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Abstract—This article proposes a system for detecting
and classifying realistic electronic devices in the presence
of linear clutter objects based on a frequency-modulated
continuous-wave (FMCW) nonlinear radar. For classifica-
tion, the proposed system utilizes statistical features of the
time-segmented baseband signal envelope of the second
harmonic responses from targets, which contain nonlinear
coefficients of targets, and a support vector machine (SVM) is
used as the classifier. The system is validated using an exper-
imental apparatus in an anechoic chamber, and a minimum
allowable signal-to-noise ratio (SNR) is set to ensure accurate
target classification in the presence of a linear clutter object.
The transmit frequency band of the FMCW nonlinear radar
used for the experiment is 3.0–3.2 GHz, and the receive frequency band is 6–6.4 GHz, which is the second harmonic
of the transmit band. The experimental results show that the proposed system can detect and classify targets with
a detection rate of 85.5% and classification accuracy of 89.2%. The proposed system has the potential to provide an
effective solution for detecting and classifying unauthorized electronic devices in various scenarios.

Index Terms— Frequency-modulated continuous-wave (FMCW), machine learning, nonlinear radar, support vector
machine (SVM), target classification.

I. INTRODUCTION

THE continuous increase in semiconductor performance
and the development of engineering technology have led

to a surge in the use of small electronic devices, making it
easy for anyone to possess them. However, the proliferation
of these devices has also led to an increase in their malicious
use. As a result, there is a growing need for technologies
capable of detecting and classifying unauthorized and hidden
electronic devices at a stand-off distance. Existing linear
radar has a limitation in detecting a relatively small target
in the presence of linear clutter. To overcome such difficul-
ties, research on nonlinear radar that detects harmonics or
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intermodulations, which are nonlinear responses excited only
from electronic components, has been widely conducted [1],
[2], [3], [4], [5], [6], [7]. However, target classification beyond
detection requires a complex interpretation of received sig-
nals. To overcome this, recent research has enabled target
identification using machine learning by extracting features
based on the target radar cross section (RCS) [8], [9], [10]
and Doppler characteristics [11], [12], [13], [14], [15], [16],
[17], [18], [19] in linear radars. Recently, research has been
conducted on target recognition based on the characteristics
of nonlinear target responses through simulations [20], [21],
[22], [23]. In our previous work, the feasibility of nonlinear
target classification using support vector machines (SVMs)
for a frequency-modulated continuous-wave (FMCW)-based
nonlinear radar system was demonstrated, where statistical
characteristics from the second harmonics excited from several
realistic nonlinear targets are used as features [24]. However,
this study was conducted in an environment in which only a
target of interest was present, and the algorithm was not tested
with nonlinear targets in an environment where a linear object
coexists. In addition, in [24], target features were extracted
from the spectrum of the nonlinear responses directly sampled
at RF. However, in a realistic system, to apply nonlinear target
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Fig. 1. Block diagram of the proposed notional system used in this article.

classification based on frequency-specific nonlinear responses,
as demonstrated in our previous study, it is necessary to
conduct classification using the beat signal of the baseband.

In scenarios where linear clutter objects coexist, the
decrease in signal-to-noise ratio (SNR) results in decreased
classification accuracy [23]. Additionally, multipath effects
can cause false alarms, seriously affecting the performance of
the nonlinear target detection [25], [26]. Therefore, to ensure
accurate target classification, it is necessary to set a minimum
allowable SNR [2], [23].

In this article, we use an experimental apparatus rep-
resenting an FMCW-based nonlinear radar to measure the
second harmonic responses of several realistic electronic tar-
gets. The beat signals, which are extracted through signal
processing, undergo target classification via SVM through
a segment-based statistical feature extraction process while
setting a minimum allowable SNR to validate successful detec-
tion. The proposed concept, along with the proposed notional
radar system, has the potential to provide an effective solution
for detecting and classifying electronic devices as depicted
in Fig. 1. Fig. 1 provides an overview of the system aiming
to detect and classify the nonlinear target in an environment
where the linear clutter object is present nearby.

The organization of this article is as follows. In Section II,
a theoretical analysis of the beat signals of the target harmonic
responses is conducted to demonstrate the potential for using
their characteristics in target classification. In Section III, the
feature extraction method used to experimentally demonstrate
the proposed system, and the experimental setup are explained.
In Section IV, the detection method based on SNR, the process
of SVM training, and the analysis of the results are presented.
Finally, Section V concludes this article with a summary.

II. HARMONIC RESPONSE ANALYSIS IN BEAT SIGNAL

Signals incident at a nonlinear target generate harmonics
as a result of nonlinear interaction. In the time domain, the

harmonic responses for such signals can be expressed using a
power series model [1], [28] as

xr(t) =

∞∑
n=1

[
an(x(t))n] (1)

where xr(t) is the reflected signal from the nonlinear target,
and x(t) is the incident signal at the target. The har-
monic coefficient an can vary depending on the frequency
of x(t) since the nonlinear excitation at the target may be
frequency-dependent.

For an FMCW radar, the transmit signal can be expressed
as

x(t) = cos
(

ωot +
π BW

Tm
t2

)
(2)

where ω0 is the starting frequency, BW is the chirp bandwidth,
and Tm is the chirp duration. Typically for a nonlinear target,
the level of generated harmonics decreases as the order n
increases and consequently the value of the higher-order an

becomes significantly small. Therefore, by substituting x(t)
of (2) into (1) and expanding up to the fourth order where the
second harmonic component exists, the derived equation for
the received signal of the second harmonic response from the
target can be represented as

xr,2(t) ≈

[
a2(ω(t)) + a4(ω(t))

2

]
· cos

(
2ω0(t − 1t) +

2π BW
Tm

(t − 1t)2
)

(3)

where ω(t) = ωo + (π BW/Tm)(t − 1t/2), which indicates
that a2 and a4 are functions of time, since ω(t) is a function of
time. A properly received xr,2(t) then can be down-converted
by mixing with frequency-doubled x(t), and low-pass-filtered
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to obtain the beat signal expressed as follows:

xbeat(t) =

[
xr,2(t) · cos

(
2ω0t +

2π BW
Tm

t2
)]

∗ hLPF(t)

=

{
a2(ω(t)) + a4(ω(t))

4

}
×

{
cos

[
1t

(
2ω0 +

2π BW
Tm

(2t − 1t)
)]}

(4)

where hLPF(t) is the impulse response of the low pass filter,
1t = 2R0/c is the time delay associated with the target
distance R0, and c is the speed of electromagnetic waves.
The process of extracting the target’s distance in a non-
linear FMCW radar system is explained in detail in [2].
In (4), the amplitude term of the beat signal contains non-
linear coefficients a2 and a4. As mentioned above, these
nonlinear coefficients may vary with ω(t), suggesting that
for FMCW-based nonlinear radars, the nonlinear coefficients
of the target response could vary over time. Therefore, the
amplitude of xbeat(t) also varies with time. Moreover, under
the assumption that the nonlinear coefficients do not have
periodicity over time within the chirp duration, applying the
Hilbert transform enables the extraction of the signal envelope
m(t) of xbeat(t) as follows:

x p(t) = xbeat(t) + j x̂beat(t)

=

{
a2(ω(t)) + a4(ω(t))

4

}
e j2ω01t+ j 2π BW

Tm
(21t t−1t2) (5)

m(t) = |x p(t)| =

∣∣∣∣a2(ω(t)) + a4(ω(t))
4

∣∣∣∣. (6)

From (5) and (6), it can be seen that the beat signal as a
result of down-conversion with the frequency-doubled local
oscillator signal contains information regarding the nonlinear
response characteristics of the nonlinear targets, which can be
used for the feature extraction and the target classification.

III. FEATURES AND SYSTEM CONSTRUCTER

In machine learning, feature extraction is the most influen-
tial factor in determining classification performance. Namely,
the better the features that represent the characteristics of each
target, the better the classifier performance. In target classifica-
tion based on linear FMCW radars, there are instances where
various statistical parameters have been successfully used for
the classification [19]. Moreover, statistical parameters can
also be utilized in identifying nonlinear targets through their
nonlinear coefficients [20], [21], [22], [23].

A. Feature Extraction
An example of the baseband envelope m(t) of the nonlinear

response from the nonlinear target is shown in Fig. 2, which
exhibits a time-dependent behavior due to the time-varying
frequency modulation. Here, m(t) undergoes the process of
segmentation to extract statistical features [24]. Subsequently,
m(t) is divided into p number of segments, and statistical
parameters such as mean (µ), variance (υ), and variance
coefficient (c) are extracted using the following equations

Fig. 2. Beat signal incorporated into the nonlinear response of the
sample.

for each segment to capture the magnitude and variability
characteristics of the nonlinear response:

µi,k =
1
N

N∑
n=1

mi,k(n) (7)

υi,k =
1

N − 1
{mi,k(n) − µi,k}

2 (8)

and

ci,k =

√
υi,k

µi,k
(9)

where k is the segment index, i is the measurement data index,
and N is the number of samples in a segment. In Fig. 3, the
statistical parameter values for each segment of one of the
nonlinear targets used (i.e., dash camera) are shown. These
statistical parameters form a set Si as follows:

Si = {µi,k, υi,k, ci,k |1 ≤ k ≤ p}. (10)

In (10), it can be observed that the size of Si varies
depending on p. As p increases, the growth in size Si

may result in an extended training time and the potential
for overfitting. To determine a reasonable value of p, the
hyperparameters of the SVM are fixed, and the performance
of the classifier based on the number of segments is examined,
as shown in Fig. 4. As the number of segments increases, the
training accuracy improves. However, it is worth noting that
when p reaches 100, the cross-validation accuracy begins to
converge. An excessive increase in the number of segments
leads to an increase in the feature count used for the SVM
training, resulting in an increased computational cost and the
curse of dimensionality [29]. Consequently, considering these
outcomes, the optimal value of p is set to 100.

B. Measurement Setup
To experimentally validate the proposed concept, a mea-

surement setup is configured as illustrated in Fig. 5. The
transmit-end consists of a Tektronix AWG7102 arbitrary wave-
form generator to generate the transmit FMCW waveforms
over the bandwidth of 3–3.2 GHz with a chirp duration
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Fig. 3. Example baseband envelope of (a) mean (µ), (b) variance (υ),
and (c) variance coefficient (c).

Fig. 4. Train and validation accuracy based on the number of segments.

of 1 µs. The waveforms are then amplified to 41.2 dBm
(13.18 W) using an Ophir 5183 RF power amplifier. The
second harmonics generated by the power amplifier become
a performance degradation factor for target detection and
classification through linear reflection and antenna coupling.
Therefore, a Wainwright WLJ5 low pass filter is included
along the transmit path after the power amplifier to suppress
self-generated harmonics. The transmit waveforms are radiated
through a 3160–09 standard gain horn antenna with a gain of
17.6 dBi. The receive-end is composed of a VT58SGAH20NK
standard gain horn antenna with a gain of 20 dBi, followed by

Fig. 5. Block diagram of the measurement setup.

Fig. 6. Photograph of the experiment setup.

a VBFZ-6240-S+ C-bandpass filter to suppress the fundamen-
tal band. A ZX60-83LN12+ low noise amplifier with a gain
of 20.79 dB is used to boost the received harmonic responses
from the target before acquisition via a TDS6154C fast-
sampling oscilloscope. The proposed notional system depicted
in Fig. 1 involves the down-conversion of xr,2(t) into xbeat(t)
in the analog domain using a mixer and filter, followed
by an analog-to-digital converter (ADC). However, it is to
be noted that in our experiment, xr,2(t) is directly sampled
through the oscilloscope and the down-conversion is done
in the signal processing to obtain xbeat(t). Such an approach
enables us to employ a simplified experimental apparatus for
the validation of the proposed concept. As shown in Fig. 6,
the transmit/receive antennas and targets are placed in an
anechoic chamber. The distance between the antennas and
the target was set to 0.7 m to detect the weak nonlinear
responses of commercial electronic devices. Fig. 7 shows the
nonlinear targets used in our experiment, including a dash
camera, web camera, radio, remote switch, and drone, while
Fig. 8 shows three linear clutter objects (metal tumbler, paper
bag, brick) which are placed alongside the targets during the
measurement.

IV. TRAINING AND RESULT

A. Training Classifier With Nonlinear Targets Only
To train the SVM classifier, approximately 1006 harmonic

response measurements of each target (about 200 per target)
are performed in an environment where only nonlinear targets
exist. The baseband signals xbeat(t) are processed to obtain
m(t) for feature extraction mentioned in Section II.

The 1006 sets of Si are divided into training data and
verification data for the SVM classifier learning with a ratio
of 7:3, respectively. The learning results of the SVM classi-
fier are shown in Table I. The training accuracy of 96.6%,
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Fig. 7. Nonlinear targets (a) dash camera (5 × 7 cm2), (b) web camera
(10 × 15 cm2), (c) drone (25 × 25 cm2), (d) radio (3.5 × 9 cm2), and
(e) remote switch (8 × 8 cm2).

Fig. 8. Linear clutter objects used for measurement. (a) Paper bag
(30 × 30 cm2). (b) Bricks (27 × 25 cm2). (c) Tumbler (7 × 21 cm2).

TABLE I
CONFUSION MATRIX OF TRAIN DATA (UNIT: %)

validation accuracy of 96.0%, and threefold cross-validation
mean accuracy of 97.2% are used to classify detected targets.

B. Prediction and Results in Cluttered Environment
The test data consists of the second harmonic responses

when linear clutter objects and nonlinear targets coexist.
The total number of test data is 772, consisting of about
50 combinations for each type of nonlinear target and linear
clutter object. The noise data used for SNR calculation is
applied to the signals with only linear clutter objects in the
setup. As shown in Fig. 9, when the signal amplitude is
above the minimum allowable SNR, the feature extraction
method used for classification employs the statistical parame-
ter extraction method described in Section III-A. The detection
results for the test data are presented in Table II, showing
an average detection rate of 85.5%. The SVM classification

TABLE II
DETECTION RATIO OF TEST DATA (UNIT: %)

Fig. 9. Block diagram of the test data classification and detection.

results for the test data are shown in Fig. 10, with an average
classification accuracy of 89.2% (bricks: 94%, paper bag:
94%, tumbler: 80.6%). The relative lower accuracy for the
tumbler is attributed to the good conductive properties of the
tumbler’s material, causing a phase shift in the reradiated
harmonics signals in cluttered environments and altering the
characteristics of the harmonic beat signals [25].

Additionally, the harmonic echoes originating from multi-
path effects can also impact the classification accuracy.

To identify the most crucial parameter in the classification
process among the statistical parameters by segments in setups
where a clutter object is present nearby, SVM was applied
using only one parameter. Additionally, we examined the
classification accuracy of the test data based on different
parameter combinations, and the results are presented in
Table III. Examining the results when using two parameters,
in the case of a tumbler, it is observed that the accuracy is
similar to when using all parameters. However, for other cases,
the accuracy drops by more than 10% compared to using all
parameters. This comprehensive study demonstrates the effec-
tiveness of utilizing statistical parameter-based classification
in the presence of both linear clutter and nonlinear targets.
The results indicate a promising approach for enhancing
the detection and classification accuracy of nonlinear targets
in cluttered environments. The analysis of the impact of
various parameters on classification accuracy, particularly in
challenging scenarios like the tumbler case, provides valuable
insights into future improvements in radar signal processing
techniques.
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Fig. 10. Confusion matrix of test data with linear clutters (bold font indicates classification accuracy).

TABLE III
AVERAGE CLASSIFICATION ACCURACY OBTAINED BY PARAMETER

COMBINATION (UNIT: %)

V. CONCLUSION

This article proposes a nonlinear FMCW radar-based elec-
tronic device classification system when nonlinear targets
are situated in the proximity of linear clutter objects. The
theoretical expression of beat signals containing information
about the nonlinear response of nonlinear targets is presented.
To experimentally verify this, an SVM classifier is trained
using the second harmonic responses from four nonlinear
targets. The proposed system is tested in an environment where
linear clutter objects and nonlinear targets coexist, achiev-
ing a detection ratio of 85.5% and classification accuracy
of 89.2%. The results from this work lay the groundwork
for more advanced and reliable target classification methods.
However, further research is needed to investigate the detec-
tion performance based on the target angle and to identify
common nonlinear characteristics within different categories
of electronic devices. Such further research would allow for
a wide range of practical applications in nonlinear radars for
the classification of nonlinear targets.
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