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Abstract— Shoulder rehabilitation is 
considered one of the most effective 
treatments for restoring functional 
abilities, reducing shoulder pain, and 
enabling the leading of an active life, 
improving mobility, strength, and 
endurance. However, the burdens of 
travel and time may prevent patients 
from taking part in such rehabilitation 
programs. The increased availability of 
wearable sensors and the development 
of machine learning (ML) algorithm has shown the feasibility of remote home-based rehabilitation therapy. In this 
study, we proposed a wearable system based on 3 magneto-inertial sensors to classify shoulder rehabilitation 
exercises. The classification has been performed by 5 different supervised ML algorithms (i.e., k-Nearest Neighbours, 
Support Vector Machine, Naïve Bayes, Decision Tree, and Random Forest) to find out the most performant one. 

The feasibility of the wearable system was assessed on nineteen healthy subjects during six rehabilitation exercises. 
Each exercise was performed six times, for a total of 684 samples. The data were analysed and classified using the 
five mentioned classification models. Performances of the algorithms in accurately classifying exercise activity were 
evaluated with the k-fold cross-validation method and the nested validation method. The results demonstrated the 
effectiveness of the proposed algorithms in recognizing all the exercises. Features derived from acceleration, angular 
velocity, and orientation data were shown to reach the optimal predictive accuracies. Future work should focus on 
evaluating the performance of such systems on data acquired on patients with musculoskeletal disorders and on the 
inclusion of more shoulder rehabilitation exercises in the protocol. 

 
Index Terms— Activity recognition, classification, inertial measurement unit, machine learning, rehabilitation exercises, 

shoulder, wearable sensors. 

 

 

I.  INTRODUCTION 

HOULDER disorders (SD) represents the most 

frequently reported musculoskeletal disorders, entailing 

pain, reduced functionalities, and a decreased quality of life 

[1]. An adequate rehabilitation protocol represents the 

primary therapeutic protocol to guarantee the return of 

complete shoulder function [2], [3], [4]. Different treatments 

methods exist to execute medical rehabilitation. Among these, 

physical therapy, also known as physiotherapy, aims to restore 
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functional abilities, enable the leading of an active life, 

improving mobility, strength and endurance [5], [6]. 

Traditional shoulder rehabilitation methods consist of a 

therapist-patient one-to-one activity, and on the execution of 

physical exercises [7]. Physical therapists actively monitor 

and direct patients through their rehabilitation process while 

they are in a hospital or clinical setting [6]. The traditional 

rehabilitation process is time-consuming, requires going 

directly to the physiotherapy centre for each session, is 

restricted by the availability of trained clinicians and places a 
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significant economic burden on patients [8]. Therefore, the 

effectiveness of rehabilitation is primarily dependent on the 

       ’            ,                        y   v     y    

factors [8]. Considering the increasing incidence of SD and 

progressive population ageing, during the last decades there is 

a demand for an efficient home-based rehabilitation therapy 

[9]. Patients perform the prescribed treatment independently 

in their home environment. However, unlike sessions 

conducted under the supervision of a therapist, successful self-

home therapy demands a significant increase in commitment 

from the patients [6]. According to the European 

Musculoskeletal Conditions Surveillance and Information 

Network, the breakthrough for an effective treatment of 

muscular skeletal disorders is the proactive participation of 

the patient. Challenges that impact the effectiveness of home-

based programs include adherence to the prescribed 

rehabilitation program, and exercise correctness. Evidence 

suggests that patients often do not fully comply to the 

prescribed program of exercise [6], [10]. Consequences of a 

non-adherence to the prescribed rehabilitation program are the 

prolongation of the duration of treatment and the risk of 

relapse. Additionally, without the supervision of their 

therapist, many patients perform their exercises incorrectly 

[6], [11]. Therefore, objective and quantitative assessment of 

adherence to exercise programs and of exercise performance 

are necessary to improve rehabilitation outcomes [12], [13]. 

Quantitatively assessing adherence and the execution of 

exercises offers several advantages in monitoring and 

improving the overall efficacy of rehabilitative treatments. 

Such measures enable clinicians to evaluate the extent to 

which patients are adhering to therapeutic prescriptions, 

allowing timely interventions to provide feedback, patient 

engagement, and adjustments to the ongoing rehabilitation 

program based on individual needs. A variety of sensors have 

been introduced to address the demand for gathering objective 

data of movement quality in the home settings (see Fig. 1) 

[14], [15]. However, most of them are often not suitable for 

home-based rehabilitation [16], [17]. Optical sensors are 

widely used to monitor human activities, but the effective use 

of these systems is not practical in many indoor environments 

since they suffer from lighting variations, environmental 

occlusion and space constraints [18], [19]. Nowadays, 

wearable systems can be directly attached to the user ensuring 

all-time data collection [13], [20], [21], [22], [23], [24]. These 

solutions may allow the tracking of patient functioning and 

recovery during rehabilitation protocol [25]. Among several 

sensors, magneto-inertial measurement units (M-IMUs) are 

spreading to develop wearable systems since they are 

portable, inexpensive, and unobtrusive [1], [21], [26], [27]. 

Data recorded by IMUs components (e.g., accelerometers 

[28], [29], [30], [31], a combination of accelerometers and 

gyroscopes [17], [24], [32], [33] , orientation data [32], [34], 

[35], [36])  are used to the automatic detection of physical 

activities with different algorithms . Regarding applications to 

shoulder motion, several studies had used Machine Learning 

(ML) algorithms based on M-IMU ’      [11], [16], [17]. 

Heterogeneity among studies is relative to the type, the 

number and the placement location of the sensors on the 

human body, as well as the executed shoulder exercises and 

the implemented ML algorithms [37]. Regarding the set of 

exercises executed, only a few movements have been 

investigated. Some studies limit their analysis only to planar 

motion movements, such as flexion/extension [29], [33], [38], 

[39], [40], abduction/adduction [29], [33], [38], [40], 

internal/external rotations [29], [36], [38], [40],; instead, other 

studies include also more complex functional tasks, such as 

touch ear, use fingers to climb wall, pendulum, hand-to-back 

[28], [33], [36], [38], [39], [40]. However, it is still 

challenging to recognize the exercise performed by the 

subjects in unstructured environment. 

The objective of this study is to combine a custom wearable 

system based on 3 M-IMUs with supervised ML algorithms to 

classify six of the most relevant exercises in shoulder 

rehabilitation [41]. The innovative configuration of the 

proposed wearable system allowed for a comfortable solution 

with an easy and fast setup, offering a practical solution for 

monitoring shoulder rehabilitation sessions. To understand 

how the selected algorithm influences the performance of the 

system in terms of exercise classification, we analised the 

experimental data recorded on nineteen subjects performing 

six exercises of shoulder rehabilitation with 5 ML algorithms 

(i.e., k-Nearest Neighbours, Support Vector Machine, Naïve 

Bayes, Decision Tree, and Random Forest). This study poses 

the bases for the possible application of the proposed system 

for monitoring home-based rehabilitation sessions. The ease 

of setup and modularity of the proposed system enhance the 

patient's ability to self-position the sensing units without 

requiring operator support. In the future, this solution may 

provide complete and useful data to the clinicians to monitor 

patient progress remotely, correct the ongoing rehabilitation 

process if needed. This enables to customize rehabilitation 

programs based on individual patient needs, improving the 

        ’         . 

The paper is structured as follows: Section 2 describes the 

experimental setup used, the dataset, and the human activity 

recognition workflow; Section 3 present the results; and 

Section 4 discuss the results and concludes the paper. 

 

 

 
Fig. 1.  Wearable sensors for rehabilitation purpose. 
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II. METHODS AND MATERIALS 

A. M-IMU Based Wearable System 

A wearable system equipped with three M-IMUs (Xsens 

DOT, Xsens Technologies, Enschede, the Netherlands) has 

been used in this study [42]. Each Xsens DOT incorporates 3D-

gyroscopes, accelerometers, and magnetometers. Xsens DOTs 

are small (36.3 x 30.4 x 10.8 mm - length x width x height), 

lightweight (10.8 g), and wireless sensors. The embedded 

processor in the sensors handles sampling, calibration, and 

Strap-Down Integration (SDI) of inertial data. Raw data are 

initially collected at high frequency, and then down sampled to 

60 Hz for transmission. 

The Xsens DOTs communicated wirelessly via Bluetooth 5.0 

with a smartphone (OnePlus 8T - 8GB RAM + 128GB ROM, 

processor Snapdragon™865) running the Xsens DOT App for 

Android. Synchronization of the sensors is initiated through the 

application, requiring approximately 14 seconds. This process 

ensures that all sensor data are accurately time-synchronized to 

a common sensor time base. 

The wearable system is characterized by an easy and fast 

setup. The three M-IMUs were fastened to body districts using 

elastic straps provided by Xsens to ensure reliable positioning 

by preventing slippage with the underlying skin. Each sensor 

was firstly placed horizontally inside the pocket of the 

corresponding strap, with the Y-axis pointing upwards. Then 

the three straps were wrapped around the segments of interest. 

Fig. 2 shows the final positions of the sensors in the wearable 

system. One sensor was positioned on the thorax over the flat 

portion of sternum, with the Y-axis pointing upward cranially, 

the Z-axis pointing away from the body, and the X-axis pointing 

laterally to the left. Another sensor was placed slightly posterior 

on the upper arm near the elbow, with the Y-axis pointing 

upward, the X-axis pointing laterally to the right, and the Z-axis 

to complete the right-handed coordinate system. The remaining 

sensor was placed on the forearm's dorsal side near the wrist, 

with the Y-axis pointing upward, the X-axis pointing away 

from the body, and the Z-axis pointing laterally to complete the 

right-handed coordinate system. 

 

 
Fig. 2.  Xsens DOT placement. The three straps were wrapped around 
the segments of interest. The circles show the coordinate systems of the 
three sensors: red, green, and blue arrows represent X-axis, Y-axis, and 
Z-axis, respectively. The dot indicates an outgoing arrow, while the cross 
indicates an incoming arrow. 

B. Experimental Protocol 

Nineteen healthy volunteers (5 male and 14 female) with no 

shoulder musculoskeletal disorders were enrolled in this study 

All participants were right-handed. The characteristics of the 

younger cohort are (mean ± standard deviation): age, 25.2 ±1.7 

years; height, 167. 9 ± 8.5 cm; weight, 61.6 ± 11.9 kg. 

Specifically, for female volunteers, the age ranged from 23 to 

28 years, the height from 156 to 170 cm, and the weight from 

46 to 80 kg. Instead, for male volunteers, the age ranged from 

24 to 26 years, the height from 170 to 187 cm, and the weight 

from 60 to 88 kg. 

The experiments have been carried out at the biomechanical 

laboratory of the Fondazione Policlinico Universitario Campus 

Bio-Medico of Rome. Before experimental sessions, all 

volunteers read and signed an informed consent approved by 

the Ethical Committee of University Campus Bio-Medico of 

Rome (protocol code: 09/19 OSS ComEt UCBM). Then, the 

volunteers were instructed on the protocol consisting of a static 

trial and six dynamic tasks. The static recording, known as N-

pose, corresponds to an anatomic stance with the arms at the 

sides and the palms of the hands facing internally (Fig. 3). Six 

shoulder rehabilitation exercises were selected from the 

guidelines developed by the American Society of Shoulder and 

Elbow Therapists [41]: Task 1) upright active 

flexion/extension; Task 2) upright active flexion/extension with 

a weight (2 kg); Task 3) external rotation with the shoulder at 

90° of adduction, holding a weight (2 kg); Task 4) towel slide; 

Task 5) external/internal rotation self-assisted with a stick; Task 

6) abduction/adduction (see Table I). Under supervision, each 

subject was required to complete six consecutive repetitions of 

each task at a comfortable and self-selected speed. Therefore, a 

total of 684 shoulder movements (19 subjects x 6 tasks x 6 

repetitions) were analysed. 

C. Data Analysis 

The data analysis was performed offline in MATLAB 

environment (version R2022b, TheMathWorks® Inc., Natick, 

MA, USA). The ML approach is composed of the following 

steps: 1) signal pre-processing, 2) signal segmentation and 

labelling, 3) features extraction, 4) features standardization and 

selection, and 5) classification and validation. 

 

 
Fig. 3.  N-pose: anatomic stance with arms along the sides, and the 
palms of the hands facing internally. (a) Frontal view; (b) Right side view. 
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TABLE I 
SHOULDER PHYSIOTHERAPY EXERCISES FOR DATA COLLECTION 

Task ID Shoulder Task Abbreviation 

1 Flexion/extension without a weight FE 

2 Flexion/extension with a weight (2 kg) FEd 

3 
External rotation with the shoulder at 90° of 

adduction, holding a weight (2 kg) 
ERs 

4 Towel slide SL 

5 
External/internal rotation self-assisted with a 

stick 
EIR 

6 Abduction/adduction AA 

 
1) Pre-processing 

The data of delta angle, delta velocity, and 3D orientation 

(expressed by quaternions) were collected with a sampling 

frequency of 60 Hz. A low pass fifth order Butterworth filter 

with a cut off frequency of 2 Hz was applied to delta angle and 

delta velocity data to remove high-frequency noise. Angular 

velocity and acceleration were obtained from the filtered data 

of delta angle and delta velocity, respectively. 

 
2) Calibration and Euler angle estimation 

To estimate joint angles, it is necessary to measure the 

relative orientation of two adjacent body segments forming the 

joint [43]. The output quaternion from each M-IMU represents 

the orientation of the sensor coordinate system with respect to 

the Local Earth-fixed reference coordinate system. These 

outputs cannot be converted into clinically interpretable data 

because the coordinate frames of the sensors are not aligned 

with the anatomical coordinate frame of the respective body 

segment to which they are attached [26], [27]. The aim of the 

sensor-to-segment calibration is to express the relative 

orientation of each sensor to the segment to which it is attached 

[44]. In this study, the static sensor-to-segment calibration 

algorithm was performed by preprocessing data acquired from 

Xsens DOTs over the static N-pose acquisition [43], [45]. After 

the calibration quaternions have been calculated, joint rotations 

were estimated as the relative orientation of two adjacent body 

segments [23]. Specifically, humerothoracic (HT) joint angles 

were defined as the orientation of the humerus body segment 

relative to the thorax body segment, whereas elbow joint angles 

were defined as the orientation of the forearm body segment 

relative to humerus body segment [46]. Subsequently, a 

conversion from quaternion to rotation angles was performed 

using different Euler rotation sequences. The HT joint angles 

were evaluated using the Cardan sequence XZY for Task 6, and 

the Cardan sequence ZXY for all the other tasks [47]. Whereas 

the elbow joint angles were assessed using the Cardan sequence 

ZXY during all the exercises [27]. 

 
3) Signal Segmentation and Labelling 

A manual segmentation was firstly performed to isolate 

every single repetition performed by each subject. The signal 

considered in subsequent analysis was the one between the 

beginning of each repetition of the movement and the end of the 

same repetition (Fig. 4). Each isolated repetition of each task 

was considered as a sample, resulting 684 overall (114 samples 

for each task). Since a supervised learning was implemented, a 

unique label was attributed to each sample (see Table I): FE for 

Task 1, FEd for Task 2, ERs for Task 3, SL for Task 4, EIR for 

Task 5, and AA for Task 6, providing six activity classes in 

total. 

 
4) Features Extraction 

Afterward, a feature extraction process was performed, 

which consist of providing the most relevant information that 

will have a crucial role in the classification process [48]. 

Specifically, the following features were extracted: variance, 

mean, standard deviation, median, maximum value, minimum 

value, range, root mean square, interquartile range (between 

25th and 75th percentiles), correlation coefficient, kurtosis, and 

skewness. These calculations were automated and carried out 

for each sample. Since one of the goals is to show and compare 

the effectiveness of different data in human activity recognition 

when they are used separately, these features were extracted 

from the triaxial accelerometer data, the triaxial gyroscope data, 

the quaternion data, and from the Euler Angles of 

humerothoracic and elbow joints. 

 

 

 
Fig. 4.  Signal segmentation of: (a) quaternion data, (b) accelerometer data, (c) angular velocity data, (d) Euler angles of humerothoracic joint, (e) 
Euler angles of elbow joint, acquired by forearm M-IMU during the six repetitions of Task 1. 
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5) Features Standardization and Selection 

Then, features standardization was conducted according to 

(1), so they were scaled to zero mean and unit variance. 

Standardization allows all features contribute equally to the 

classification process. 

𝑥′ =
𝑥 − μ

σ
(1) 

where x and x' are the original and normalized features, 

respectively, and μ and σ are the mean and standard deviation 

of the x signals, respectively. Feature selection constitutes an 

essential phase for improving classification accuracy [33], [48]. 

Although all the features could be useful to represent the data, 

it is not a good procedure to employ a large number of features. 

The objective of features selection is to identify a subset of 

relevant features which are highly informative regarding 

classification process, and eliminate irrelevant and redundant 

attributes. This involves reducing the complexity of the model, 

obtaining good generalization to avoid overfitting and avoid the 

curse of dimensionality [6], [49]. The Relief-F feature filtering 

method was implemented in this study to determine the most 

appropriate feature sets. This algorithm assigns a weight value 

W to each feature depending on how well its value distinguish 

between instances, and it ranks them according to feature 

relevance scores [38], [49]. After the setting of an empirical 

threshold, only features that have a weight greater than it are 

selected, whereas those below the threshold are excluded. 

 
6) Classification and Validation Method 

The classifiers chosen for this study represent a range of 

supervised machine learning models successfully implemented 

in previous shoulder motion classification studies. The five 

supervised machine learning classification models were: k-

Nearest Neighbours (k-NN), Support Vector Machine (SVM) 

extended for multiple class classification scenario (using the 

one-versus-one method), Naïve Bayes (NB), Decision Tree 

(DT), and Random Forest (RF) with an ensemble of 180 trees 

[50], [51]. 

The entire dataset was divided into two portions, a training 

part (90% of the dataset) and a test part (10% of the dataset). 

The data of the remaining 10% of the dataset (2 subjects) were 

extracted to further validate effectiveness of the classification 

models. The training of the classifiers on the other 17 subjects 

was performed using two different validation methods. K-folds 

cross validation (CV) randomly distributes all labelled samples 

into K folds of equal size [52]. Stratification was employed to 

assure each fold was representative of the cohort. Training is 

performed on data contained within K-1 folds, and testing is 

performed on the remaining fold. This process is repeated K 

times, to ensure all data is used for training and testing once. At 

the end, the K results obtained for all the experiments were 

averaged to provide a single estimation of training 

performances (Fig. 5). Nested cross validation (NCV), also 

known as double cross-validation, consists of splitting data into 

K outer folds: each fold is held out for the test, while the 

remaining K-1 folds are merged and further split obtaining a 

sub-training and validation datasets (Fig. 6). Within each of 

these sub-folds, the classification models are trained on the sub-

training dataset and tested on the validation dataset. Then, the 

best subset of features with the best performance across the 

validation datasets is selected and used to train the classification 

model on the entire set of the outer training dataset. The model 

is then tested on the outer testing dataset [49], [52]. 

 

 
Fig. 5.  K-folds cross validation. Split the data (90% of the entire dataset) 
into K folds (K = 5 as example). Training is performed on data of K-1 
folds, and testing is performed on the remaining fold. 

 

 
Fig. 6.  Nested cross validation. Split the data (90% of the entire dataset) 
into K outer folds (K = 5 as example). Then, all the K-1 folds are merged 
and split into inner folds (5 inner folds as example). Feature selection 
and training are performed using the inner sub-training folds, and testing 
is performed on the remaining inner fold. Use the best inner training 
model including features extracted for train the classification model on 
the entire outer training dataset and test on the outer testing fold. 

 
7) Performance Metrics 

A confusion matrix (CM) is a table that enables the 

v      z                       ’                        y        

label of a test set for which the true labels are knows. The rows 

of the CM correspond to the true classes, whereas the columns 

correspond to the predicted classes. The diagonal cells represent 

those samples that are correctly classified, while the off-

diagonal values are the incorrectly classified samples. In 

particular: TP is true positive, which represents the number of 

positive observations that were predicted as positive by the 

model; FP is false positive, which represents the number of 

negative observations that have been predicted as positive by 

the model; FN is false negative, which represents the number of 

positive observations that were predicted as negative by the 

model; TN is true negative, which represents the number of 

negative observations that were predicted as negative by the 

model [53]. 

The classification performances of the models were assessed 

in terms of different metrics, which are based on the CM. The 

quality measures evaluated were accuracy (Acc), both overall 

and balanced, specificity (Sp), sensitivity (Se) or recall, 

precision (Pr). Accuracy measures the overall effectiveness of 

a classifier, and is computed as the ratio of correctly classified 

samples and the total numbers of samples. Specificity measures 

the ability of the classifier to detect negative labels, whereas the 

sensitivity measures the ability of the classifier to detect a 

desired label [6]. 

In addition, the Fβ-score was also calculated and defined as 

follows: 
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𝐹𝛽𝑠𝑐𝑜𝑟𝑒 =
(1 + 𝛽2) ∙  (Pr ∙ Se)

(𝑃𝑟 + 𝑆𝑒)
(2) 

In (2), 𝛽 is a weighting factor that controls the degree of 

importance of sensitivity and precision. This parameter is a 

positive real number. In this paper 𝛽 was set equal to 1, to give 

the same importance to both sensitivity and precision. 

Other metrics, including the Matthews correlation coefficient 

(MCC), the Fowlkes–Mallows index, the Youden index (or 

informedness), the Prevalence Threshold (PT), were also 

computed to provide a more comprehensive assessment of the 

model's performance [54], [55]. 

Furthermore, the Receiver Operating Characteristic (ROC) 

curve provides a graphical representation of the classification 

performances [56], [57]. It represents the relation between the 

false positive rate (FPR) and the true positive rate (TPR), that 

can be calculated from the sensitivity and the specificity: 

𝐹𝑃𝑅 = 1 − 𝑆𝑝 (3) 

𝑇𝑃𝑅 = 𝑆𝑒 (4) 

It has been demonstrated that the area under the ROC curve 

(AUC) is an excellent indicator of the classification 

performance, because it visualizes classifier performance as a 

curve rather than a single scalar number, which conveys more 

information than many scoring measures. 

III. RESULTS 

The implementation of the Relief-F algorithm as feature 

selection method involves the setting of a threshold. The features 

with a weight superior to this threshold are selected, whereas all 

features lower the threshold are excluded. 

In general, the higher the threshold, the lower the number of 

selected features. To examine the impact of the number of the 

features on the performance of motion recognition of the shoulder 

exercises, different experiments were executed including a 

different number of features. Starting from a low threshold value, 

this was incremented by 0.010. The performance of all the 

classifiers were evaluated for each i-th iteration. Fig. 7 shows the 

relationship between the number of retained features at each 

iteration and the accuracy values of the five classification models. 

The trends for all the classifiers are generally similar. An increase 

in number of features implicates an increase on the classification 

accuracy of all the classifiers. At the end, the threshold was set at 

0.09 because the further addition of features did not provide great 

improvement to the classifiers’ performance. 

Accurate classification of shoulder exercises is reliant on 

suitable type of sensor data. To figure out the most accurate sensor 

data for activities’ recognition, a comparison was made between 

results obtained with different set of features as input. Table II and 

Table III summarize respectively the performances employing 

features extracted from acceleration, angular velocity, and 

quaternion data and employing features extracted from Euler 

angles of the humerothoracic and elbow joints. Then, the averages 

of these metrics were calculated considering all the classifiers 

(Table IV). 

 
Fig. 7.  Relationship between the features selected by Relief-F 
algorithm at different threshold’s values and classifier accuracies. 
SVM = Support Vector Machine, k-NN = k-Nearest Neighbors, NB = 
Naïve Bayes, DT = Decision Tree, RF = Random Forest. 

 

 
 

TABLE II 
METRICS OF PERFORMANCE USING FEATURES EXTRACTED FROM ACCELERATION, ANGULAR VELOCITY, AND QUATERNION DATA, IMPLEMENTING 5 FOLDS 

CROSS VALIDATION 

Classifier 
Overall 

Accuracy 

Balanced 

Accuracy 
F1 score Sensitivity Specificity Precision MCC FM PT Youden 

k-NN 0.8472 0.9083 0.8355 0.8472 0.9694 0.8420 0.8214 0.8400 0.1157 0.8167 

SVM 0.9306 0.9583 0.9304 0.9306 0.9861 0.9312 0.9169 0.9307 0.0618 0.9167 

NB 0.9444 0.9667 0.9429 0.9444 0.9889 0.9583 0.9368 0.9471 0.0342 0.9333 

DT 0.9444 0.9667 0.9459 0.9444 0.9889 0.9312 0.9836 0.9864 0.0342 0.9333 

RF 0.9861 0.9917 0.9861 0.9861 0.9972 0.9872 0.8681 0.8881 0.0191 0.9833 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB = NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 

 
TABLE III 

METRICS OF PERFORMANCE USING FEATURES EXTRACTED FROM EULER ANGLES DATA OF THE HUMEROTHORACIC AND ELBOW JOINTS, IMPLEMENTING 5 

FOLDS CROSS VALIDATION 

Classifier 
Overall 

Accuracy 
Balanced 
Accuracy 

F1 score Sensitivity Specificity Precision MCC FM PT Youden 

k-NN 0.7222 0.8333 0.6732 0.7222 0.9444 0.6830 0.6882 0.6875 0.2628 0.6667 

SVM 0.7500 0.85 0.7444 0.7500 0.9500 0.7778 0.7059 0.7539 0.1431 0.7 

NB 0.6389 0.7833 0.5820 0.6389 0.9278 0.5548 0.5871 0.5892 0.1672 0.5667 

DT 0.6250 0.775 0.6134 0.6250 0.9250 0.7778 0.5567 0.6316 0.1125 0.55 

RF 0.7778 0.8667 0.7690 0.7778 0.9556 0.8125 0.7466 0.7817 0.1620 0.7333 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB = NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 
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The use of inertial data obtained 93.05% of overall accuracy, 

92.82% of F1 score, 93.05% sensitivity, 98.61% specificity, and 

93% precision. Instead, the use of Euler angles obtained lower 

values, i.e., 70.28% of overall accuracy, 67.64% of F1 score, 

70.28% sensitivity, 94.06% specificity, and 72.12% precision. 

To better investigate the approach of using the features 

extracted from acceleration, angular velocity, and quaternion 

data as input to the classifiers, a comparison of the 

performances was carried out implementing different validation 

methods: 5-folds cross validation, 10-folds cross validation, and 

the nested cross validation (with 10 inner and outer folds). 

Table II, Table V, and Table VI detailed the performance 

metrics for each classifier with all these validation methods. 

High values of average performance metrics were obtained in 

every cases. Results point out that the employed classification 

protocol is efficient at recognizing the six shoulder exercises 

with overall accuracies values ranging between 84.72% and 

98.61% implementing the 5 folds CV, between 83.33% and 

100% implementing the 10 folds CV, and between 87.50% and 

100% implementing the nested cross validation. 

In addition, Table VII, Table VIII, and Table IX compares the 

accuracies in classifying each class separately, and then the 

averages of those values. Fig. 8, Fig. 9 and Fig. 10 show the 

related confusion matrices, whereas Fig. 11, Fig. 12 and Fig. 13 

show the ROC curves graphs and the related values of the areas 

under the curve of all the classifiers. 

Fig. 14 shows the features extracted with the proposed 

feature selection method. The three different columns indicate 

how many features are related to which data. In terms of 

percentage, by averaging the values obtained from the three 

validation methods, the Relief-F algorithm selected the 53.67% 

of features from the quaternion data, followed by the 42.33% of 

features extracted from acceleration data. Only the 4% of the 

features were the ones related to angular velocity data. 

 

 

 

 

 
TABLE IV 

OVERALL METRICS OF PERFORMANCE USING DIFFERENT FEATURES SETS 

Type Data 
Overall 

Accuracy 
Balanced 
Accuracy 

F1 score Sensitivity Specificity Precision MCC FM PT Youden 

Acceleration + angular 

velocity + quaternion 
0.9305 0.9583 0.9282 0.9305 0.9861 0.9300 0.9054 0.9185 0.053 0.9167 

Euler angles 0.7028 0.8217 0.6764 0.7028 0.9406 0.7212 0.6569 0.6888 0.1695 0.6433 

 

 
TABLE V 

PERFORMANCE METRICS FOR EACH CLASSIFIER AND FOR ALL THE TASKS PERFORMED USING 10-FOLD CROSS VALIDATION METHOD. 

Classifier 
Overall 

Accuracy 

Balanced 

Accuracy 
F1 score Sensitivity Specificity Precision MCC FM PT Youden 

k-NN 0.8750 0.925 0.8669 0.8750 0.9750 0.8797 0.8550 0.8721 0.0979 0.85 

SVM 0.8889 0.9333 0.8881 0.8889 0.9778 0.8905 0.8675 0.8889 0.0794 0.8667 

NB 0.9444 0.9667 0.9429 0.9444 0.9889 0.9583 0.9368 0.9471 0.0342 0.9333 

DT 0.8333 0.9 0.8205 0.8333 0.9667 0.8905 0.8139 0.8383 0.0824 0.8 

RF 1 1 1 1 1 1 1 1 0 1 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB = NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 
 

TABLE VI 
PERFORMANCE METRICS FOR EACH CLASSIFIER AND FOR ALL THE TASKS PERFORMED USING THE NESTED CROSS VALIDATION METHOD (WITH 10 INNER 

AND OUTER FOLDS). 

Classifier 
Overall 

Accuracy 

Balanced 

Accuracy 
F1 score Sensitivity Specificity Precision MCC FM PT Youden 

k-NN 0.8750 0.925 0.8669 0.8750 0.9750 0.8797 0.8550 0.8721 0.0979 0.85 

SVM 0.8750 0.925 0.8730 0.8750 0.9750 0.8778 0.8518 0.8747 0.0846 0.85 

NB 0.9444 0.9667 0.9429 0.9444 0.9889 0.9583 0.9368 0.9471 0.0342 0.9333 

DT 0.8750 0.925 0.8655 0.8750 0.9750 0.8778 0.8556 0.8728 0.0964 0.85 

RF 1 1 1 1 1 1 1 1 0 1 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB = NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 
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Fig. 8.  Confusion matrices for activity recognition using the 5 folds cross validation. Shoulder exercises are as follow, 1: flexion/extension without a 
weight; 2: flexion/extension with a weight; 3: External rotation with the shoulder at 90° of adduction, holding a weight (2 kg); 4: Towel slide; 5: 
External/internal rotation self-assisted with a stick; 6: Abduction/adduction. (a), (b), (c), (d), and (e) represent confusion matrices for the kNN 
classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 

 

 
Fig. 9.  Confusion matrices for activity recognition using the 10 folds cross validation. Shoulder exercises are as follow, 1: flexion/extension without 
a weight; 2: flexion/extension with a weight; 3: External rotation with the shoulder at 90° of adduction, holding a weight (2 kg); 4: Towel slide; 5: 
External/internal rotation self-assisted with a stick; 6: Abduction/adduction. (a), (b), (c), (d), and (e) represent confusion matrices for the kNN 
classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 

 

 
Fig. 10.  Confusion matrices for activity recognition using the nested cross validation (with 10 inner and outer folds). Shoulder exercises are as 
follow, 1: flexion/extension without a weight; 2: flexion/extension with a weight; 3: External rotation with the shoulder at 90° of adduction, holding a 
weight (2 kg); 4: Towel slide; 5: External/internal rotation self-assisted with a stick; 6: Abduction/adduction. (a), (b), (c), (d), and (e) represent 
confusion matrices for the kNN classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 

 

 
Fig. 11.  ROC curves and areas under the curves (AUC) values using the 5 folds cross validation. (a), (b), (c), (d), and (e) represent ROC curves for 
the kNN classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 
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Fig. 12.  ROC curves and areas under the curves (AUC) values using the 10 folds cross validation. (a), (b), (c), (d), and (e) represent ROC curves 
for the kNN classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 

 

 
Fig. 13.  ROC curves and areas under the curves (AUC) values using the nested cross validation (with 10 inner and outer folds). (a), (b), (c), (d), 
and (e) represent ROC curves for the kNN classifier, SVM classifier, NB classifier, DT classifier, and RF classifier, respectively. 

 

 

 
Fig. 14.  Percentage of selected features with the Relief-F algorithm. In 
sequence, from left to right: implementing 5 folds cross validation, 
implementing 10 folds cross validation, and implementing nested cross 
validation (10 inner and outer folds). 
 

TABLE VII 
RECOGNITION ACCURACY FOR ALL 6 SHOULDER EXERCISES IMPLEMENTING 

5-FOLD CROSS VALIDATION METHOD. 

Classifier FE FEd ERs SL EIR AA 
Averaged 

accuracy 

k-NN 0.8472 0.9028 1 1 1 0.9444 0.9491 

SVM 0.9306 0.9306 1 1 1 1 0.9769 

NB 0.9444 0.9444 1 1 1 1 0.9815 

DT 0.9444 0.9722 1 1 1 0.9722 0.9815 

RF 0.9861 0.9861 1 1 1 1 0.9954 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB 

= NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 
 

TABLE VIII 
RECOGNITION ACCURACY FOR ALL 6 SHOULDER EXERCISES IMPLEMENTING 

10-FOLD CROSS VALIDATION METHOD. 

Classifier FE FEd ERs SL EIR AA 
Averaged 

accuracy 

k-NN 0.8750 0.9028 1 1 1 0.9722 0.9583 

SVM 0.8889 0.8889 1 1 1 1 0.9630 

NB 0.9444 0.9444 1 1 1 1 0.9815 

DT 0.8889 0.9028 1 1 1 0.8750 0.9444 

RF 1 1 1 1 1 1 1 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB 

= NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 
 

 

 
 

TABLE IX 
RECOGNITION ACCURACY FOR ALL 6 SHOULDER EXERCISES IMPLEMENTING 

THE NESTED CROSS VALIDATION METHOD (WITH 10 INNER AND OUTER 

FOLDS. 

Classifier FE FEd ERs SL EIR AA 
Averaged 

accuracy 

k-NN 0.8750 0.9028 1 1 1 0.9722 0.9583 

SVM 0.8750 0.8750 1 1 1 1 0.9583 

NB 0.9444 0.9444 1 1 1 1 0.9815 

DT 0.8889 0.9028 1 1 1 0.9722 0.9583 

RF 1 1 1 1 1 1 1 

K-NN = K-NEAREST NEIGHBOURS, SVM = SUPPORT VECTOR MACHINE, NB 

= NAÏVE BAYES, DT = DECISION TREE, RF = RANDOM FOREST. 

IV. DISCUSSION AND CONCLUSION 

This study investigated the potential application of a 

wearable system based on 3 M-IMUs in classifying six shoulder 

rehabilitation exercises. The use of Euler angles of 

humerothoracic and elbow joints can be interesting as they can 

better discriminate the assessed exercises. However, this 

attitude representation suffers from gimbal lock problem: 

orientation singularities can make Euler angles unsuited to 

correctly represent the different activities in some cases and 

consequently they will produce less accurate results. Indeed, 

Table III and Table IV shows that the use of the features set 

related to Euler angles decreases the overall recognition 

accuracy (70.28%). This indicates that the inertial data contains 

more discriminant information than the Euler angles in human 

activity recognition. Zmitri et al. performed the same analysis 

implementing the leave-one out cross validation technique, 

obtaining lower accuracy value when using Euler angles data 

(80.3%) than when using quaternion data (87.9%) [32]. 

Results shared above demonstrate the effectiveness of the 

proposed ML algorithms in classifying shoulder rehabilitation 

exercises. High recognition performances were obtained with 

all the implemented validation methods. Experimental results 

indicate an excellent recognition rate and a high level of 
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agreement between the classification results and the true labels. 

Table II shows the performances of all the classifiers 

implementing the 5 folds CV. In this validation approach, the 

k-NN classifier achieved an overall accuracy of 84.72%, the 

SVM classifier attained 93.06%, both the NB and DT classifiers 

achieved an accuracy of 94.44%, and the RF achieved an 

overall accuracy of 98.61%. Averaged accuracies were notably 

higher for most classifiers, with the k-NN reaching 94.91%, and 

both the NB and DT achieving 98.15%, while the RF reached 

an outstanding 99.54%. The SVM classifier demonstrated an 

averaged accuracy of 97.69%, exceeding the reported accuracy 

in a comparable study (96.85%) where 5 exercises were 

classified [28]. The RF classifier performed significantly better 

than all the other ones with an overall and an averaged accuracy 

equal to 98.61% and 99.54% respectively. It achieves high 

values also for the other metrics, such as 98.61%, 98.61%, 

99.72%, and 98.72% for F1 score, sensitivity score, specificity 

score, and precision score respectively. Additionally, the other 

metrics, including 86.81% for MCC, 88.81% for FM, 0.0191 

for PT, and 0.9833 for Youden, indicated perfect classification 

results. 

The implementation of the 10 folds cross validation method 

improves classification performances of almost all the 

classifiers. Table V shows that an overall accuracy equal to 

87.50%, 88.90%, 94.44%, and 100% was achieved by the k-

NN, the SVM, the NB, and the RF respectively. The other 

metrics were also high for these four classifiers, as all 

specificity scores exceeded 97.50%, all precision scores 

exceeded 87.97%, all F1 scores exceeded 86.69%, and all 

sensitivity scores exceeded 87.50%. The RF classifiers 

demonstrated exceptional performance, accurately classifying 

all the labels of the test dataset and achieving 100% for all the 

metrics, with the PT metric of 0, indicating perfect 

classification. 

The results obtained by the RF in this study surpassed those 

reported in other studies [29], [36], [38]. The highest 

performances achieved by Bavan et al. were 97.2% of accuracy, 

reporting more challenges in classifying flexion and abduction 

tasks [38]. Specifically, the RF model yielded metrics of 

98.40% of accuracy and precision, 96.5% of sensitivity, and 

99.23% of specificity. Alhammad et al. reported lower values 

achieved by the RF compared to this study: 96.86% of accuracy 

and sensitivity, 97.2% of precision, and 97.02% of F1score 

[29]. Lastly, Hua et al. achieved 97.4% of accuracy using the 

kNN classifier and 98.6% accuracy with the RF classifier [36]. 

The nested cross validation method yielded to similar results 

obtained with the 10 folds cross validation. The DT classifier 

improves its performances, from 83.33% to 87.50% of overall 

accuracy. Table VI shows overall accuracies equal to 87.50%, 

87.50%, 94.44%, and 100% achieved by the k-NN, the SVM, 

the NB, and the RF respectively. 

Table VII, Table VIII, Table IX, and Fig. 8-13 highlight the 

ability of all the classifiers in recognize each single shoulder 

exercise. Most of the six rehabilitation exercises considered in 

this study were classified correctly. In particular, 100% of 

prediction accuracy was always obtained for Task 3, Task 4 and 

Task 5, and also for Task 6 with the SVM, NB, and RF 

classifiers. Since these exercises were extremely different from 

each other, each one presented easily recognizable and 

classifiable features. All the classifiers encountered the greatest 

difficulties for the classification of two exercise, i.e., Task 1 

(flexion/extension without a weight) and Task 2 

(flexion/extension with a weight). These two movements are 

the same, differing only in the use of a dumbbell (2 kg). This 

misclassification could be related to the involvement of healthy 

participants with no shoulder musculoskeletal diseases that 

executed the two movements in the same way. For this reason, 

there were no significant differences between the sensor data 

acquired while performing these two tasks. However, the 

averaged accuracies ranged between 94.91% and 99.54% using 

the 5 folds CV, between 94.44% and 100% using the 5 folds 

CV, and between 95.83% and 100% using the nested cross 

validation. These results are coherent with the AUC ones. The 

AUC values for Task 3, Task 4, and Task 5 were always equal 

to 1, meaning that the TPR was equal to 1 and the FPR was 

equal to 0. In most cases also Task 6 was classified correctly by 

all classifiers, with AUC ranging between 0.9 and 1. Lower 

values were obtained for Task 1 (AUC ranging between 0.6417 

and 1) and Task 2 (AUC ranging between 0.8 and 1). 

Results obtained in this work are promising for the 

application of the proposed wearable system for shoulder 

home-based remote monitoring. The ease of setup and 

modularity of the proposed wearable system increase the ability 

for the patient to self-position the sensing units without operator 

support, increasing the variety of contexts in which it can be 

used. The relatively poor distinction between flexion/extension 

movements without and with a weight could potentially be 

improved integrating more sensors. For example, 

electromyography (EMG) sensors can determine which 

                      v                           ’        
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more accurately evaluate the efficiency of rehabilitation 

exercises. 

Some limitations are evident in this study. Firstly, only six 

rehabilitation exercises were selected from the guidelines 

provided by the American Society of Shoulder and Elbow 

Therapists. While these exercises are representative of 

commonly practiced ones, there exist additional movement 

exercises that were not examined in this study. Secondly, the 

study sample exclusively consisted of younger and healthy 

subjects, potentially compromising the representativeness of 

observed characteristics for older age groups. Patients with 

shoulder musculoskeletal disorders (such as rotator cuff tears) 

are expected to exhibit greater variability in the pace and 

trajectory of movements compared to healthy subjects, 

presenting heightened challenges for classifiers in accurately 

categorizing the performed exercises. Thirdly, the experimental 

data were recorded during supervised sessions. The extraction 

of features from continuous exercise sessions conducted in 

uncontrolled environments poses greater challenges. Future 

endeavors will explore unsupervised or semi-supervised 

learning approaches, along with the inclusion of a larger sample 

size, the assessment of proposed algorithms on data acquired 

from patients with musculoskeletal disorders, and the 
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incorporation of additional shoulder rehabilitation exercises in 

the protocol. 
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