characteristics and the desired objectives.

The rest of the article is organized as follows. Section
II presents state-of-the-art research on different strategies to
apply computational offloading. Section III overviews the
problem of optimizing the resource and bandwidth distribution
in IoT sensor devices from the point of view of network
lifetime, by applying the concept of computation offloading.
Section IV details the proposed offloading strategies to tackle
the optimization problem set, while Section V outlines the
main experimental results. The discussion of the results is done
in section VI. Finally, Section VII presents the conclusions and
future lines of research for the proposed work.

II. RELATED WORK

There are several trends in the state of the art addressing
the optimisation of resources at the edge of the IoT by
offloading computational tasks of the nodes. In recent works,
Mobile Edge Computing (MEC) has been widely used as a
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strategy to implement task offloading in mobile networks.
MEC provides an infrastructure at the edge that facilitates
the efficient execution of computational tasks close to the end
users by extending cloud computing services to the Edge of
networks, leveraging mobile base stations [10], [11].

Chen et al. [12] propose a multi-user task offloading model
for mobile-edge cloud computing. This paradigm provides
cloud computing capabilities at the edge of radio access
networks. One critical factor affecting offloading performance
in this mechanism is the efficiency of wireless access. If many
users simultaneously choose the same wireless channel to
offload computation to the cloud, it may lead to low energy
efficiency and data transmission time. In this case, offloading
will not be beneficial. To achieve efficient offloading, they
address two key challenges: 1) how should a mobile user
choose between local and cloud computing? 2) if a user
chooses cloud computing, how to choose the right channel for
high-efficiency wireless access? To address these challenges,
they use a game theoretic approach and propose a distributed
task offloading algorithm to achieve the Nash equilibrium of
the game.

Sardellitti et al. [13] design an algorithm to jointly optimize
radio and computational resources for task offloading in a
multi-cell MEC scenario, where a large amount of radio
access points facilitates high bandwidth access to compu-
tational resources but increases intercell interference. The
offloading problem objective is to minimize overall energy
consumption at the mobile terminals under transmit power
and latency constraints. The main challenge of this prob-
lem is considering the intercell interference, which makes
the optimization problem non-convex. To solve this, they
developed centralized and distributed SCA-based algorithms
with provable convergence to locally optimal solutions of the
non-convex problem. According to the results, authors claim
their proposed schemes converge faster and lead to significant
energy savings compared to disjoint optimization procedures
for applications requiring intensive computation and limited
data exchange to enable offloading.

However, these proposals, while beneficial, are still depen-
dent on the already saturated cloud and do not fully disengage
from it. Additionally, MEC primarily targets mobile devices
such as smartphones, which are more complex than the sensor
nodes of WSNs. This means that, on the one hand, the
computational tasks sent by MEC devices are more complex
than those of the sensor nodes of WSN and thus require
higher computing capacity at the base station (hence the need
for cloud support in some circumstances). Additionally, the
operating scheme is different from our objective. In MEC, the
goal is to satisfy the needs of a client node, so once the task
is computed for the client node, it must return to it. WSNs
sought a collaborative computing scheme to achieve a single
objective: to process the collected data and send it to the
base station. This discrepancy in complexity and operational
objectives leads to a closer look at opportunistic offloading
as a complementary strategy that addresses the limitations of
MEC.

Opportunistic offloading leverages edge computing re-
sources, reducing the reliance on a centralized cloud infras-

tructure. The term opportunistic offloading represents a broad
scheme that encompasses traffic and task offloading [14].
While traffic offloading focuses on reducing data redundancy
and traffic load on the cellular networks, task offloading allows
nodes with limited computing resources to offload tasks to
nearby devices with idle computing capacity, extending bat-
tery life, increasing storage capacity or improving application
performance [15].

Shi et al. [16] suggest Serendipity, where mobile nodes
can delegate their computational tasks to other mobile nodes
through an opportunistic network. They model the computing
tasks as PNP blocks. Each PNP block consists of three
programs: pre-process, n tasks that can be executed in parallel,
and post-process. Pre and post-process programs must be
executed locally, while the n-tasks are offloaded to neighbour
nodes in parallel. Each node has a profile that describes its
available capacities and is used to decide whether or not to
allocate a task in an encounter node. If the client node doesn’t
receive the task result before a specified time, the offloading is
discarded and the task is executed locally. They consider three
models with different contact knowledge and control channel
availability and design a task allocation algorithm for each.

In [17] the authors propose an opportunistic task offloading
scheme to execute data mining tasks in mobile edge cloud
computing (MECC) systems. They prioritise the execution of
data mining tasks in mobile edge servers. However, when the
resources are limited or there are no edge servers available,
they offload the computation to the cloud. The algorithm works
in three modes depending on which computational resources
are used: local, edge servers or the cloud. They propose a
rule-based scheduling strategy to switch adaptively between
different execution modes of the data mining algorithm. They
develop their simulator for MECC-based data stream mining
systems. Simulations show promising results for online mobile
activity recognition applications. Yet, the proposed framework
needs to be generalized.

However, these opportunistic offloading strategies, like
MEC strategies, still focus on complex mobile networks.
Furthermore, high node mobility is required to increase contact
opportunities for these schemes to be effective. As mentioned
above, this research focuses on WSNs in remote locations,
where the probability of establishing contact with external
devices is low. For this reason, opportunistic offloading strate-
gies, while offering advantages in mobile networks, are not
the most effective for WSNs.

To the best of our knowledge, a reduced number of works
have addressed the study of the task offloading problem
in WSN. In such extreme edge conditions, energy conser-
vation becomes critical due to the battery-power nature of
the sensor nodes. These nodes, often located in challenging-
access locations like forests, vast agricultural fields, or the
depths of oceans and marine environments, impose constraints
on communication bandwidth, battery life, and processing
capacities.

Samie et al. [18] propose optimising communication band-
width by solving the so-called fragmentation issue. This prob-
lem highlights the underutilization of the gateway resources
due to discrete coarse-grained offloading levels. They propose
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a switching method between different offloading levels at IoT
devices such that it appears to the gateway as if the IoT device
would operate at an intermediate offloading level and manage
to reduce the battery consumption of the devices. However,
this proposal doesn’t consider the processing capability of the
gateway and how its variation would affect the nodes.

A software-defined mission-critical wireless sensor network
(MC-SDWSN) that can solve the existing challenging issues in
traditional WSNs, such as resource utilization, data processing,
system compatibility, and strict latency requirements is pro-
posed in [19]. Based on the MC-SDWSN architecture, they
propose a centralized task offloading algorithm to minimize
the computing latency. They consider a network architecture
similar to ours but assume that there is an infinite buffer in
the edge servers. Their strategy consists of scheduling tasks
by prioritising those with the most critical latency.

In [20], the authors propose to reduce energy consumption
on battery-powered mobile devices by task migration and
remote processing based on Markovian decision processes.
The dynamic power management problem is formulated as an
optimization problem and solved using a linear programming
approach. The experimental results prove the effectiveness of
their methods. Their framework comprises clients, a server,
and a wireless channel for communication. The server, as-
sumed to be mains-powered with superior computational capa-
bility, handles local and remote tasks without energy and pro-
cessing limitations. Clients initiate the offloading with remote
process requests (RPR) to the server with a time constraint. If
the server cannot meet the specified time constraint, it rejects
the request and the client must process the task locally, which
wastes client resources. Hence, the offloading decision logic
is integrated into the clients. This is viable for mobile nodes,
but since this work focuses on resource-limited sensor nodes,
migrating this logic to the server would eliminate the possible
waste of the client’s resources.

In conclusion, this study highlights the lack of research
addressing the application of task offloading in WSNs as a
strategy to reduce power consumption. As we look at the
specific challenges of WSNs, particularly in remote environ-
ments, our focus narrows to the particular constraints and
opportunities in this context. Notably, our work stands out in
the WSN research for its unique emphasis on task offloading
as a powerful strategy for reducing power consumption. In a
landscape where energy efficiency is paramount, our contri-
bution aims to fill a gap by providing optimisation algorithms
tailored to the specific needs of WSNs, thus contributing to
their enhanced durability and efficiency.

III. PROBLEM DESCRIPTION AND OBJECTIVES

This work compares different task-offloading algorithms in
WSN infrastructures. The primary objective is to minimize
battery consumption in extreme edge sensor nodes by applying
task offloading. The strategy is to have Edge servers that
are connected to the power grid and have idle computational
resources to make this capability available to the sensor nodes.
By offloading some of the computational load from these
nodes, it is possible to reduce their energy consumption and
thereby maximize their lifetime.

TASK = N BYTES

Subtasks to 
process locally 

Occupied 
bandwidth

Offloading strategy

SB1 SB2 SB3 SB4 SB5 SB6

Fig. 2: Graphical depiction showcasing the division of tasks.

An additional goal is set to make the battery consumption
of the nodes as homogeneous as possible, favouring greater
offloading in the nodes with lower batteries. In this way, if
we consider that the network lasts until the first node runs
out of battery, we will maximize the lifetime of the network.
The way to achieve this goal varies depending on whether the
algorithm is iterative or metaheuristic and is explained in more
detail in Section IV.

Regarding the method for implementing the task offloading
strategy, a tiered system approach was selected. To define these
levels, the task to be carried out by the nodes is established
to be the same for all of them. This task has a fixed size of
N bytes and can be divided into two fragments of variable
size, each of which can be processed independently. Under
this assumption, each level corresponds to a specific division
of the task into two fragments, so that one of the parts is
processed locally and the other is transmitted unprocessed to
the BS to be handled by the BS. The levels defined used in
the experimental analysis are detailed in Table IV and Figure
2 shows a graphical depiction of the division of a task that
can be divided into 6 different-size subtasks (SB).

This system can also be interpreted as each of the tasks can
be divided into different independent processing subtasks. For
example, if the task of the nodes is to capture the number of
cars on a motorway at a certain time, the processing of the
captured image could be divided into several subtasks such
as image compression, pre-processing, vehicle detection, and
so on. Similarly, in healthcare applications involving the pro-
cessing of ECG signals, tasks can be subdivided into distinct
processing steps such as signal filtering, feature extraction,
and anomaly detection. In this way, each level can relate to
the decision of which subtasks are processed locally at the
nodes and which are sent to the BS for processing. Due to the
heterogeneity in the complexity of the subtasks, the definition
of the processing cycles needed on each level has been done
avoiding a linear progression.

Before describing the problem, it is necessary to define the
network architecture under consideration.

A. Network architecture

We consider a local network of N geographically distributed
IoT edge nodes I = { I1, ..., IN} and a Base Station (BS),
which are connected through a local network with a star
topology. A similar system model is considered in [18]. The
BS is a peripheral server at the edge. It is considered that it
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performs several tasks, including helping the nodes process
the data they collect. We use the term bandwidth in its data
processing connotation to refer to the number of processing
bytes that the edge server can share with the nodes in the
network at any given time. As the BS is not exclusively
dedicated to the network, we expect bandwidth to be a variable
parameter over the lifetime of the network. The execution
of the algorithms to obtain the offloading strategy will also
be the responsibility of the BS. A similar strategy is also
used in [21] and [22], where the authors employ genetic
algorithms, but the chromosomes in these algorithms take into
account scheduling to reduce task completion time and power
consumption, respectively. However, it’s worth noting that
those approaches demand higher computation from the edge
device, which is a limitation in resource-constrained networks.

Two categories of parameters are defined to create node
profiles: dynamic and static. Static parameters are linked to
established offloading levels and node hardware specifications
which remain constant during network operation. In contrast,
dynamic parameters reflect attributes of the nodes that evolve
as they perform the tasks assigned by the BS. These parameters
are:

Id = (Qi, F, TR, DC, TC , PC , Bat, bdi , Ed), d = 1, . . . , N

• Static parameters:
– Qi denotes the number of different offloading levels

that the IoT sensor node can handle.
– F denotes the clock frequency of the node.
– TR is the data transfer rate between the node and the

BS, which must be set according to the characteris-
tics of the network.

– DC represents the duty cycle of the node.
– TC denotes the energy consumption during the data

transmission from the node to the BS.
– PC denotes the processing battery consumption of

the nodes.
– Bat represents the initial battery of the nodes.

• Dynamic parameters:
– bdi

represents the the number of bandwidth bytes
occupied by node d working at level i.

– Ed is the remaining battery of sensor node d.

B. Optimization Problem

The problem considered in this work belongs to the class
of Generalised Assignment Problems (GAP). GAP consist
of assigning a set of tasks to a set of agents with limited
resources, taking into account a minimum total cost [23]. In
this work, the resource is the bandwidth of the BS, which
has to be allocated to the IoT nodes to minimise the total
energy cost. All this applied to a network of IoT nodes sharing
computational resources with a BS is called task offloading
[24].

The task offloading optimization problem can be formulated
in many ways, as surveyed in [25]. For the description of the
optimization problem of this work, the following definitions
are needed.

• Bd represents the overall occupied bandwidth of the
network. Therefore, as shown in Eq. 1 it is obtained as
the sum of the bdi

of the nodes.

Bd =

N∑
d=1

bdi
(1)

• Pd is the summation of the power consumption of all
the nodes and is computed as shown in Eq. 2, where pdi

is the total power consumption of device d operating at
offloading level i.

Pd =

N∑
d=1

pdi
(2)

• The computation of pdi of each node encompasses the on-
board processing consumption pobi and the consumption
due to the data exchange transaction ptri al level i. For
the specific simulations of this work, ptri is obtained
based on single-hop communication, according to the
considered star topology, as follows:

pobi = PC
Cyclesi

F
(3)

ptri = TC
bdi

TR
(4)

pdi
= pobi + ptri (5)

Given these parameters, the optimisation problem is defined
by Eq. 6 and Eq. 7, where BM stands for the maximum
available bandwidth.

Optimizationgoal : min(Pd) (6)

Constraint : Bd ≤ BM (7)

Eq. 8 formulates the objective of maximising the network’s
lifetime. Here, LT represents the lifetime of the network,
defined as the lowest battery value among the nodes. This
objective is intentionally left implicit in some of the proposed
algorithms to evaluate whether they inherently prioritise net-
work lifetime optimisation without explicit guidance. Thus,
Eq. 8 is established as an additional objective.

AditionalObjetive : max(LT ) (8)

• During the simulations, TR has been set in accordance
with the IEEE Standard for Low-Rate Wireless Networks
(IEEE 802.15.4) in the 2.4 GHz band. This standard is
widely used in Wireless Sensor Networks (WSN). Never-
theless, this parameter can be configured in the proposed
algorithms according to the used communication standard
of the target WSN.
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IV. PROPOSED ALGORITHMS

Once the problem is defined, algorithms are developed to
find the optimal bandwidth allocation and offload management
routines throughout the network’s dynamic lifetime. The pro-
posed algorithms are designed to be topology agnostic and
scalable, allowing them to adapt to variations in the number
of nodes and available bandwidth. In addition, they share an
initialization routine to help establish a common benchmark.

It is worth noting that although the algorithms can be
applied to different network topologies, the obtention of the
battery consumption of the node sending data assumes a
single-hop communication link with the BS. Nevertheless, it
is possible to transition to another type of network structure
by adding the computation of the power consumption of the
communication path accordingly, which allows the algorithms
to operate at a higher optimization level.

In terms of network deployment, while Optimal Sensor
Placement (OSP) methodologies, such as those explored by
authors in [26], [27], [28], are crucial for addressing uncertain-
ties in WSN and function as a deployment optimization phase,
the proposed algorithms operate from a broader perspective.
They aim to dynamically optimize the usage and distribution of
resources in WSN, serving as a distinct phase from node place-
ment. Thus, they work during network operation, seamlessly
incorporating possible dynamic changes in WSN behaviour.

We propose to solve the problem from two different
perspectives: iterative and metaheuristic. Metaheuristic algo-
rithms apply computational intelligence methods with ad-
vanced problem-solving capabilities to solve complex optimi-
sation problems [29]. In this work, we will focus on two types
of metaheuristic algorithms that belong to the family of nature-
inspired algorithms: Genetic Algorithms (GA) and Particle
Swarm Optimisation Algorithms (PSO). GAs mimic evolution
by searching large solution spaces, while PSOs, inspired by
collective behaviour, encourage collaborative exploration.

Conversely, iterative methods, while less complex provide
robust problem-solving capabilities through a sequence of
incremental refinements. The decision to incorporate both
metaheuristic and iterative techniques is strategic, as it allows
for comparative analysis to identify the strengths and efficacy
of each approach. The following sections comprehensively
explain the proposed algorithms, highlighting their respective
applications and strengths in the context of the optimisation
problem at hand.

A. Iterative Algorithms
The proposed Iterative Bandwidth Allocation (IBA) al-

gorithms use iterative strategies to distribute the available
bandwidth among the nodes so that the maximum possible
bandwidth is used, thereby minimising the battery consump-
tion of the IoT node. Two different methods are considered to
carry out the bandwidth distribution, the Iterative Decremental
Allocation (IDA) and Iterative Incremental Allocation (IIA)
algorithms. Both IDA and IIA algorithms share the same input,
information about the bandwidth and battery consumption of
each level ordered from highest to lowest consumption in
addition to the WSN characteristics.

Send all Send all Send all … Send all

Proposed initial solution

Node 1 Node 2 Node 3 … Node N

Does it 
exceed the 
available 

BW?

No

Return the solution

Yes

Downgrade of 
a node's level

(a) IDA

Calculate how many 
nodes can be in the 

level

Assign this level to the 
nodes obtained and update 

the available BW

Is the available 
BW exhausted or 
have you tried all 

levels?

Return the solution

Yes

No

(b) IIA

Fig. 3: Solution search procedure of the IBA algorithms.

• As represented in the IDAs flowchart (Figure 3a), this
algorithm gradually adjusts an initial solution until the
imposed bandwidth limit is satisfied. In the first step,
it identifies the level with the lowest consumption and
assigns all nodes to that level, thus forming the initial
solution. It then checks whether this allocation exceeds
the bandwidth limit. If it does, the algorithm iteratively
reduces the level of a single node at each iteration, trying
to meet the constraint. The resulting solution ensures
adequate bandwidth distribution without exceeding the
imposed constraint. This process is also described in
Algorithm 1.

• The IIA algorithm starts with an initial allocation where
no node occupies bandwidth. The adjustment process is
based on dividing the available processing bytes shared
by the BS among the bandwidths of each level. Starting
with the level that occupies the most space, the algorithm
determines the maximum number of nodes that can
operate on it. It then calculates the remaining available
bandwidth and repeats the process for the next level with
the second-highest byte usage. This sequence continues in
descending order of levels until the available bandwidth
is exhausted. The algorithm employs a greedy strategy
to incrementally allocate bandwidth, optimizing resource
usage at each step. The flowchart in Figure 3b shows the
process followed by this algorithm.

These iterative algorithms lack the ability to generate of-
floading strategies based on the state of the batteries in
the network. Consequently, the execution of this type of
algorithm divides the problem solution into two stages. First,
the algorithm selects the optimal offloading strategy and then
implements it, cyclically switching the levels of each node
to achieve homogeneous network consumption. This process
is repeated each time there’s a variation in the available
bandwidth, ensuring optimal redistribution.

B. Genetic Algorithms
Genetic Algorithms (GA), first introduced by Holland [30],

are a type of evolutionary strategy that belongs to the family of
nature-inspired algorithms, that allow finding optimal solutions
to complex problems. There is a wide variety of applications
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Algorithm 1 Bandwidth Allocation IDA

Ensure: sol: List of the bandwidth allocation with the lowest
consumption

1: sol← []
2: min← None
3: min idx← None
4: lev cons← get consumption(levels)
5: for idx, cons in ENUMERATE(lev cons) do
6: if (min is None or cons < min) then
7: min idx← idx
8: end if
9: end for

10: sol← n ∗ [levels[min idx]]
11: if SUM(sol) > BW then
12: nd← 0
13: while SUM(sol) > BW do
14: if nd == n then
15: nd← 0
16: end if
17: sol← DOWNGRADE LEVEL(sol, nd)
18: nd← nd+ 1
19: end while
20: end if
21: return sol

for which genetic algorithms are useful in MEC, one of them
being bandwidth allocation. This can be seen in the study
by [31], where they use a genetic algorithm for scheduling
sequential tasks in a multi-server network.

As depicted in Figure 4, the foundation of a genetic
algorithm lies in the definition of chromosomes, as they
represent the potential solutions. Historically, chromosomes
were binary-coded. However, this approach posed limita-
tions, particularly when addressing continuous optimization
problems. To overcome these limitations, Real-coded genetic
algorithms (RCGAs) emerged. RCGAs represent solutions as
vectors of real numbers, enabling a more natural and efficient
exploration of continuous search spaces. The transition to
RCGAs was motivated by the recognition that, for many real-
world optimization problems, the flexibility and simplicity of
using real numbers in chromosome representation outweighed
the constraints imposed by binary coding [32].

The proposed algorithms are categorized as RCGAs, with
their chromosomes representing the list of bandwidths to be
occupied by each node in the network. In other words, each
chromosome embodies a specific offloading strategy, with its
size corresponding to the number of nodes in the network.
Figure 5 illustrates the structure of these chromosomes.

The initial population consists of randomly generated chro-
mosomes that evolve through crossover and mutation over
several generations until an optimal solution is reached. Ran-
dom generation of the initial population is essential to ensure
maximum diversity. However, despite this randomness, all
chromosomes must obey the constraint outlined in Eq. 7. In
addition, to maintain said diversity, the population size must
be sufficiently large, a parameter whose selection is considered
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in section V.
The next step is to select the most suitable individuals

for mating, as determined by their fitness level. This fitness
level is assessed using a fitness function, which calculates a
score indicating an individual’s likelihood of reproducing. The
effectiveness of several proposed fitness functions is evaluated
in the following section.

As shown in [33], there are several ways to implement
the selection of the individuals. After considering the various
options, we decided that selection by tournament was best
suited to the problem at hand. The first step in Tournament
Selection is to randomly select a set of individuals. These
individuals are ranked according to their calculated fitness,
and then the fittest one is selected for mating. The number of
individuals selected for each tournament is set to two. Since
the descendants come from the crossing of two parents, this
process is repeated twice for each time a new chromosome is
to be generated.

Once the progenitors have been selected, the mating process
will begin. The mating is done by single-point crossover. For
the problem formulated, none of the solutions must exceed the
bandwidth. Thus, after the generation of the children, they are
checked for compliance with this constraint and the offspring
that do not satisfy it are discarded. The process of selecting
and mating the parents continues until a new generation of the
given population size is obtained.

The last step is mutation. The mutation maintains diversity
in the population, preventing the solution from stagnating at
a local optimum. As in Darwin’s theory, mutation applies
to a random number of individuals. In our algorithms, the
probability of an individual being selected for mutation is an
adjustable parameter. Once an individual has been selected
for mutation, the mutation routine selects a random node and
changes its bandwidth to that of another random level. The
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mutated individual may exceed the bandwidth. Given this
case, this individual is discarded and the original individual
is reintroduced into the population. This implies a reduction
in the previously set mutation rate. It has been experimentally
determined that the number of mutations rejected due to non-
compliance with this constraint does not exceed 30%. This is
taken into account in the selection of the GA experimental
parameters, where it has been decided to set a higher value
for the mutation rate to compensate for this effect.

The proposed algorithms incorporate elitism. Elitism is an
operational feature of GAs that provides a means of reducing
genetic drift by ensuring that the best chromosome is passed
without modification to the next generation [34]. In this way,
the best individual of the current generation called the elite,
is passed on to the next generation. There are several ways
in which the elite can be incorporated. This article considers
two of them. GA-M and GA-LT add the elite to the next
generation when the mutation of its offspring is complete. GA-
H replaces the worst individual in the next generation with the
elite. Furthermore, each of these algorithms uses a different
elite selection criteria.

The new generation completes once elitism has been per-
formed. The number of generations must be large enough
to allow the GAs to reach the best solution and can be
determined empirically. Another option is to add a termination
condition that stops the creation of new generations when a
high percentage of the population satisfies it. To ensure that
the number of generations is sufficient, all three proposed
algorithms have a termination condition that stops the creation
of new generations when more than 80% of the population has
the same fitness.

The solution given by the GAs is the chromosome with the
best fitness in the last generation. In most cases, there will be
more than one individual with the best fitness. Selecting the
final solution from these individuals is similar to selecting the
elite chromosome and is discussed below.

Three different genetic algorithms have been developed:
GA-M (GA-Mean Consumption), GA-LT (GA-Life Time) and
GA-H (GA-Hybrid). These algorithms differ in their fitness
functions and the method used to select the elite individual as
summarised in Table I.

TABLE I: Genetic algorithms specifications

Algorithm Fitness Function Elitism

GA-M FitnessM = Pd
N

Random chromosome
within the ones with lowest
FitnessM

GA-LT FitnessLT = LT

Random chromosome within
the the ones with highest
FitnessLT

GA-H FitnessM = Pd
N

Chromosome with highest LT

within the he ones with lowest
FitnessM

GA-M and GA-H prioritise minimising the average network
consumption as their main objective, defined in Eq. 6. Conse-
quently, the best chromosomes have the lowest FitnessM .
In GA-LT, a more homogeneous network consumption is

prioritised. The fitness of the chromosomes is set as the
minimum battery capacity the network would require if this
solution were chosen, and following the objective in Eq. 8,
the algorithm seeks solutions with higher FitnessLT .

GA-M and GA-LT employ the same elitism method, where
the first individual in the list with the highest fitness is selected
as the elite and is added directly to the next generation. GA-H
is an update to GA-M that purports to achieve a lower standard
deviation between node batteries by modifying the elitism
method. Instead of selecting the elite as the first chromosome
in the list with the highest fitness, the elite is selected as
the one with the highest minimum network battery among
all individuals with the highest fitness. Additionally, GA-H
replaces the worst individual in the next generation with the
elite of the current one, to get to the best solution faster.

The functional behaviour of genetic algorithms is different
from the one of iterative algorithms. Instead of only finding
a new solution when the bandwidth is modified, genetic
algorithms are designed to discover the best solution for
the current network configuration at each of the execution’s
duty cycles. This distinction results from the compatibility of
genetic algorithms for dynamic networks, where nodes possess
varying initial battery levels, and the number of nodes can
fluctuate. GA-M and GA-LT are executed through the two
functions represented in Algorithm 2, and GA-H in Algorithm
3.

Algorithm 2 Genetic Algorithm for GA-M and GA-LT
procedure NEXTGENERATION(currentGen, mutation rate)

fitness list←GET ALL FITNESS(currentGen)
best idx←GET BESTFIT IDX(fitness list)
elite←currentGen[best idx]
children←MATING(currentGen, fitness list)
nextGen ←MUTATE POPULATION(children, mutation rate,

elite)
return nextGen

end procedure

procedure GENETICALGORITHM(mutation rate, popSize,
generations)

pop← GENESIS(popSize)
for i← 1 to generations do

pop← NEXTGENERATION(pop, mutation rate)
fitness list←GET ALL FITNESS(pop)
max← None

for num in fitness list do
if max is None or max < num then

max← num

end if
end for
index← FIND INDEX(fitness list, max)
if len(index) ≥ popSize ∗ cond fin then

break
end if

end for
best sol← []

for i← 1 to len(index) do
best sol.append(pop[index[i]])

end for
return best sol[0], len(index)

end procedure
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Algorithm 3 Genetic Algorithm for GA-H
procedure NEXTGENERATION(currentGen,fitness list,
mutation rate, elite, elite fit)

children←MATING(currentGen, fitness list)
nextGen←MUTATE POPULATION(children,mutation rate)
next fitness list← get all fitness(nextGen)
worst idx← get worstfit idx(next fitness list)
nextGen[worst idx]← elite

next fitness list[worst idx]← elite fit
return nextGen, next fitness list

end procedure

procedure GENETICALGORITHM(mutation rate, popSize,
generations)

pop← GENESIS(popSize)
fitness list← GET ALL FITNESS(pop)
for i← 1 to generations do

elite, elite fit, repetidas←FIND ELITE(pop, fitness list)
pop, fitness list ←NEXTGENERATION(pop, fitness list,

mutation rate, elite, elite fit)
if len(index) ≥ popSize ∗ cond fin then

break
end if

end for
return nextGen, next fitness list

end procedure

C. Particle Swarm Optimization Algorithms

Particle Swarm Optimisation (PSO) algorithms, first pro-
posed by Kennedy [35] and inspired by the flocking behaviour
of birds, use exploration techniques to search for parameters
that optimise a defined objective. Their origin is based on two
concepts, swarm intelligence and evolutionary computation
[36].

The operation of PSO algorithms is based on the movement
of a swarm of particles through a D-dimensional search space
to find an optimal solution. The position of each particle
defines a proposed solution. The particles are defined by
a current position vector Xi = (xi1, xi1, . . . , xiD) and its
current velocity vector Vi = (vi1, vi2, . . . , viD), where D is
the number of dimensions [37].

The algorithm starts by randomly initialising Vi and
Xi. Then, at each iteration, the best position found by
each particle i, Pbesti = (Pbesti1 , Pbesti2 , . . . , PbestiD ) and
the best position found by the whole swarm Gbest =
(Gbest1 , Gbest2 , . . . , GbestD , ) both guide the particle i by up-
dating its velocity and position using the following equations:

vid(t+ 1) = w ∗ vid(t) + C1 ∗ r1 ∗ (Pbestid(t)− xid(t))+

C2 ∗ r2 ∗ (Gbestd(t)− xid(t))
(9)

xid(t+ 1) = xid(t) + vid(t+ 1) (10)

• w: Represents the inertia weight, which controls the effect
of the particle’s current velocity on its new velocity.
Selecting this parameter adjusts the local and global
search capabilities. If w = 0, the new velocity of the
particle is independent of the previous one, this means
there is no memory involved and that it only depends
on the best local and global (Pbest y Gbest). Conversely,

Final 
Velocity

Inertial velocity

Weighted influences

Best  historical offloading 
strategy of the particle

Best global offloading 
strategy of the swarm

Current offloading 
strategy

Fig. 6: Particle’s velocity representation.

when w ̸= 0, the tendency of the particle to explore new
positions is inspired. This tendency grows as the value of
w increases, resulting in longer flight steps. On the other
hand, decreasing w will reduce the flight speed, causing
the particles to focus on local exploration.
The value of inertia weight can be fixed or given a
Linearly Decreasing Weight (LDW). This method encour-
ages global exploration during the first iterations of the
algorithm and shifts the focus to local exploration as the
particles approach the optimal solution. Its implementa-
tion follows the formula:

w = wmax −
wmax − wmin

Tmax
t (11)

Where wmax is the maximum value of the inertia weight
and wmin is the minimum; t represents the current
iteration and Tmax the total number of iterations.

• C1 and C2: Are the acceleration coefficients and represent
the weight of the stochastic acceleration of each particle
towards its historical best position (Pbest) and the best
global position (Gbest), respectively. C1 is the cognitive
parameter, which represents the maximum influence of
the particle’s best position on its new velocity, and C2 is
the social parameter and indicates the maximum influence
of social information on the new value of the particle’s
velocity (Gbest). Both usually have values close to two.

• r1 and r2: These are random values between 0 and 1.
Figure 6 represents graphically how the best local and

global positions affect the calculation of the new velocity of
a particle.

Specific to the problem posed, it is established that each
dimension of the search space corresponds to the bandwidth
occupied by each node in the network, giving a total of D
dimensions, equal to the number of nodes present. Due to the
nature of the problem, the range of values that each dimension
can take is discrete and must coincide with the bandwidth of
each offloading level. In this way, each position in the search
space represents a unique computational offloading strategy,
and the velocities of the particles determine whether the node
increases decreases, or maintains its level.

Being a discrete space, it is necessary to introduce certain
adaptations to the PSO related to updating the positions of the
particles. Velocity values obtained by Eq. 9 are not integers
and using them to update the particle positions (Eq. 10) can
result in bandwidths that most probably would not correspond
to any of the predefined levels. To deal with this situation,
a procedure is established whereby, once the new particle
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position is obtained, the bandwidth of each node must be
approximated to the nearest available level.

Another essential adjustment when applying PSO is related
to the restraint, Eq. 7, which states that the sum of the
bandwidths occupied by all nodes in the network must not
exceed the available bandwidth. In the first approach, it was
found that if the new position of a particle exceeded the
bandwidth limit, the calculation of its velocity had to be
repeated until this condition was met. Although this alternative
proved satisfactory for networks with five nodes, as the number
of nodes increased, the algorithm became stuck, preventing the
completion of the execution programme. After an exhaustive
search for solutions, an approach was found in the work of [38]
that penalises the fitness of those particles that do not satisfy
the constraint. This method proved to be very compatible with
the problem at hand. Consequently, it is decided that particles
exceeding the bandwidth constraint will be assigned a fitness
of zero. This approach does not affect either the Pbest or the
Gbest, while the exploration of the space is unaffected.

The algorithm 4 presents the steps followed by the PSO
algorithms.

Algorithm 4 Particle Swarm Algorithm
1: function PSOalgorithm
2: particles, vel← genesis(num part 2)

3: part fitness← get all fitness(particles)
4: pBest← [[0] ∗ n]]× num part 2
5: pBest fit← [[0] ∗ num part 2]]

6: gBest← []

7: gBest fit← 0
8: for i← 1 to generations do
9: w ← Parameters.w − i× (Parameters.w/generations2)

10: for j in [0, num part 2) do
11: if part fitness[j] > pBest fit[j] then
12: pBest[j]← particles[j]

13: pBest fit[j]← part fitness[j]
14: end if
15: if part fitness[j] > gBest fit then
16: gBest← particles[j]

17: gBest fit← part fitness[j]
18: end if
19: end for
20: new pop← []
21: new vel← []
22: aux← 0
23: while aux < num part 2 do
24: new part, new vel part ←

get new part(particles[aux], vel[aux], pBest[aux], gBest, w)

25: new pop.append(new part)
26: new vel.append(new vel part)

27: aux← aux+ 1
28: end while
29: particles← new pop

30: part fitness← get all fitness(particles)
31: vel← new vel
32: end for
33: for i in [0, num part 2) do
34: if part fitness[i] > gBest fit then
35: gBest← particles[i]

36: gBest fit← part fitness[i]
37: end if
38: end for
39: return gBest
40: end function

Similar to the GAs, three particle swarm algorithms have
been developed, PSO-M (PSO-Mean Consumption), PSO-
LT (PSO-Life Time), and PSO-H (PSO-Hybrid), whose dif-
ferences lie in the way of calculating the fitness of the
particles. All three share the previously defined topology of
the search space and the representation of the particles. Table
II summarises their fitness functions.

Algorithms PSO-M and PSO-LT, are programmed to in-
vestigate whether the space exploration approach of PSO
algorithms offers advantages compared to the evolutionary
process followed by Genetic Algorithms. To this end, it is
established that PSO-M shares the same fitness function as
GA-M and GA-H (FitnessM ) and that PSO-LT shares that
of GA-LT (FitnessLT ). That is, in PSO-M, the fitness of a
particle coincides with the average consumption of the network
that would result from the solution proposed by that particle.
In the PSO-LT algorithm, the fitness is the lowest residual
battery among the nodes after executing the task using the
strategy contained in the particle.

PSO-H introduces a different way of obtaining the fitness
of particles based on multi-objective optimization. Multi-
Objective Optimization Problems (MOP) involve computing
multiple functions with conflicting objectives. In [39], Cui et
al. provide a detailed overview of multi-objective optimization
methods and their application in energy conservation, includ-
ing trade-off methods. Trade-off methods involve converting
these complex problems into single-objective problems, which
can then be solved using classical optimization algorithms. To
use this approach, it is necessary to determine the relative
importance of each objective, either by using the Weighted
Sum Method (WSM) beforehand or by using an iterative
method during the search process. After evaluating these
methods, the best strategy for the defined problem is to use a
compensation method based on WSM.

Up to this point, the algorithms have been oriented towards
one of two stated objectives: minimising the consumption of
the network or maximising its remaining lifetime. As the simu-
lations will show, the minimisation-oriented methodology fails
to achieve a balance in consumption, while the maximisation-
oriented methodology achieves a fair distribution, but at the
expense of the average consumption. PSO-H aims to combine
both objectives. The fitness function of PSO-H is based on
the work of Wu et al. [40] and consists of a weighted sum
between the two fitnesses defined by Eq. 12, where λ is the
weighting factor.

Through empirical experimentation, it has been found that
a lambda value of 0.6 effectively establishes a trade-off
between minimizing battery consumption and controlling stan-
dard deviation. Prioritizing minimization with a lambda value
higher than 0.6 may lead to lower energy use but a higher
standard deviation. Conversely, lower lambda values prioritize
controlling standard deviation, potentially resulting in a more
homogeneous distribution but increased battery consumption.

While 0.5 might seem like an ideal midpoint between these
objectives, research suggests that a slightly higher value of
0.6 achieves a similar balance. Moreover, it reduces time
complexity by enabling quicker convergence to the optimal
solution. This optimized point ensures efficient energy usage
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while maintaining balance, offering a practical compromise
between the two objectives.

FitnessH = λ ∗ FitnessM + (1− λ) ∗ FitnessLT (12)

It is important to note that this fitness function was im-
plemented in the genetic algorithms. However, the results
obtained did not show any significant improvement concerning
the algorithms defined in this work.

As far as the execution methodology of the PSO algorithms
is concerned, the same procedure is used for the GA algo-
rithms and is detailed in the section V.

TABLE II: PSO algorithms specifications

Algorithm Fitness Function

PSO-M FitnessM = Pd
N

PSO-LT FitnessLT = LT

PSO-H FitnessH = λ ∗ FitnessM + (1− λ) ∗ FitnessLT

V. CONFIGURATION AND PARAMETER SELECTION FOR
EXPERIMENTAL ANALYSIS

Several experiments have been carried out under common
network conditions to test and compare the efficiency of
the implemented algorithms in terms of average battery con-
sumption, standard deviation and time complexity. Extensive
simulations covering a wide range of network conditions were
performed using a device with a 2.3 GHz Intel Core i5 dual-
core processor and 8GB of RAM.

The initial phase of establishing the experimental environ-
ment involved defining the characteristics of the network.
Table III details the selected parameters for both nodes and
the Base Station (BS). These parameters are configured based
on a Cookie modular node which comprises a C8051-based
processing layer and a CC2420-based communication layer.

Subsequently, it is necessary to define both the test bench
and the parameters to evaluate the algorithms’ performance. In
terms of energy efficiency, it is decided to measure the average
energy consumption of the network. Standard deviation is
selected as a measurement of the homogeneity of the nodes’
batteries. Standard deviation quantifies the dispersion of values
with the mean, thus providing a solid metric for assessing the
fairness of the energy distribution between nodes.

In addition, measuring the execution time of the algo-
rithms will allow for assessing the feasibility of applying
the algorithms in real-live network environments, where time

TABLE III: Parameters of the Network

Parameter Value
Frequency 8 MHz

Transmission rate (TR) 250 Kbps
Transmission consumption (TC ) 10 mA
Processing consumption (PC ) 4 mA

Battery 12000 mAh
TR has been set in accordance with the IEEE Standard for

Low-Rate Wireless Networks (IEEE 802.15.4) in the 2.4GHz band.

TABLE IV: Levels Description

Level Processed Bytes Cycles Bandwidth
1 300 1,500,000 0
2 210 700,000 90
3 100 500,000 200
4 40 400,000 260
5 12 50,000 300

complexity is a critical factor. These measures would provide
a comprehensive view of the performance of the algorithms,
generating valuable information for deciding which alternative
to use for a given application.

Concerning the offloading levels, the task has a size of
300 bytes and is divided into two parts in 5 different ways
corresponding to the five levels in Table IV. Each level
contains information about the number of bytes sent to the
BS for processing (bandwidth) and the number of processing
cycles the sensor node needs to process the rest of the task.
As discussed in Section III, for the experiments to represent
conditions close to reality, neither the bandwidth nor the
processing cycles change linearly from one level to the next.
It is worth noting that at level 5, where the node sends the
entire task to the BS, a small amount of local processing of the
collected data is considered before sending it. This accounts
for the consumption associated with preparing the data for
transmission.

The simulation has a time-based structure defined by a Duty
Cycle (DC), which symbolises the maximum time required for
the BS to receive the order to execute a task, determine the
appropriate task offloading strategy, transmit the instructions
to the nodes, and finally complete the task and send it to the
BS. The simulation program iterates the DC K times, with K
being a configurable parameter.

In developing the algorithms’ execution method, as de-
scribed in section IV, there is a distinction between iterative
and metaheuristic approaches. The distinction comes from the
ability to adapt to the environment inherent to metaheuristic
methods. In contrast, iterative algorithms face difficulties in
considering the state of the nodes’ batteries in the search
for solutions, which could affect the network lifetime in
situations where there is inequality in the nodes’ batteries.
As noted above, the operation of the iterative algorithms
only updates the bandwidth allocation when the available
bandwidth changes and then performs the cyclic switching of
this solution to achieve an equal distribution of consumption,
as discussed in section IV.

The execution strategy followed by the metaheuristic al-
gorithms requests a new bandwidth allocation at each DC,
generated based on the number of nodes and their batteries,
which are updated after each cycle. This way, since the GAs
have variable-length chromosomes and the dimensions of the
search space in the PSO algorithms is an easily varied param-
eter, the metaheuristic algorithms can adapt to any failure in
the network’s nodes.

It is important to note that although this dynamic may
affect the ability of metaheuristics to achieve the minimum
standard deviation, it also makes them more attractive in
environments with dynamic networks, where the number of
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nodes in the network and their parameters may change during
its lifetime. In addition, when metaheuristic algorithms are
executed with the same method as the iterative algorithms, they
obtain identical average battery consumptions and differ from
the results shown in this work only in the standard deviation
of the batteries, which is zero for all algorithms.

In the light of the above, the following assumptions are
made:

• The first analysis is done with a 20-node network, which
is extended to 50 and 100 nodes in the following exper-
iments.

• Since the iterative algorithms do not take into account the
state of the network to obtain the offloading strategies,
it is decided to start from the most favourable situation
for the iterative algorithms. Therefore, all nodes have
the same initial battery, that of Table III. Moreover, in
this way, it is possible to see whether the metaheuristic
algorithms can outperform the iterative algorithms when
they compete in the most favourable conditions of the
latter.

• As previously stated, due to the BS not being exclu-
sively dedicated to the network, bandwidth is expected
to vary throughout its lifespan. Consequently, a diverse
set of scenarios is considered during the experimental
tests, generating data for 21 different bandwidths. These
bandwidths progressively increase from a minimum level,
where only 5% of the nodes can operate at the maximum
sending level (level 5), up to 95

• K is set to 100 DCs.
• The parameters of the genetic and particle swarm algo-

rithms are kept constant throughout the different network
analyses. The purpose of keeping the parameters constant
is to assess the scalability of the metaheuristic algorithms
when the network scales. In this way, the aim is to
determine the ability of the algorithms to maintain the
reduction in energy consumption when, already imple-
mented in a network, the number of nodes varies.

• The experimental results are displayed in three different
plots:

– Mean battery consumption.
– Standard deviation between the batteries of the net-

work after the execution for each bandwidth, to
measure the homogeneity of the battery consumption
solution.

– Average execution time of the algorithms.
The calibration of the parameters of the genetic algorithms

is crucial for optimal algorithm performance. Gibss et al. [41]
propose a series of methods that attempt to provide insight
into how to set these values. Of those described, the method
selected for this work is trial and error. The assumptions made
to establish the parameters of the GAs are as follows:

• Population size. The size of the population is a critical
factor in the performance of an algorithm. If the number
of individuals is too small, the algorithm may prematurely
converge to a sub-optimal solution. On the other hand, a
large population may lead to unnecessary computational
and resource usage without guaranteeing improvement

in results. After considering this trade-off, empirical
analysis has determined that a population size of 200
chromosomes is optimal for the problem at hand.

• Number of generations.The criticality of the number
of generations decreases when a termination condition is
included. The termination condition is set for all GAs so
that the algorithms stop generating new generations when
more than 80% of the chromosomes have the same fitness
or the algorithm has performed 100 generations to avoid
blockages in case the algorithm fails to find the optimal
solution.

• Mutation rate. The mutation rate on GAs is usually
set to low values, such as 0.01. However, experimental
findings indicate that setting the mutation rate to 0.1
significantly improves the average consumption and the
standard deviation. The value of the mutation rate has
been chosen considering the reduction of the mutated
individuals due to the bandwidth restriction.

As with genetic algorithms, the correct choice of parameters
is essential for particle swarm algorithms to achieve their full
potential. The values of the parameters for the PSO algorithms
are as follows:

• Particle number. The correct choice of the number of
particles is crucial for optimal performance. There is no
universal range for the number of particles, as this value
varies with the type and complexity of the algorithm.
However, many works follow the suggestion on [35].
They recommend using a population size between 20 and
50 particles. Piotrowski et al. [42] explore the impact of
swarm size on the performance of several variants of the
PSO algorithms. This work concludes that the range of
20 to 50 particles is relatively small for new variants of
PSO, which typically require larger populations of 70
to 500 particles. After carrying out the corresponding
tests with the presented algorithms and considering their
greater similarity to the classical PSO, it is concluded
that a population of 20 particles adequately satisfies the
stated objectives.

• Number of generations. As with genetic algorithms, the
importance of the number of generations is reduced sig-
nificantly by incorporating a termination condition. The
same condition has been chosen for the PSO, stopping
the execution when more than 80% of the particles are
in positions with the same fitness or when the algorithm
has completed 100 generations.

• Inertia weight, w. As discussed in section IV-C, the
inertia weight can either take a constant value or be
varied as a function of a linearly decreasing weight as
shown in Equation 11. The second approach has been
shown experimentally to be more efficient. Therefore, w
is determined to gradually decrease in value from 1.2 to
0.6 over the iterations of the PSO.

• Cognitive parameter (C1) and social parameter (C2).
The acceleration constants, C1 and C2, are set to 1.9
and 0.3, respectively. Empirical experimentation reveals
that lowering exploration (C1) can trap the algorithm in
local optima in the considered rugged search space while
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Fig. 7: Average consumption results for networks with varying available bandwidth.

increasing exploitation (C2) doesn’t enhance algorithm
performance.

VI. ANALYSIS AND INTERPRETATION OF EXPERIMENTAL
OUTCOMES

A. Mean Consumption Results
The average consumption results of the eight algorithms,

simulated across various bandwidths on networks with 20, 50,
and 100 nodes, are presented in Figure 7. Notably, distinguish-
ing between GA-M and GA-H in all plots is challenging due to
their nearly identical average consumption, attributed to both
algorithms sharing the same fitness function.

In contrast, comparing the maximum and minimum average
consumption values shown in Figure 7b, with the consumption
that would be obtained without offloading (all nodes at level
1), we obtain a relative percentage difference ranging from
4.24% to 134.5%, respectively. These results confirm that
computational offloading has the potential to be a strategic
method to decrease battery consumption in WSNs.

The IDA algorithm outperforms the rest when the bandwidth
is lower than 8175 bytes in the case of networks with 50 nodes.
This value represents a bandwidth in which 55% of the nodes
could be in level 5. The same result is obtained for 20 and
100-node networks, indicating that IDA’s bandwidth allocation
method works best when bandwidth is limited but becomes
less effective as bandwidth increases.

The cause of the lower performance of IIA for lower
bandwidths relies on its bandwidth allocation method. In
the solutions proposed by this algorithm, there is a higher
probability of having nodes at level 1, which is the one with
the highest consumption. For example, focusing on the results
for a 50-node network with a bandwidth of 4800 bytes, IIA
proposes a solution where two nodes occupy 200 bytes and
the rest 90 bytes at each DC, giving an average consumption
of 37.62 mAs not using the total available bandwidth. On the
other hand, IIA proposes that 16 nodes occupy the maximum
bandwidth, 300 bytes, and the rest compute the whole task
locally leading to an average consumption of 58.872mAs.
This means that IDA’s consumption is 37% lower than IIA’s
even though the latter uses the entire available bandwidth.
Therefore, achieving a fair bandwidth distribution is more
important than prioritizing the usage of the whole bandwidth.
The fact that the consumption of IIA improves with increasing
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Fig. 8: 50-node network: mean battery consumption of IDA
divided by PSO-H.

bandwidth, thereby making the distribution performed by this
algorithm more homogeneous, corroborates this observation.

In the case of the metaheuristic algorithms, it is noticeable
that, except for GA-LT and PSO-LT, they follow a decreasing
trend very close to linearity and tend to improve the IDA
algorithm as the bandwidth increases.

To appreciate the differences more precisely, the graph in
Figure 8 is generated. It represents the division of the average
consumption of IDA by PSO-H (the best metaheuristic) of
the 50-network results. A value lower than one indicates that
the consumption generated by IDA is greater than that of
PSO-H, and when it is greater than one, the opposite is true.
Focussing on the values, the minimum point of this graph
(0.797) indicates that IDA reduces the consumption generated
by IDA by 22.6% compared to PSO-H for this bandwidth,
while the maximum shows that PSO-H achieves consumption
39% lower than IDA when the bandwidth is greater, which
is a considerable improvement. The same process has been
followed for the networks with 20 and 100 nodes and the
results are practically identical.

GA-LT and PSO-LT, the algorithms whose fitness is the
network lifetime, lose linearity as the number of nodes and
bandwidth increase and stagnate above a certain bandwidth.
Raising the number of nodes adds complexity to the solutions,
and higher bandwidths expand the search space, making the
exploration of the solution more complex and causing the
algorithms to lose efficiency. Consequently, they get stuck in a
local-optimal solution and begin to plateau. The primary factor
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Fig. 9: 50-node network: mean battery consumption of IDA
divided by PSO-H.

contributing to the stagnation of local optima in evolution-
ary algorithms is parameterization. Since the parameters are
constant for all the algorithms, it can be inferred that the GA-
LT and PSO-LT algorithms demonstrate diminished scalability
compared to others. Furthermore, these findings can serve as
a reference for determining when to modify the algorithm
parameters. For instance, in a network consisting of 50 nodes,
adjusting the parameters would not be necessary if it is not
expected that the BS could share more than 10875 bytes.

The primary objective of metaheuristic algorithms incorpo-
rating fitness lifetime is not explicitly geared towards reducing
the average consumption. Consequently, the mean consump-
tion outcomes for these algorithms are relatively inferior
compared to alternative metaheuristics. Nonetheless, within
this subset, PSO-LT exhibits superior performance than GA-
LT.

Similarly, metaheuristic algorithms incorporating fitness
mean consumption exhibit analogous trends. Within this sub-
set, it is noticeable that PSO-M achieves a lower consumption
profile compared to GA-M and GA-H. This observation sug-
gests that PSO algorithms have a greater resilience against
becoming entrapped in local sub-optimal solutions.

Finally, the results obtained for the PSO-H are worth
highlighting. The graph shows that the PSO-H line is very
close to the GA-M, GA-H and PSO-M lines. The graphs in
Figure 9 are obtained using the same comparison procedure as
IDA and PSO-H. The results indicate that PSO-H, which has
a weighted fitness function in which the average consumption
weights 60%, obtains values that do not exceed 5.6% of those
algorithms whose fitness is represented exclusively by the
average consumption of the network. The graphs for 20 and
50-node networks are very similar with even lower maximum
values.

B. Standar Deviation results

Figure 10 illustrates the standard deviation results. Across
the three networks, each graph exhibits three distinguishable
ranges: iterative algorithms in the lower range, metaheuristics
with medium consumption fitness in the upper range, and
metaheuristics employing the network’s lifetime as fitness,
along with PSO-H, in the middle range.

The iterative algorithms have zero standard deviation, which
is an expected result since the execution method of these
algorithms forces this zero deviation.

The metaheuristics with the fitness set as average consump-
tion have the highest standard deviation. GA-M and PSO-M
do not include an explicit selection logic to maximise the
network’s lifetime. However, GA-H does when selecting the
elite individual, so a lower standard deviation is expected when
compared to GA-M, which is to some extent true for most
bandwidths, although the difference is relatively small. On the
other hand, the PSO-M has the lowest deviations in this range.

They follow a trend where the standard deviation increases
in the first few bandwidths and then decreases relatively
steadily. The fact that level 1 occupies 0 bytes of bandwidth
explains why at first, with low bandwidth, many nodes are
limited to that level, generating a low standard deviation. As
bandwidth increases, some nodes may move up to higher
levels, but still many remain at level 1, increasing variability
and standard deviation.

The transition in the slope around bandwidth 4500 in
networks of 50 and 9000 in networks of 100 coincides with
the point where all nodes can occupy level 2, which requires
90 bytes of bandwidth. This explains the change in the trend,
as there is now sufficient capacity for all nodes to access level
2, increasing the homogeneity of the solutions.

As bandwidth continues to increase, nodes have more space
to spread out over higher levels, which decreases dispersion
and contributes to more homogeneous solutions in terms of
average consumption.

Finally, metaheuristic algorithms that calculate their fitness
as the network’s lifetime occupy an intermediate range close
to that of the iterative ones. This indicates that the algorithms
meet their objective satisfactorily. The most outstanding result
is that of PSO-H, which weights the average lifetime of the
network by 0.4 and achieves values very close to PSO-LT and
GA-LT.

While examining the results across different simulated
networks, a noticeable trend emerges: as the number of
nodes increases, there is a corresponding rise in the obtained
values. This apparent escalation could be attributed to the
surge in complexity during the search for solutions. The
substantial increase in the number of nodes, coupled with the
unchanged algorithm parameters, heightens this complexity. It
is essential to highlight that this decision to maintain fixed
parameters aims to emulate a realistic scenario where nodes
are incrementally added to an existing network. Consequently,
these findings underline a critical consideration: to ensure
sustained efficiency, there should be an adaptation of algorithm
parameters when undergoing a substantial expansion in the
number of nodes.

C. Time Complexity Results

Time complexity is a crucial variable when considering
the feasibility of implementing an algorithm. This factor
defines the working cycle along with the maximum number of
tasks the network would be capable of executing. The results
presented in Figure 11 illustrate the average time the proposed
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Fig. 10: Standard deviation results for networks with varying available bandwidth.
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Fig. 11: Time complexity results for networks with varying available bandwidth.

algorithms have required to reach the optimal solution at each
DC. The results will be discussed comparatively since runtime
is closely related to the characteristics of the BS’s processor.
Additionally, in the case of metaheuristics, the convergence
to optimal solutions presents some randomness. This inherent
variability in metaheuristics can influence runtime, as the
search process does not follow a deterministic path.

In light of the lower complexity of iterative algorithms
compared to metaheuristics, the results indicate a higher tem-
poral efficiency of the former. In the domain of metaheuristic
algorithms, their complexity increases with the bandwidth
across all three networks, this increment varies considerably
from one algorithm to another. For instance, in simulations
conducted on 50-node networks, the time complexity of GA-
M increases by 318 % when the bandwidth escalates from 750
to 14,250 bytes. In contrast, the PSO-H algorithm maintains
a stable value throughout the bandwidths and experiences an
increase of 14%.

To analyse the effect of increasing the number of nodes
in the algorithms, if we compare the extreme case within a
network, that is, the algorithms working with the maximum
bandwidth tested, we observe that the execution time increases
by a factor of 9.4 when increasing the number of nodes from
20 to 100, with the GA-LT algorithm experiencing the greatest
increase among all the algorithms. On the contrary, in the case
of PSO-M, it has the smallest increase with a value of 4.6. In
general terms, it is observed that GA algorithms increase their
time complexity to a greater extent than PSO algorithms. This
may be related to the fact that there are fewer fluctuations in

the values of these algorithms compared to the GAs.
The constancy in the average runtime of the PSO algorithms

suggests the possibility that they do not reach the termination
condition, resulting in all experiments completing the same
number of generations. This phenomenon is closely related to
the adaptations made in the search space to ensure compliance
with the bandwidth restriction. However, as detailed in section
VI-A, it has been found that, despite these adaptations, PSO
algorithms manage to obtain solutions that generate lower
consumption compared to Genetic Algorithms.

D. Selection Guidelines

The selection of the most suitable algorithm for a given
application depends on the characteristics of the network and
the main objective to be achieved with the application of task
offloading. Among the proposed algorithms, some outperform
others in certain aspects at the cost of lower performance
in others. To visualize the strengths and weaknesses of each
of the algorithms and thus facilitate their selection for each
application, a comparative evaluation based on a scoring
system is carried out.

The assessment of the algorithms involves the evaluation of
five key aspects: their suitability in dynamic network contexts,
average consumption, standard deviation, execution time, and
adaptability to an increase in the number of network nodes.
Each of these aspects is assigned a score on a scale from one
to eight. Table V presents the results of this assessment, where
the following criteria are applied:
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• The scoring process for algorithms in terms of average
consumption, standard deviation, and execution time fol-
lows a systematic ranking system. Firstly, the results of
the algorithms for each bandwidth of a given network,
are arranged from best to worst. Initial scores are then as-
signed in descending order, ranging from 8 to 1 points. In
instances of tied performance among algorithms—where
multiple algorithms exhibit very similar results—the tied
group collectively receives the highest score within that
group. The subsequent algorithm in the original ranking
retains its initially assigned score. This scoring procedure
is iterated for each considered bandwidth, and the final
score for each algorithm across a specific network is
determined by calculating the average.

• Algorithms that consider the state of the batteries to
generate solutions were given a score of 8, indicating
their suitability for use in dynamic network contexts.
Conversely, those that do not take this aspect into account
received a score of 1 for this criterion.

• Scalability has been scored so that the algorithms that
maintain their tendencies throughout the different net-
works obtain 8 points, PSO-LT and GA-LT are given
4 points since they begin to stagnate on 50-node net-
works and GA-M and GA-H received 7 points because
they stagnate on the final bandwidths on the 100-node
network.

The results shown in Table V depict the average scores
derived from three networks. The total count of the points
obtained by each algorithm is carried out in a way that
ensures equal weight is given to each of the evaluated aspects.
The algorithms that have obtained the highest scores within
each category are highlighted in the table. These results
underline the overall outperformance of the multi-objective
implementation of the PSO-H algorithms.

Furthermore, in addition to being used to evaluate the algo-
rithms, observations of algorithm performance under different
bandwidth conditions provide valuable insight into the pre-
deployment sizing of the network and BS. An understanding
of the behaviour of the algorithms with different bandwidths
can help determine the optimal number of nodes based on
the bandwidth range of the selected edge device to ensure the
network’s longevity. Similarly, knowing the range in which
the network’s node count will fluctuate can establish the band-
width range needed to ensure the durability of the network.
In turn, this would guide the selection of an appropriate edge
device capable of providing these characteristics.

TABLE V: Algorithms score
IDA IIA GA-M GA-LT GA-H PSO-M PSO-LT PSO-H

Dynamic network 1 1 8 8 8 8 8 8
Mean Consumption 5.7 2.3 6.6 2.3 6.6 7.6 3 6.3
Standard deviation 8 8 1.8 5.2 2 2.5 5.9 5.2
Execution time 8 8 1 3.9 2.6 5.1 5.9 4.7
Scalability 8 8 7 4 7 8 4 8
Total 30.7 27.3 24.4 23.4 26.2 31.2 26.8 32.2

VII. CONCLUSIONS AND FURTHER RESEARCH

This work examines the benefits of task offloading in
resource-constrained wireless sensor networks. The primary

Fig. 12: Selection guidance chart of the task offloading
algorithms.

goal is to reduce node battery consumption by partially or
completely transferring computation tasks to a Base Station
(BS). Empirical results indicate that even the least efficient of-
floading strategy demonstrates a significant reduction in energy
consumption, affirming the overall efficacy of task offloading.
Evaluation of the different algorithms emphasizes the role of
selecting strategies tailored to specific application objectives.
However, when considering all the evaluated aspects, the
multi-objective approach of the PSO-H algorithm is partic-
ularly noteworthy. This study provides a valuable roadmap
for implementing offloading in wireless sensor networks, with
future research poised to refine and adapt these strategies in
response to the dynamic landscape of technological demands.

The study’s contributions extend beyond demonstrating the
efficacy of task offloading on WSN and underscore the impor-
tance of strategic selection aligned with specific application
goals. The multi-objective approach of the PSO-H algorithm
emerges as a notable contribution, providing a promising
direction for implementing offloading strategies in wireless
sensor networks.

As discussed in [43], Artificial Intelligence (AI) and Ma-
chine Learning (ML) methods have the potential to play an
essential role in decision-making in environments where task
offloading is applied. In particular, reinforcement learning, a
branch of AI, could be a powerful tool in this area. These
methods could be very useful to consolidate and analyse
the results obtained in our current research. Moreover, they
could pave the way for the development of an intelligent tool
capable of selecting the most suitable computational offload-
ing strategy according to the provided network parameters.
This perspective opens up new possibilities to automate and
optimise decision-making in the context of task offloading
in wireless sensor networks (WSN), thus improving their
efficiency and performance.
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computing architecture in the internet of things,” in 2018 IEEE 21st
international symposium on real-time distributed computing (ISORC).
IEEE, 2018, pp. 99–102.

[5] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[6] L. Wang, H. Shao, J. Li, X. Wen, and Z. Lu, “Optimal multi-user
computation offloading strategy for wireless powered sensor networks,”
IEEE Access, vol. 8, pp. 35 150–35 160, 2020.

[7] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda et al., “A line in the sand: A
wireless sensor network for target detection, classification, and tracking,”
Computer Networks, vol. 46, no. 5, pp. 605–634, 2004.

[8] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile networks and Applications,
vol. 18, pp. 129–140, 2013.

[9] P. Merino, G. Mujica, J. Señor, and J. Portilla, “A modular iot hardware
platform for distributed and secured extreme edge computing,” Electron-
ics, vol. 9, no. 3, p. 538, 2020.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM transactions
on networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[13] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[14] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, “A
survey of opportunistic offloading,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 2198–2236, 2018.

[15] M. A. Khan, “A survey of computation offloading strategies for perfor-
mance improvement of applications running on mobile devices,” Journal
of Network and Computer Applications, vol. 56, pp. 28–40, 2015.

[16] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the thirteenth ACM international symposium
on Mobile Ad Hoc Networking and Computing, 2012, pp. 145–154.

[17] M. H. ur Rehman, S. L. Chee, T. Y. Wah, A. Iqbal, and P. P. Jayaraman,
“Opportunistic computation offloading in mobile edge cloud computing
environments,” in 2016 17th IEEE International Conference on Mobile
Data Management (MDM), vol. 1. IEEE, 2016, pp. 208–213.

[18] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge
devices,” in 2016 IEEE 3rd world forum on internet of things (WF-IoT).
IEEE, 2016, pp. 7–12.

[19] F. Xu, H. Ye, F. Yang, and C. Zhao, “Software defined mission-critical
wireless sensor network: Architecture and edge offloading strategy,”
IEEE Access, vol. 7, pp. 10 383–10 391, 2019.

[20] P. Rong and M. Pedram, “Extending the lifetime of a network of battery-
powered mobile devices by remote processing: a markovian decision-
based approach,” in Proceedings of the 40th annual Design Automation
Conference, 2003, pp. 906–911.

[21] Z. Li and Q. Zhu, “Genetic algorithm-based optimization of offloading
and resource allocation in mobile-edge computing,” Information, vol. 11,
no. 2, p. 83, 2020.

[22] S. Fu, C. Ding, and P. Jiang, “Computational offloading of service
workflow in mobile edge computing,” Information, vol. 13, no. 7, p.
348, 2022.

[23] H. Ramalhinho Lourenco and D. Serra, “Adaptive search heuristics for
the generalized assignment problem,” Mathware & soft computing. 2002
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