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Abstract—Sensors are integrated into collaborative robot
systems to ensure the safety of human workers by allowing
them to perceive their environments, detect human pres-
ence, and adjust their actions accordingly. This preferred
reporting items for systematic reviews and meta-analyses
extension for scoping review (PRISMA-ScR) focuses on
current sensor-enabled safety systems for human–robot
collaboration (HRC) in the manufacturing industry based
on both scientific papers and patents. From the initial
search of 6669 references, 281 underwent full-text review
and segmentation based on the sensor technology, instal-
lation location, and safety operating mode according to the
ISO/TS 15066 standard. In the last decade, there has been
a clear trend of increasing sensor-enabled safety systems.
The dominant sensors used are infrared (IR)-structured light,
capacitive, light detection and ranging (LiDAR), resistive,
stereo/depth camera, RaDAR, and laser scanners. The pri-
mary safety operating mode identified was speed and separation monitoring (SSM). Some systems integrate multiple
sensor types, with the most common combinations being LiDAR with stereo cameras or LiDAR with capacitive
sensors, and laser scanners with RaDAR. We suggest multisensor integration and standardized benchmarks for future
development. This review is among the few that employ the PRISMA-P protocol to study sensor technologies and
contribute to a more systematic understanding of the current state of the art in this area.

Index Terms— Collaborative robots, human–robot collaboration (HRC), perception systems industry 50, safety
systems, sensors.

I. INTRODUCTION

THE manufacturing industry has undergone a significant
transformation in recent decades, driven by the integra-

tion of robotic systems and smart sensors. This paradigm
shift, known as Industry 4.0, has resulted in network inter-
connected machines, improved speed, enhanced quality, and
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increased productivity [1], [2], [3]. Industry 4.0 has also
enabled real-time supply management, demand forecasting,
autonomous quality control, predictive maintenance, and opti-
mal asset utilization [4], [5].

Human interaction with robotic systems was previously
hindered by physical barriers within enclosed robotic work
cells [6], [7], [8]. The introduction of collaborative robots
(cobots) enabled by variable-impedance actuators has rev-
olutionized this landscape by allowing close collaboration
between humans and robots within a shared workspace [9],
[10], [11]. Cobots offer increased flexibility, high-speed actu-
ation, rapid programming, and the ability to be deployed
in dynamic and flexible workstations, thereby providing a
quick return on investment [12], [13], [14], [15]. However,
despite their potential benefits, the adoption of collaborative
robots remains relatively low and complex [16]. This can be
attributed to factors, such as the complexity of performing
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Fig. 1. Four types of operating modes in HRC according to the ISO/TS
15066 safety standard are used to classify the sensor-based safety
system in this scoping review. The worker image is designed by Freepik.
(a) SRMS. (b) HG. (c) SSM. (d) PFM.

system risk analysis [17], limited knowledge about operating
cobots safely [18], concerns regarding worker acceptance
and perception and understanding of cobot operations [19],
[20], [21], [22], and actuation strategies during a collision of
the robot that instead could have been prevented through a
sensing system that matches the requirements of the deployed
application. Moreover, factors such as reduced speeds and
payloads in collaborative human–robot interactions can lead
to usability and productivity challenges [23], [24], [25].

The field of robotic safety follows established standards
such as ISO 10218-1&2 and ISO/TS 15066, which govern the
safe operation of industrial robots [26], [27], [28], see [29]
for a review. ISO/TS 15066 defines four operating modes,
as illustrated in Fig. 1: safety-rated monitoring stop (SRMS),
hand guiding (HG), speed and separation monitoring (SSM),
and power and force limiting (PFM). These modes enable dif-
ferent levels of robot interaction and collaboration within
shared workspaces. In SRMS, the robot initiates a controlled
stop when a human enters a predefined safety zone, resuming
operation only once the area is clear and preventing unintended
movements. The HG mode allows an operator to control the
robot’s motion by holding onto it directly, with the robot stop-
ping movement when the operator releases it, thus enabling
precise control only under direct human guidance. In SSM,
the robot continuously adjusts its speed based on its distance
from the operator, thereby ensuring a safe separation distance.
This mode is primarily used to slow down and stop the robot
when the separation distance is insufficient, although more
advanced implementations can modify the robot trajectory to
dynamically maintain minimum safe distances. Finally, the
FL mode limits the power and force of the robot, thereby
allowing safe contact with humans. If the robot collides with
a human, it halts operations until the contact is released or
reset, depending on the application.

To enable fenceless robot operation and safe human–robot
collaboration (HRC), it is crucial to implement sensor-enabled

Fig. 2. Installation locations of sensors for safety: on-robot, external,
close to robot, and on-human. The worker image is designed by Freepik.
(a) On robot. (b) External. (c) Close to robot. (d) On human.

safety systems. These systems use different types of sensors to
detect and perceive possible dangers, and then activate safety
measures to ensure the safety of both humans and objects
within the robot’s workspace and surrounding area. These
sensors can be installed at different locations, as illustrated
in Fig. 2: on-robot, external, close to robot, and on-human.
For instance, many cobot arms are equipped with compact
internal force/torque sensors that measure torque at rotational
pivot points. When the torque exceeds predetermined limits
due to contact with the surroundings, these sensors initiate
a safety-rated protected stop to prevent worker injuries [30],
[31]. Similarly, external safety pads attached to cobots monitor
the impact on workers’ bodies or surrounding obstacles by
measuring pressure changes in the pads and indicating a colli-
sion [32]. While these measures are essential for ensuring safe
collaboration, they may also affect productivity by reducing
operating speeds.

A new industrial movement is currently leading the world-
wide development of Industry 5.0 [33], a vision that prioritizes
the well-being of workers at the heart of the production
process [34], [35]. Industry 5.0 aims to leverage advanced
technologies to enable hypercustomization by enhancing work-
ers’ skills and focusing on tasks that cannot be automated,
while robots will handle more routine and less cognitively
demanding operations. This approach will help address the
staffing shortages prevalent in the challenging global labor
market, particularly in the manufacturing industry in the
member states of the European Union, Norway, and Switzer-
land [36]. By utilizing cobots, Europe can address productivity
bottlenecks caused by shortages of plant and machine oper-
ators as well as assemblers. In addition, the concept of
circular production models and the upgrading of the existing
technology suggest the retrofitting of current industrial robots
with safety technology to enable closer collaboration between
humans and robots, utilizing existing assets to blur the line
between two extremes: cobots, which are safe but slow, and
traditional industrial robots, which are fast but unsafe.
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Previous reviews examined various aspects of safety and
collaboration in robotics. A systematic review conducted by
Arents et al. [37] utilized the preferred reporting items for
systematic reviews and meta-analyses extension (PRISMA)
framework and provided insights into global safety sys-
tems and general trends in HRC. However, this review did
not extensively explore the technicalities of different sensor
modalities used in the identified papers. Moreover, the search
was limited to specific terms related to smart manufacturing,
smart factories, and industrial environments, which may have
restricted the scope of the findings. Another review by Robla-
Gómez et al. [38], although not following the PRISMA
approach, provided valuable insights into the subject. How-
ever, it did not encompass recent developments over the past
five years. Finally, Navarro et al. [39] conducted a review that
focused not only on proximity sensing for distance but also on
proximity sensors for grasping and exploration. While briefly
covering sensors applicable to the industry and related safety
systems, this review did not extensively address the trends in
sensor development and the sensors used or investigated the
patent literature [39].

This PRISMA-ScR scoping review aims to provide an
updated overview of sensor-enabled safety systems for indus-
trial robots and cobots, specifically focusing on HRC in
the manufacturing industry. Moreover, the findings can be
translated to other robotic systems, such as humanoids, drones,
autonomous vehicles, medical robots, agricultural robots,
warehouse automation systems, and service robots. By exam-
ining the research and patent literature, this review aims to
present the current state of safety systems and provide insights
into the expected design of future robotic safety systems.
Importantly, this review builds on previous studies by includ-
ing the patent literature and using a top–down approach to
categorize sensor-enabled safety systems. References included
in the categorization are available via an interactive online
database that allows customized filtering.

II. METHODS

The scoping review was conducted using a comprehen-
sive five-stage methodological framework: 1) identification of
the research questions; 2) identification of relevant records;
3) selection of eligible records; 4) data charting; and 5)
collation, summarization, and reporting of the results [40].
The review adhered to the PRISMA for scoping review
(PRISMA-ScR) checklist, which was developed to increase
the clarity, transparency, quality, and value of reports [41],
[42]. A protocol for the scoping review was developed
and is available on the Open Science Foundation web-
site at: https://doi.org/10.17605/OSF.IO/YTJVS following the
PRISMA-P and PRISMA-S extensions [43].

A. Research Questions
The research questions addressed in this scoping review

were formulated based on the problem–concept–context (PCC)
framework adapted for engineering [44]. Problem: Ensuring
safety in HRC. Concept: Sensor-enabled safety systems and
technologies. Context: For applications in the manufacturing
industry. This resulted in the following questions.

Q1: What sensor technologies are used in safety systems to
achieve HRC in the manufacturing industry?

Q2: What operating modes, according to ISO/TS 15066,
do the technologies enable?

Q3: Is there a trend toward combining sensor technologies?

B. Identification of Relevant Records
1) Eligibility Criteria: The eligibility criteria for the scoping

review paper include three phases: identification, title-abstract
screening, and full-text screening. In the identification phase,
scientific papers must be written in English or have an
available English translation, be journal articles or conference
proceedings, and not duplicates. Patents should be in English
or have an English translation, be active, pending, or expired
but not abandoned or rejected, and not be duplicates under
different international patent numbers.

In the full-text screening phase, scientific papers should
not be review papers and should discuss the design, testing,
or usage of a sensor-enabled safety system for HRC. Patents
should propose the design of a sensor-enabled safety system
for HRC.

In the full-text screening phase, scientific papers should pro-
pose or evaluate a sensor-enabled safety system that enables or
implies enabling one or more operating modes of the ISO/TS
15066, or a combination of these modes or additionally
intelligent trajectory (IT) planning. Similarly, patents should
propose a sensor-enabled safety system that enables one or
more of the mentioned operating modes. In addition, exclusion
criteria were defined to provide transparency for excluding
certain papers or patents. These include papers or patents that
focus solely on algorithm design for sensor data processing,
do not propose or evaluate a sensor or system in the context of
safety, or do not propose or evaluate a safety sensor or system
in the context of safety.

2) Information Sources: For scientific papers, the identi-
fied papers were collected from Scopus and Web of Science
databases and exported to RIS files and EndNote format,
respectively. The identified patents were collected from Orbit
Intelligence, a global intellectual property intelligence plat-
form, and exported as an XML file. The last search date
was September 16, 2024. All identified papers and patents
were imported into Covidence as the review management
platform.

C. Search Strategy
The following search strings were used to

collect scientific papers and patents. For Scopus:
TITLE-ABS-KEY [(“SAFE*”) AND (“SENS*”) AND
(“ROBOT*” OR “COBOT*”) AND (“INTERACT*” OR
“COLLABORAT*”)) AND (LIMIT-TO(DOCTYPE,
“CP”) OR LIMIT-TO(DOCTYPE, “AR”)) AND
(LIMIT-TO(LANGUAGE, “ENGLISH”)]. For Web of
Science: TS = ((“safe*”) AND (“sens*”) AND
(“robot*” OR “cobot*”) AND (“interact*”
OR “collaborat*”)). For Orbit Intelligence: Safe+

AND (Sens+) AND (Robot+ OR Cobot+) AND
(Interact+ OR Collaborat+)).
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Fig. 3. PRISMA flow diagram for the systematic review.

III. RESULTS

A. Selection of Eligible Records
The selection process for the records is shown in detail in

the PRISMA flow diagram in Fig. 3. A total of 9014 references
were imported for screening. After removing 2345 duplicates,
6669 records were screened against title and abstract. The
records were independently screened by two reviewers, C.S.
and H.L.C., with the option of further input from other review
team members to resolve any disagreement. The 6242 records
were excluded, leaving 427 records assessed for full-text eligi-
bility. Of these, 146 records were excluded for at least one of
the following reasons: 27 were related to internal force/torque
sensors, 25 had inadequate technical details, 17 were related
to safety systems for mobile robots only, 33 had no safety
context, 13 had no human involvement, 12 only described
algorithms and not sensors, four only had an abstract available,
five only described communication interfaces, one was a
benchmark proposal, one was related to safety systems for
drones, seven was related to grant applications, and one was
a video abstract. It is worth noting that a study could be
excluded for multiple reasons, but the reported reason was
the strongest and with the consensus of the two independent
reviewers. Ultimately, 281 records (213 papers and 68 patents)
were included in the review.

B. Data Charting
The scoping review table shown in Fig. 4 was structured

with information such as the full title of the document, the
year of publication, and the type of document (i.e., scien-
tific paper and patent). This was followed by segmentation,
which involved breaking down the proposed technology into
specific components for analysis. Specifically, the segmenta-
tion in a scoping review includes information on the sensor
technology (i.e., Stereo Camera, sound detecting and rang-
ing (SoDAR), light detection and ranging (LiDAR) (ToF),

RaDAR, Capacitive, Laser Scanner, Pressure pads, or oth-
ers), sensor installation location (i.e., on-robot, externally in
surrounding space, on-human, or a combination), operating
mode (i.e., SRMS, HG, SSM, PFM, or a combination), and
sensor distribution (single sensor, multiple distributed sensors,
skin, and continuous array). Full access to the database and
segmentation via an interactive Airtable format is available
at: https://bit.ly/PRISMASEG. In our segmentation process,
we utilized a weighted sum approach for descriptive statistics.
This means that if a system contains multiple properties within
a segmentation component, the count for each property is
evenly distributed.

C. Collation, Summarization, and Reporting Results
The integration of sensor-enabled safety systems into HRC

systems has become necessary in the last 20 years. This trend
is evidenced by an increase in the number of publications
on the topic, with a steady increase observed annually, see
Fig. 5(a), making this topic a significant area of research and
development.

1) Q1: What Sensor Technologies Are Used in Safety Sys-
tems to Achieve HRC in the Manufacturing Industry?: Various
sensor technologies were employed at different locations,
as shown in Fig. 5(b)–(d). Most systems use multiple sensor
units. Sensors installed directly on the robot are often dis-
tributed in the form of skin over the robot’s body, whereas
external sensors are typically discrete components placed
outside the robot. Subsequently, we organized this section to
present our findings on sensor technologies based on their
installation locations, see Fig. 6.

ON-ROBOT SENSORS refer to those installed on the robot
as sensors or sensor skins that cover the entire or parts of
the robot body, observing the surroundings looking outwards
from the robot body. See Figs. 7–9 for a summary of systems
using either touch (tactile) sensors or proximity sensors or
both, respectively.

Capacitive Sensors: Capacitive skins have emerged as an
integral part of robotic sensing technology, with 34.8% (49 out
of 141) of on-robot systems adopting this. Primarily integrated
as a robotic skin, capacitive sensing can serve threefold: it can
facilitate tactile touch sensing, proximity sensing, or a hybrid
of both.

One tactile-sensing methodology employs a dense matrix of
intersecting conductive traces. An external object, such as a
human hand, disrupts the electric field (E) when it physically
interacts with the grid. This interaction triggers a change
in mutual capacitance (1Ci j ). These capacitance alterations
are systematically recorded across the matrix, enabling the
system to identify and interpret the object’s interaction with the
robotic skin. This method utilizes grid-based electrodes [46],
[172], which can also be embedded in silicone [45] to simulate
the human skin and facilitate touch measurements or trigger
retraction reflexes [47]. Given the vast volume of tactile sensor
data, an field-programmable gate array (FPGA)-based process-
ing architecture is proposed for the simultaneous processing
of sensor data [173].

In addition, scalable and cost-effective capacitive skins have
been fabricated using techniques, such as screen printing
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Fig. 4. Screenshot of the scoping review table. Full charting is available in an interactive filterable Airtable format is available at:
https://bit.ly/PRISMASEG.

Fig. 5. Descriptive statistics of included records. (a) By publication
years. (b) By installation location. (c) By sensor distribution. (d) Major
sensing technologies used in safety systems, with a weighted sum
greater than 1.

Fig. 6. Classification of sensor-enabled safety systems based on
installation locations.

and gel coating. These techniques pave the way for creating
highly spatially resolved, super-capacitive skin based on ionic
gel-coated microfiber matrices [50]. Moreover, a nonskin-
based alternative in the form of hemispherical dielectric
elastomer capacitive sensors promotes multidirectional object
detection, surpassing traditional x- and y-planar localiza-
tion [49].

Fig. 7. Classification of sensor-enabled safety systems with on-robot
installation using touch (tactile) sensors.

In contrast to grid-based electrodes, another tactile capac-
itive sensor design employs a sandwich structure comprising
two plates. When pressure is applied, the plates’ separation
is altered, thereby affecting the capacitance [51], [52], [53].
Such sensors can be constructed with irregular planar shapes,
with a specially designed conductive line creating a uniform
electric field [54] or can be stretchable [55].

These sensors find essential applications in power and force
monitoring, providing the robot with the ability to stop upon
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Fig. 8. Classification of sensor-enabled safety systems with on-robot
installation using proximity sensors.

Fig. 9. Classification of sensor-enabled safety systems with on-robot
installation using touch and proximity sensors.

contact in safety situations or even simulate a touch sensation
over large surfaces, as observed in a handle designed for
heavy industrial robot interaction with taxels in a sandwich
structure [56], [174].

Furthermore, capacitive skins facilitate proximity sensing
with air as the medium, which is indispensable for SSM
applications, but have the shortcoming that they can only
sense conductive obstacles in their vicinity. Robots can detect
nearby objects using copper foils/electrodes dispersed across
their bodies, which measure the capacitance against the ground
potential [98], [99], [100], [101], [102], [161], conductive
paint acting as the sensor has also been proposed [103].

These measurements are translated into a distance proximity
value, considering the environmental model, as conductive
materials in the vicinity impact sensor readings [175] or
are combined with inductive sensor elements to differentiate
between humans and metal [105], [106]. Progress has also
been made in estimating the angle of an object and measuring
the sensing quality using an enhanced processing architecture
and temperature compensation [176]. Low-cost alternatives
using a comb electrode matrix have been suggested and can
be integrated with a distributed touch sensor [150]. A control
framework using capacitive sensor inputs, such as those from
the commercially available FOGALE1 capacitive skin, has
been demonstrated to successfully avert obstacles around a
UR5 [104].

Several proposals have been made to amalgamate touch
and proximity sensing based on the layering of capacitive
sensors [151], [152], [153], [160]. These include modular
and interconnected tiles that enable pretouch and touch track-
ing of human hands [154], sandwich structures ensure that
the pressure sensor’s capacitance variation does not interfere
with proximity perception measurements [155], [156], tiles
that facilitate dynamic spatial resolution in both tactile and
proximity modes [157], and self-capacitance sensors designed
with a curved shape to fit robotic arm housing [158], with
added shock-absorbing structures for safer human operator
contact [159], or through the combination of a capacitive tex-
tile robotic cover with distributed discrete ToF and ultrasound
sensors for medium- to long-range proximity detection [166].

Resistive Sensors: Out of 96 systems studied, ten have been
proposed that use a resistive sensing approach. This technique
involves monitoring changes in the electrical resistance, R,
across a pliable, deformable material under strain. This con-
cept is simplified by the equation R = R0(1 + (1l/ l0))2,
where R0 is the initial resistance, l0 is the initial length, and
1l is the change in the length.

A multitude of innovative solutions have been put forth in
the area of resistive sensing. One such approach involves the
creation of an economical, low-resolution, resistive, thin, and
flexible sheet composed of polyamide films with electrically
conductive ink, which simplifies wiring requirements [58].
To facilitate a snug fit on the body of a robot, skins made
from stretchable conductive fabric [59], [60] or sponge mate-
rials [72] have been proposed.

Furthermore, a system comprising a conductive thread
matrix, separated by a polymer for adjustable spatial reso-
lution, was developed to accommodate various shapes and
contours [61]. A unique combination of the threaded resistor
divider principles with a capacitive sandwich structure was
also used. The resistor matrix determines the location, and
the capacitive sensor gauges the impact force with an obsta-
cle [57].

There are also approaches for a hybrid structure designed for
large-range proximity and contact force detection, consisting
of five layers, including a piezoresistive composite film and
copper foil electrodes operating in two modes: capacitive for
proximity detection and resistive for contact force detection;

1https://perma.cc/9S8S-U3Z2
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the transition between modes occurs when the applied force
exceeds a critical value [162]. A comparable approach was
proposed by Jiang and Sun [163] and Liu et al. [164]. Another
approach utilizes skin structures with hair to convert pressure
into a voltage signal by means of resistance change [62], [63].

In addition, piezoresistive sensors can be manufactured
in pillow-like structures [64], gel structures [71], or a soft
substrate sponge structure, which, when combined into an
array, allows for spatial resolution [65], [66]. Notably, these
structures can be amalgamated with inflatable sponge ele-
ments, enabling them to mitigate the impact force during a
collision by altering their internal air pressure in real time [67],
[68]. Moreover, piezothermic sponges do not only allow the
detection of contact force and position [69] but can also be
used to measure temperature and can be sandwiched into a
capacitive proximity sensor [70].

Finally, a rather abstract approach was proposed involving
covering a robot manipulator with a balloon integrated with
a laminated crack-based strain sensor. The strain sensors alter
resistance when the balloon is compressed, effectively sensing
collisions [73].

Ultrasound (SoDAR) Sensors: Ultrasound waves can be
utilized for ranging and obstacle detection, similar to time-
of-flight (ToF) light ranging. The advantage of ultrasound
over light ranging is its resilience to light conditions, such
as fog or smoke, and its ability to detect reflective and
transparent objects without difficulty. One shortcoming is that
the speed of sound can be influenced by ambient temperature
and humidity, which are variables that can be measured and
actively compensated for through proper sensor characteriza-
tion. An air-coupled ultrasound transducer, capable of both
receiving and transmitting, is composed of a material with
piezoelectric properties that when a voltage V is applied
to or vibrates and emits an ultrasound wave. This wave is
transmitted through air, reflects off an object, and returns to the
receiver. The distance d to the object is calculated by dividing
the time t taken for the ultrasound wave to return by the speed
of sound vsound (343 m/s), and then by 2, i.e., d = (vsound ·t/2).

The simplest application of ultrasound transducers is in
the pitch and catch mode. Here, the transmitter emits a
sound pulse that is subsequently received by the receiver.
This technique is used in commercial robot safety systems,
often used near the tool center point (TCP) [126], on the
robot body [127], or in 360◦ sonar sensor rings [132], [133].
Some proposed systems distribute several transducers across
the entire robot body, instead of using a single set of individual
transducers [128]. Single ultrasound transducers lack spatial
resolution, to overcome this shortcoming several transducers
with overlapping field of views (FOV) can be used to estimate
the angular location of an object. In addition, by comparing
the calculated distances and angles over time, Glowa and
Schlegl [129] proposed an algorithm that could differentiate
between static and dynamic objects. This information is then
used to adjust the trajectory of the manipulator and ensure
operator safety. An alternative to traditional bulky piezoelectric
ultrasound transducers has been developed in the form of a
piezoelectric micromachined ultrasonic transducers (PMUTs)

array. This array can be manufactured on flexible printed
circuit boards and has a flat form factor, facilitating ergonomic
integration into the robot body [125].

While the majority of systems focus on proximity sens-
ing around the robot, SonicSkin takes a different approach.
It employs a pair of flat piezoelectric transducers strategically
positioned and spaced apart on the robot. The transmitter
within this pair emits an acoustic surface wave (ASW) across
the entire link, effectively transforming it into a large-area
sensor. When a human comes into contact with the body of
a robot, the surface signal experiences a dampening effect.
This change, denoted by 1S, can be measured to accurately
determine the touch location on the body surface of the
robot [74]. AmbiSense is an acoustic-field-based sensing sys-
tem that generates vibrations across a robot’s surface using
low-cost piezoelectric transducers. It creates an acoustic field
that detects proximity and direction by analyzing interference
patterns from reflected sound waves, thereby providing a
vision gap-free, reliable sensing solution for safe human–robot
interactions [134], [177]. In contrast, the SMAUS system uti-
lizes viscoelastic tubes equipped with ultrasound transmitters
at one end and receivers at the other end. These tubes, wrapped
around the robot body, deform upon contact and distort the
emitted ultrasound signal. The receivers at the other end of
the tube detect this distortion and signal a collision [75].
Furthermore, a system has been developed that combines a
tactile hair sensor skin with embedded ultrasound transducers.
This combination enables the detection of objects before they
come in contact with the robot, thereby enhancing safety and
operational efficiency [178].

Triboelectric Skins: The triboelectric effect represents
a promising avenue for tactile sensor skins, functioning
through the principles of contact electrification and electro-
static induction. When an external force is applied, the two
films come into contact, consequently generating triboelectric
charges [78], [79]. Upon separation of the films, these charges
induce an electric potential difference, resulting in current
flow. Each application and release of force subsequently
triggers this cycle, thereby enabling the sensor to effectively
detect touch.

Regarding manufacturing, the roll-to-roll UV embossing
process proves advantageous for creating such sensors [76].
Furthermore, innovative approaches continue to be used in
this field, such as the proposed skin design that integrates an
electrochromic pigment layer. This distinctive layer exhibits a
color shift from light green to dark blue upon experiencing an
applied force, adding a visible indicator to the tactile sensing
capability [77].

Pressure Pads and Mechanical Sensors: Foam pads are
increasingly utilized for power and force limitation, serving
to mitigate collision impact. Impact reduction can be achieved
using various methods. One prevalent approach involves the
use of foam cushions that trigger an air vent upon compression,
such as air skin, a commercially available product [32],
[80], gyroid infill-based robotic skin [81] or matrix structure
pneumatic robot skin [82] with tactile resolution to identify
the touch location.
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Two primary methods were employed to indicate the region
of impact based on the degree of pad compression. The first
involves the integration of LEDs and light-to-voltage sensors
within foam pads. These sensors measure the displacement
between each other, thereby enabling estimation of the impact
and consequent deformation [83]. The alternative strategy
encompasses embedding multiple force sensors underneath a
rigid bumper cover connected to the robot link. This arrange-
ment facilitates the identification of the impact region based
on force measurements [85]. It is worth noting that proximity
covers can be strategically used in close proximity to the
end-effector of large industrial robots, particularly to ensure
safety within the access portion of the work cell [86].

An inspiration from keyboard technology was drawn to
identify the region of impact. For instance, small mechan-
ical microswitches have been implemented as a means of
detecting force impact [89]. Furthermore, mechanical pressure
and proximity-sensing skin have been proposed, with the
added capability of light emission for impact region identi-
fication [90].

Moreover, tactile skin alternatives such as optical fibers
embedded in a polymer have been explored. These fibers
measure the shift in wavelength in response to the force
applied, thus functioning as an effective tactile skin [84].

Rather than employing large-scale foam pads for force
measurement, the approach in [87] entails the design of a rigid,
conformal PCB skin patch. This design utilizes a light-emitting
diode covered by a deformable silicone cap-forming taxel.
When pressed, variations in the reflected light can be converted
into corresponding impact force data.

This skin can also function without the silicone cover.
The intensity of the light received upon reflection by the
phototransistor can be used to calculate the distance to an
object based on the resulting photocurrent [88].

Further advancements have led to the development of mod-
ular tiles that can be interconnected to create a larger skin.
This skin allows for the ability to sense a range of parameters
including proximity, force, acceleration, and temperature. Each
tile is equipped with a microprocessor that only transmits
new values in an event-driven manner, enhancing the system’s
computational load [169], similar to TacSuit, which allows
for pressure, proximity, vibration, and temperature sensing
through modular tiles [170].

Inflatable Airbags and Skins: Efforts to prevent serious
human injuries resulting from physical collisions with robotic
manipulators have led to the development of inflatable solu-
tions [92], [93]. One such solution is an end-effector airbag
designed to inflate around the end-effector, whenever the robot
undergoes unsafe motions. This preventive measure shields the
end-effector in the event of a collision, whereas a torque sensor
detects the impact and prompts the robot to cease operation.

In addition, Kim et al. [91] presented a dynamic inflating
solution designed to absorb impacts. This solution features
liquid-filled microfluidic channels embedded within the robot’s
skin and is capable of detecting not only the magnitudes but
also the precise locations of external forces, regardless of their
shape and size. This unique capability is attributed to the

continuous nature of the liquid conductor embedded in the
inflatable elastomer.

Marker-Based Tactile Sensors Tracking Within Robot Body:
An alternative approach to tactile sensing involves the use of
a camera system housed within a flexible cylindrical elas-
tomer casing. Inside this casing, markers are symmetrically
distributed and captured by the camera. A computer vision
algorithm measures the distribution of these markers. When
the casing is deformed by an impact, the markers are displaced.
This displacement is mapped by a computer vision algorithm
to a ground truth to pinpoint the location and force of the
impact [94], [95], which can also be enhanced by a thermal
layer for a warm touch sensation [96]. However, this tech-
nology raises questions about the placement and integration
of the robot’s electronics and mechanical structures, such as
motors, shafts, and electronics, which are usually found in the
inside space where the markers are being projected. Building
upon this, Luu et al. [171] propose the surface transparency
to be controllable to also allow for proximity sensing through
the housing. We contend that at this stage, these markers are
more of a theoretical exploration than a feasible solution.

Impedance Tomography: Measures changes in electrical
conductivity across a surface using multiple electrodes to cre-
ate a conductivity map, enabling large-area, volumetric tactile
sensing. Unlike capacitive sensing, which detects surface-level
changes in electric charge, it can detect the direction and
distribution of pressure in robotic skins [48], [97].

ToF (LiDAR) Sensors: The second most prevalent sensor
technology implemented on robots is based on ToF sensors,
specifically LiDAR, with approximately 17.0% (24 out of 141)
of on-robot systems utilizing this approach.

ToFis used to measure the distance between the sensor and
an object, functioning by emitting a light pulse, commonly
very narrow infrared (IR), toward the object and subsequently
measuring the time taken for the pulse to return after being
reflected by the object. The distance (d) can then be computed
using the equation d = (c × t/2), where d represents the
distance from the sensor to the object, c denotes the speed of
light (3 × 108 m/s), and t corresponds to the round-trip time
of the light pulse traveling from the sensor to the object and
back. The division of the equation by two accounts for t repre-
senting the round-trip time. Apart from the ToF method, there
is a triangulation method that calculates the angle of reflection
that arrives at the charge-coupled device of the sensor.

In its most rudimentary form, IR light-emitting diode
sensors are distributed as individual spots [107], [108] or
interconnected I2C sensor arrays [109], [113] across the entire
robot body, or merely on the end-effector [110], [111]. This
arrangement facilitates obstacle detection in the surrounding
space and, for instance, the execution of an evasive action to
ensure human safety [112].

Instead of distributing individual sensors across the robot
body, modular outwards-looking ring arrays of ToF sensors
have been proposed [114]. These are based on calculating
the optimal sensing volume coverage on the robot [115] and
have been successfully used to implement a trimodal SSM.
This model leverages both the measured relative human–robot
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speeds and the separation distance to result in more consistent
and smoother robot movements [116]. Close-range detection
can be achieved using double sensor rings mounted at oppo-
site ends between a robot link, which can detect imminent
collisions over a large coverage area and trigger a safety-rated
monitored stop (SRMS) [117].

However, ToF sensors have limitations in the close range,
including minimum measurable distance, signal interference,
dispersion/absorption effects, and sensitivity/resolution con-
straints. To overcome these limitations, a ring cuff featuring
wide-area capacitive sensing covers has been proposed, which
bridges the perception gap, enabling path deviation in a short
range, and thus improving the overall obstacle avoidance of the
robot arm [119], [120]. Another hybrid approach combining
capacitive and ToF sensors [124] has been demonstrated in
developing modular skin-like sensor tiles that can be dis-
tributed on the entire robot body and stream their data via
a serial bus [121], [122], [123].

An alternative multimodal sensor array has been proposed
to enable tactile sensing and proximity sensing. This array
alternates between the ToF sensors and the Hall effect sensors
covered by a silicon layer with embedded magnets. When the
silicon layer touches or deforms, it induces a change in the
magnetic flux density (1B), which is converted into force
(F), thus enabling contact detection [167], [168]. Another
system integrates modular tiles by combining ToF sensors
for long-range proximity detection, capacitive sensors for
wide-field proximity coverage, and inductive sensing for tactile
perception [165].

For a more intuitive human–robot interaction, ToF proximity
sensors have been integrated into a modular ring with gesture
sensors. These sensors interpret patterns of proximity and hand
motion and recognize gestures such as up, down, left, and
right [118].

Cameras, Markers, and Laser Scanners: In order to track
specific objects and mitigate collision risks, Liu et al. [144]
and Shi and Hu [179] demonstrate the usage of 2-D ArUco
Markers, akin to QR codes, which are tracked by a camera,
not feasible for industry since not all elements can be labeled.
Alternatively, some solutions employ a Kinect Camera on
the robot, which is capable of automatically tracking the
skeleton positions of up to six people within the surrounding
space [135].

A more focused approach is the depth camera-in-hand
method, which is mainly used to track the operator’s hands
or objects in the space [136], [140], [141], while another
approach is to use a co-moving 3-D camera installed on link
3 to compensate for occluded areas [142]. This methodology
is deployed by Bdiwi [137] in conjunction with a Kinect
structured light camera, providing a depth frame to segment
the observation of the workspace. This enables the system to
track the operator’s arm and workpiece and halt collaboration
if other parts of the human body are too close. To ensure
safety, the robot operates only if the operator’s face is detected
within its FOV, which limits the productivity of the robot.
Furthermore, an additional ToF safety sensor skin is integrated
to maintain safety, even when the human is not in the FOV
because of its limited view or occlusions it might face.

Fig. 10. Classification of sensor-enabled safety systems with close to
robot installation.

In another system, Kinect cameras were used on a manipula-
tor’s mobile platform to distinguish between the manipulator
and surrounding objects within the workspace [138], [139].
This mobile platform employs a laser scanner to monitor the
surrounding space. Stopp et al. [143] also utilize several laser
scanners, albeit distributed across the entire mobile platform
in a bulky configuration.

RaDAR: RaDAR uses the principles of electromagnetic
wave propagation and reflection to detect, locate objects, and
measure their velocity and through that can be utilized to
detect static and nonstatic obstacles. Leveraging 160-GHz
radar technology, Geiger and Waldschmidt [145] introduced
flexible antennas distributed on two dielectric waveguides,
providing extensive coverage and flexibility in sensor posi-
tioning on the robot’s surface. Moreover, Kim et al. [146]
identified that utilizing RaDAR sensors on the robot can
decrease the cycle time and floor shop space required to
perform a task when compared to a close to robot placed
laser scanner. Several patents claim the integration of radar
technology onto robotic manipulators, which is a challenging
task [147], [148], [149], particularly when the radar is mounted
on the end-effector rather than statically on the base, owing
to both the source and target being in motion, for example,
when a human navigates around a moving robotic manipulator,
which requires advanced RaDAR processing algorithms.

SENSORS CLOSE TO THE ROBOT refer to those positioned in
near vicinity to the manipulator, looking outwards to observe
the space, see Fig. 10 for a summary.

RaDAR: RaDAR has been proposed for use in robotic
work cells to enable SSM [181], [182]. A frequency mod-
ulated continuous wave radar (FMCW) radar sensor can be
installed close to the robot base, allowing for the estimation
of the separation distance between the operator and the robot.
This functions effectively under strong light, direct exposure,
or dust, overcoming the limitations of laser scanners, although
it has a lower angular resolution. The FMCW radar technology
utilizes continuously varying frequencies to accurately calcu-
late the target distance and velocity. A novel speed control
architecture has been introduced that uses tracking radar to
estimate object range and classification radar to distinguish
between humans and mobile robots [183]. A prominent com-
mercially available RaDAR platform is the IWR6843AOP
developed by Texas Instruments, which was evaluated for its
suitability in measuring worker proximity without invading
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privacy [184]. To avoid false detections, asymmetric Kalman
filters have been proposed [185], and techniques to detect
human hand intrusion have been explored [186], [187]. Some
methods combine RaDAR with ToF cameras [180] and laser
scanners to enhance spatial perception [188].

Laser Scanners: Laser scanners, in combination with an
inertial measurement unit (IMU) on the operator, can define
the relative position of the torso and upper body configuration,
enabling collision avoidance through customized methods like
potential fields [193]. To ensure safety redundancy, laser
scanners have been combined with tactile mats [189] and
vibrotactile bracelets have been added to indicate the proximity
of the robot [197].

Camera and Ultrasound: A direction-sensing platform uti-
lizing several 2-D Cameras around the robot base has been
proposed by Gradolewski et al. [194]. It detects a person
in its FOV based on image segmentation and then uses an
ultrasound SoDAR sensor to measure proximity. The issue
with this system is that it suffers from occlusions when the
robot moves over the sensors, thereby limiting the robot’s
vision at a certain angle.

IR Structured Light Cameras: On a mobile manipulator
platform, Kinect Sensors have been implemented for capturing
3-D point clouds and enabling dynamic safety zoning or
SSM [195], [196]. For high-accuracy hand tracking, including
fingers, leap motion sensors have been placed on the work-
cell table, overcoming the limitations of externally installed
Kinects [198].

EXTERNALLY INSTALLED SENSORS refer to those posi-
tioned around the robot’s workspace, observing it externally
and not being placed on the robot’s body, see Fig. 11 for a
summary.

IR Structured Light Cameras (Kinect Sensor): One of
the most widely used sensors for external safety systems
is the Kinect sensor by Microsoft. This sensor is based on
an amalgamation of an IR structured light projector, depth
camera, RGB camera, and an intricate processing suite. The
underlying technology for depth sensing such as the Kinect is
structured light, a technique that uses a light projector to emit
a specific pattern, such as dots, onto a scene or object. When
this projected light encounters various surfaces, it distorts
based on the distances and orientations of those surfaces.
The IR-sensitive camera captures images of the scene with
a distorted pattern. By analyzing the disparities between the
known projected pattern and the captured distorted pattern,
the system computes the depth information for each point
in the scene, leading to the creation of a 3-D representation
known as a depth map.

Ensuring safe operations around a selective compliance
assembly robot (SCARA) robot, which is popular in areas such
as packaging applications, has been tackled with the installa-
tion of a Kinect camera overhead of the workspace [199].
Positioned to look at the operator and robot from above, the
Kinect captures a depth image stream that is then processed
through distance limitation filters and edge detection to seg-
ment the image for the robot and the operator’s upper body.
This allows for the calculation of the closest distance based on
2-D edge pixels; the robot’s trajectory is immediately halted

Fig. 11. Classification of sensor-enabled safety systems with external
installation.

if the danger criterion is met. The work by Andres et al. [200]
employ a similar filtering approach to enable static–dynamic
SSM, outperforming the static implementation. Furthermore,
a fuzzy logic approach considering the human head and
upper body orientation has been developed for risk estimation,
complementing estimations made in accordance with ISO
12100 [201].

The approach of tracking human operators’ X–Y positions
with Kinect, looking downward from above [280], [281], has
also been harnessed in conjunction with safety-critical laser
scanners. This combined system can trigger a SRMS if the
dynamic SSM with Kinect fails or processing lags [191]. Laser
scanners combined with Kinects can also enable a layered,
redundant safety architecture in a work cell [192]. In addition,
[202] demonstrated that collaborative scenarios can also be
supported. In this approach, the overhead system identifies and
tracks the worker’s hand by strategically placing a work piece
at its center to facilitate an object handover.

In addition to overhead installations, various proposals exist
for single-Kinect camera setups that observe the operator
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and robot from a sideways perspective. Some approaches
leverage occupancy mapping for collision avoidance and safety
measures [203], [204], [205], [206]. Others employ skeleton
tracking, calculating the distance between humans and the
robot to enable real-time speed alterations. These systems
may model robots and humans using ellipsoids to swiftly
detect collisions [207] or implement reactive, collision-free
path planning [207]. For example, Flacco et al. [208] and De
Luca and Flacco [209] suggest generating repulsive vectors to
obtain smooth and feasible joint velocity commands that help
the robot avoid obstacles in a depth space. Du et al. [210]
enhance the approach by using larger bounding cylinders
around the human skeleton, planning paths in real time that
allow robots to bypass operators. In addition, a combination
of human skeleton tracking with facial recognition algorithms
has been explored. This system can distinguish between a
trained robot operator and others, significantly slowing down
the robot if the trained operator is not within the FOV of the
sensor [211]; moreover, Liu [212] also add a gesture and voice
recognition module to the workspace to control the robot.

Several proposals have focused on specific operational sce-
narios. For instance, contact-point sensing with a Kinect sensor
has been suggested as a means to pause and later resume tasks
at the exact contact-point position [213]. Furthermore, when
obstacles occlude the robot and are situated between the Kinect
and the robot, Nascimento et al. [214] recommend extracting
the robot from the depth image using the proprioceptive kine-
matic model. This facilitates the identification of the closest
obstacle, allowing the implementation of collision avoidance
strategies such as distancing and dodging.

To overcome the occlusions that systems of a single external
sensor suffer from, one method involves distributing multiple
cameras around the work cell and fusing the depth images
together [217] or combining each skeleton model from indi-
vidual sensors into a single fused estimation of the operator’s
skeleton [218], [219], [220]. A real-time collision avoidance
method capable of handling unknown static and dynamic
obstacles was introduced by Liao et al. [221]. This method
utilizes artificial potential techniques and repulsive vectors to
adjust the trajectory of the robot around the obstacle points
identified by depth sensors.

A different strategy filters the operator from the scene by
removing the background from the Kinect depth images and
applying bounding boxes around the operator. This facilitates
minimum-distance calculations for the robot, enabling colli-
sion avoidance [222], [223]. Alternative methods generate a
convex hull around the operator [224], [225] or use Octrees
and Octomaps for distinguishing between the robot model,
static objects, and new obstacles in the workspace, and to
perform predictive and reflexive robot manipulator trajectory
estimation [226], [227]. In addition, detecting the occupancy
of space [228] includes a context-aware human pose recog-
nition module that constantly monitors the human operator’s
assembly poses and triggers a new robot target once a working
step has been completed.

A specialized approach proposed by Morales et al. [229]
use a detection pipeline that leverages salient RGB detection,
maps it to depth, and feeds the data into a PointNet CNN

(trained on the RGBD-DHaRIo dataset [230]). This allows
for the detection of the number of people in the scene
and utilizes a biternion network architecture to calculate the
movement trend and orientation of an operator over several
frames. To further enhance segmentation, thermal cameras
are deployed by Yang et al. [235], Costanzo et al. [236],
and Katsampiris-Salgado et al. [237]. These imagers, which
are insensitive to light, improve edge detection robustness
alongside a Kinect depth camera, enabling SSM.

Several developments combine Kinect cameras with on-
human mixed-reality headsets, such as HoloLens. For instance,
Liu et al. [231] perform skeleton tracking with Kinects and
visualizes a dynamic risk field, indicating safe and unsafe
regions around the robot. Messeri et al. [233] estimate the
human wrist position in the workspace to overcome occlu-
sions. Another approach uses Kinects to track the operator
and display the minimum-distance calculations in an aug-
mented reality headset [234]. These multifaceted solutions
offer promising avenues for enhancing safety and efficiency
within the dynamic field of robotic operation.

NIR Camera Sensors: External near IR (NIR) imaging
cameras have been deployed to identify and classify humans
by examining the spectral signature of skin reflection intensity
at extended distances. This technology has been synergistically
integrated with a SoDAR ultrasound array mounted on the
robot, granting it the capability to discern obstacles at mid-
range distances. To complement this, an NIR point sensor
was specifically implemented on the robot to detect human
presence near a TCP point in close proximity. These diverse
sensor signals are collectively processed using a redundantly
configured central control unit [131].

Stereo Cameras and Other RGB-D Cameras: A stereo
camera functions on the principle of stereoscopic vision by
using two lenses spaced apart at a distance analogous to
human eyes. These lenses capture two slightly different images
of the scene. Analyzing the disparity or difference between
these images enables depth information extraction through
triangulation, thus facilitating the creation of a depth map.
However, some papers and patents fail to specify whether a
stereo camera has been employed and merely mention the use
of an unspecified RGB-D Camera.

For instance, Svarny et al. [239] leverage an Intel RealSense
StereoVision Camera to track an operator’s skeleton by feeding
the depth map into the OpenPose API. This facilitates the
extraction of the skeleton to calculate the separation dis-
tance for the SSM. At very short distances near the contact,
it switches to PFM using the robot’s built-in torque sensors
to halt the robot on collision. Another proposal involves
deploying multiple cameras within the workspace, coupled
with an artificial intelligence (AI)-based skeleton tracking
layer, to ensure that the safety distance to the operator is
maintained [242], cluster the detection into ellipsoids [243]
or fusing it with a thermal image provided by a thermal
camera to ensure fast and reliable human localization [282].
To distinguish between robots, objects, and operators in the
workspace, Antão et al. [240] propose processing detec-
tion from a sideways-installed ZED stereo camera into a
labeled occupancy voxel-grid. This method differentiates the
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occupancy of space, permitting its use for topics like pre-
dictive control or task recognition. Unfortunately, objects are
identifiable only by color. To separate static scene elements
from dynamic ones, another method segments the depth map
using a sideways-mounted camera [215] or proposes to process
the depth map into voxels to use it for real-time motion
planning [216].

Similarly, Haghighi et al. [283] and Yang and Zhang [284]
developed modules that enhance the data accuracy for body
tracking with IMUs on the operator, mitigating limitations
in the angle of view, distance, and lighting conditions for
detecting gestures and postures. Farsoni et al. [285] pri-
marily employ IMUs to render skeleton tracking redundant
and augment stereo vision-based 3-D perception. Calibration
and setup of cameras are vital for complete coverage of
the workspace, ensuring coverage devoid of shadows and an
accurate voxelized representation of the space. Collision detec-
tion is accomplished by dynamically swept volumes stepping
through voxels to confirm that they are unoccupied [253].
Several overhead camera systems have been proposed for
workspace monitoring, such as the patent behind the formerly
commercial system PilzEye [241]. Other overhead or sideway
camera solutions capture human and robot interactions in the
operating environment [254], [286], distinguishing between
safe and risk zones [255], [256]. Some solutions even project
these zones onto the workspace floor [257] or employ them
for collision avoidance [258], [259], [260]. The human-robot
safety (HOSA) system additionally verifies whether the opera-
tors are wearing personal protective equipment [287]. Another
patent, [190], advocates human skeleton tracking and envi-
ronmental mapping using depth cameras in conjunction with
a laser scanner. A similar approach was demonstrated with
the movable iMRK platform, which can additionally perform
gesture recognition [288].

To enhance the safety around large-scale, high-payload
robots, authors [244], [245], [247], and [248] present
a dual-tiered collision avoidance strategy. This approach
incorporates a global LiDAR system, which provides com-
prehensive detection of the entire environment, and a local
stereo camera to supply more detailed, high-speed, localized
information within the known workspace of the human. Such
an integration markedly elevates the system efficiency in
dynamic SSM, enabling rapid calculation of intrusion dis-
tances [246] and adding object tracking functionality to ensure
that operators are not lost in the workspace [289]. An entirely
LiDAR-based approach is presented by Haifeng et al. [250];
moreover, Podgorelec et al. [249] segment the robot and static
obstacles in real time from the detection and enables SSM.
A commercial system on the market that uses an external
LiDAR (ToF) sensor mounted overhead is the Veo FreeMove
system [251].

In summary, Pieskä et al. [290] observe that depth-sensing
cameras are typically deficient in features, such as lock-
ing mechanisms and adequate protection against dust and
water. Such shortcomings render them unsuitable for harsh
industrial environments where they may be exposed to mis-
alignment. This article further underscores the necessity for

future research to focus on the development and investigation
of robust devices explicitly designed for industrial applications
that are capable of overcoming these challenges.

Regular Cameras: In lieu of employing an RGB-D depth
camera, some proposals favor regular RGB cameras. For
instance, Lu et al. [261] outline a work cell where cam-
eras are positioned above the workspace to capture images,
segmenting them to identify the blob corresponding to the
worker’s hardhat. The centroid of the blob is then converted
to its line-of-sight in 3-D world coordinates. If the worker
is not wearing a hardhat, the microwave sensors still detect
the intrusion, consequently shutting off the robot. To perform
collision avoidance, Xie et al. [269] utilize a sideways-facing
RGB camera to perform skeleton tracking on 2-D images.

To further enhance human tracking within the workspace,
Höcherl and Schlegl [130] specifically identifies the oper-
ator’s hand using an overhead camera, supplementing this
identification with a redundancy check via on-robot installed
ultrasound SoDAR sensors. Moreover, Dietrich et al. [262]
designed an HRC booth employing multiple cameras, imple-
menting a voxel carving method that labels voxels as occupied
unless explicitly marked empty by one of the cameras. This
allowed the robot to adjust its speed. In addition, Tan and
Arai [263] conduct upper body skeleton tracking through
overhead cameras, while other works extend it to full-body
skeleton tracking [264], [265] or even the analysis of human
attributes in the workspace to calculate a risk score [266].

For large-area human tracking, Iwashita et al. [267] advo-
cate a distributed camera network. This approach utilizes the
fast marching method, facilitating efficient tracking of an
individual’s movement within the space.

Furthermore, a multifunctional cell has been suggested by
Chen et al. [268], incorporating two cameras specifically
tasked with tracking the incoming operators. This cell consists
of an entry detection camera coupled with a module capable
of both facial and gesture recognition, enhancing human–robot
interaction within the workspace.

Dynamic Vision Sensors (DVSs) Stereo: DVS, also referred
to as event-based cameras, are bioinspired sensors that detect
changes in the logarithmic brightness of a scene. They excel in
capturing fast-moving objects while simultaneously ignoring
static background elements, thereby minimizing the volume
of data required for processing. Steffen et al. [270] introduce
a DVS stereo-camera network, where the camera outputs are
integrated into a spiking neural network to build an obstacle
memory of the robot’s workspace. This excludes the robot
itself and is designed to conserve older states while responding
to new events and maintaining accurate obstacle memories
at all times. However, the proposed system is facing issues
with the cooperative stereo network, which does not support
a fine-grained representation to avoid a drastic increase in the
number of neurons and synapses used in the SNN and, thus,
the required resource.

Sensor Networks: Proposals for wireless networks include
ceiling-mounted Wireless Nodes that track objects such
as workers by monitoring the perturbation of the radio
field [271]. Researchers have also suggested integrating RF
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Fig. 12. Classification of sensor-enabled safety systems with on-human
installation.

perturbation-based sensing into beyond 5G cellular systems
for seamless integration with existing environments, such
as factories. They recommend allocating a single symbol
in each subframe of the communication system, yielding a
1-kHz sampling frequency for subject tracking [272]. A novel
sensor fusion network architecture and detection/localization
algorithm is proposed by Minora et al. [273] which combine
data from a 122-GHz FMCW radar, 100-GHz imaging camera,
and IR array sensors for anonymous perception of workers in
the workspace.

Laser Scanners and Fences: The most prevalent method to
ensure safety in robotic work cells involves laser scanners,
which scan their surroundings and gauge distances using the
ToF principle. These are generally positioned close to the floor
level for detecting operators [274]. Shackleford et al. [275]
blend multiple laser scanners to enable SSM and suggest
strategies to mitigate occlusion when several operators are in
the workspace. To prevent contact with specific robot parts,
laser fences can be deployed to trigger an SRMS until the
area is cleared [276] or can be used alongside a Kinect sensor
that tracks the skeleton of the operator [232].

Tactile Floors: An alternative method to track an operator’s
position in a work cell involves the use of tactile floors that
respond to applied pressure. This approach enables the track-
ing of human movement direction and speed. When paired
with an overhead projector system, safety-specific features,
such as safety zones or process-specific information can be
displayed on the floor [277]. This system also serves as user
input, such as initiating the next work step via the tactile
floor [278]. Peter et al. [279] employ a convolutional neural
network (CNN) to classify tactile data, distinguishing between
objects such as mobile robots, humans, and trolleys to interpret
user intentions.

Thermal Cameras: While previous systems have fused
thermal cameras with stereo vision cameras or Kinect sensors,
this proposed low-cost system [238] uses a single externally
installed thermal camera to monitor access to the workspace
purely based on the thermal imaging and a background sub-
traction algorithm.

ON-HUMAN SENSORS refer to those being worn on the
body of the human while working in the vicinity of the robot,
see Fig. 12 for a summary.

Capacitive Vest: A capacitive shunt mode vest has been
designed, leveraging the principle that the displacement cur-
rent and capacitance between transmit and receive electrodes
decrease when an object enters the electric field generated

Fig. 13. Operating modes: SSM, PFM, IT and SSM, unclear, SRMS,
and HG.

by the transmitting electrode. This vest can detect metallic
objects at distances of up to 18 cm with high resolution, track
an object’s motion, and provide an accurate estimate of its
shape [291].

IGPS, UWB, and RF: Indoor global positioning sys-
tem (IGPS) and ultrawideband (UWB) solutions have been
introduced to offer precise location tracking within indoor
environments [292], [293], [294]. By utilizing tags or antennas
placed on humans and robots, these systems can monitor their
positions and work in coordination with externally installed
ultrawideband (UWB) receiver stations. RF-based proposals,
such as a wireless earpiece emitter, have also been explored.
This earpiece generates a field around the human worker, and
the detectors sense disruptions in the field to send commands
that alter the robot’s operation. The system can even produce
sounds that represent the spatial location of the robot relative
to the earpiece, thereby enhancing situational awareness.

EMG Sensing: Myoelectric signal sensors, worn on the
operator’s arm, have been explored to capture the operator’s
pose and utilize it for human–robot interaction, and amend the
robot’s operating mode based on the action [295].

IMU: By distributing IMUs on the human operator to
track movements and represent them as a skeletal model,
Ate,s et al. [296] and Wenming et al. [298] eliminate the need
for skeleton tracking cameras.

Augmented Reality Headset (Built-in Sensors): One recent
trend emerging is the use of augmented reality headsets
and using their built-in sensors to obtain the operator posi-
tion [297].

2) Q2: What Operating Modes, According to ISO/TS 15066,
Do the Technologies Enable?: Segmentation of the safety
systems, as depicted in Fig. 13, aligns with the working modes
defined in ISO/TS 15066.

SSM is the predominant mode, implemented by approxi-
mately 45.1% of the systems, primarily using structured light
cameras, such as Kinect sensors. The sensor data stream is then
used, e.g., for skeleton tracking and point cloud voxelization
for occupancy mapping to dynamically analyze and respond
to the spatial environment around the robot. This setup allows
for dynamic analysis and response to the spatial environment
around the robot. In addition, approximately 16.5% of systems
include IT adaptation to enhance SSM, a feature not currently
specified in the standard but vital for the future optimization
of robotic manipulators, raising the SSM’s total adoption to
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Fig. 14. Publication trend over years by the number of sensor technolo-
gies used in the system. Data from 2024 is excluded.

61.6% and highlighting a strong trend toward this mode.
The widespread adoption of SSM coupled with trajectory
adaptations would enhance safety and efficiency, marking a
shift toward more interactive and autonomous robotic systems
in manufacturing.

Power and force monitoring accounts for 25.4% of the
implementations, typically through capacitive sensors inte-
grated as “skins” on the robot bodies to detect collisions
and sense touch. These skins may also facilitate HG by
determining whether the robot is being manipulated, although
this application of this operating mode was not evident across
the analyzed papers.

SRMS, which simply halts the robot’s operations, appears in
only 5.7% of the implementations. This basic mode is increas-
ingly being replaced by SSM due to its limited functionality
of only stopping the robot, with no dominant sensing tech-
nology identified. Ambiguity in defining operating modes was
prevalent in some studies, with others omitting these details
entirely, suggesting a significant need for stricter adherence
to and clearer articulation of compliance or future planned
compliance, even at the research level.

3) Q3: Is There a Trend Toward Combining Sensor Technolo-
gies?: Analyzing sensor combinations indicates a prominent
trend toward the utilization of single-sensor setups in robotic
systems, with a growing interest in dual-sensor configurations,
whereas configurations utilizing three or more sensors are less
common, as depicted in Fig. 14. Fig. 15 further illustrates
these interconnections, emphasizing the primary pairings of
technologies and their prevalence across the systems.

Of the 281 systems studied, approximately 30.2% use more
than two sensor technologies, with LiDAR (ToF) and stereo
cameras being the most common combination, occurring in
eight instances. This pairing leverages detailed depth map-
ping from stereo cameras in structured environments while
using LiDAR for distance measurements in less feature-rich,
unstructured spaces. The second most common combination is
LiDAR (ToF) and stereo cameras, occurring in seven instances.
The third common combination is laser scanners and RaDAR,
appearing together in six instances, often enhancing percep-
tion under suboptimal lighting or environmental conditions.
In addition, 5.6% of the systems adopt more than three
sensor technologies, typically in unique combinations. This
distribution indicates a preference for simpler configurations
that enhance the safety and performance of robotic systems by

Fig. 15. Chord diagram visualizing interconnections among the most
used sensors (with more than five combinations) within a safety system,
with the line thickness representing the relative frequency of each sen-
sor pairing. Notably, the connections between LiDAR (ToF) and stereo
cameras, LiDAR (ToF) and capacitive sensors, as well as laser scanners
and RaDAR, are most prominent, illustrating key sensor synergies.

leveraging the complementary strengths of different sensors.
However, the adoption of configurations with more sensors,
which could provide further benefits such as increased sensing
redundancy in different spectrums, remains limited.

IV. IMPLICATIONS OF THE REVIEW AND
RECOMMENDATIONS FOR FUTURE PRACTICE

A. Findings
Our scoping review reveals several key findings. First, cur-

rent safety systems mostly rely on single-sensor technologies,
particularly those integrated into SSM mode, using externally
installed structured light cameras. While on-robot sensing
has improved, the focus remains on tactile skins without
shear force capabilities, often accompanied by low-resolution
proximity sensors limited to a 30-cm range on the robot arm.
Second, there is a trend toward using dual-sensor setups to
improve safety and functionality through sensors to increase
the robustness and fault tolerance. However, multisensor sys-
tems (more than three sensors) are still uncommon, and
single-sensor systems continue to be dominant. Third, most
existing external systems face challenges such as occlusions,
limited spatial awareness, and dependence on fixed installa-
tions, which may pose difficulties in implementing robots on
movable platforms or in rapidly reconfigurable workspaces,
as envisioned in Industry 5.0.

B. Recommendation for Future Research
Future research and development should focus on improving

proximity sensors by increasing their accuracy, range, and
angular resolution; enhancing tactile sensor accuracy through
the shear force sensing; and improving responsiveness to
differentiate between various types of physical interactions
critical to safety (collisions) and intended control.
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Robotic proximity-sensing systems are often constrained by
limited frame-rate capabilities. While real-time responsiveness
benefits from frame rates of 90 Hz or higher, many current
systems operate at 30 Hz or less. This limitation poses
significant safety risks in dynamic environments with frequent
human-robot interactions. For instance, at a combined closing
speed of 3 m/s (robot at 1 m/s and human at 2 m/s), the
separation distance decreases by approximately 3.3 cm every
11 ms—the frame interval of a 90-Hz system. Lower frame
rates prolong the update intervals, impairing the ability of the
system to react promptly.

Processing high frame rates requires computational
resources that are capable of handling high-volume, low-
latency data streams. Fast, highly parallel, and redundant
computing architectures are essential for ensuring processing
times across extensive sensor arrays. Integrating adaptive
sensing mechanisms allows adjustable frame rates in critical
zones, for example, human–robot handover areas. By dynam-
ically allocating higher frame rates to these areas, the system
enhances responsiveness and safety without incurring unnec-
essary computational overheads in less critical zones.

In addition, the perception system must be able to function
effectively under varying conditions, such as different light-
ing, dust, and weather scenarios (e.g., on construction sites),
to prevent “vision gap.” The system should be fault-tolerant
and have low latency to allow swift adjustment of trajecto-
ries and avoid obstacles, thereby ensuring high operational
uptime. In addition, the sensing system must be lightweight to
avoid compromising the robot’s payload capacity of the robot
and have a small form factor to minimize the risk of self-
collision. While emerging large-area electronics and printed
and stretchable sensors offer flexible, scalable arrays for
robotic surfaces, primarily in tactile sensing, further research
is needed to adapt these technologies for high-resolution, real-
time proximity sensing. Scaling production through large-area
electronics foundries may provide a viable platform approach,
enabling cost-effective integrated sensing systems that meet
the demands of industrial, collaborative, and humanoid robots,
which are on the rise in various sectors.

To advance the next generation of robots and to blur the
lines between industrial robots and cobots, robust capabilities
for global 3-D environmental mapping, reconstruction, and
real-time spatial interpretation are required. This requires accu-
rate differentiation between humans, manipulable objects, and
other robots, adaptive resolutions with a high resolution near
the TCP for precise manipulation and navigation, and with
lower resolution to detect incoming objects in the surrounding
workspace. Moreover, perception systems must be capable of
recognizing occlusions caused by obstacles and identifying
unmonitored areas, particularly when the system is mounted
on the robot and detections occur outside the FOV.

In addition, we recommend further research and devel-
opment of deterministic algorithms across multiple sensor
pipelines in various spectra instead of relying only on
algorithms based on large annotated datasets for understanding
spatial information. This approach should incorporate a late-
stage (high-level) fusion of these parallel data streams into
a unified representation. Such integration not only enables

a clear distinction between static and dynamic objects and
their types but also enables effective tracking within the
environment, ensuring comprehensive awareness of the area
surrounding the robot. As these systems overcome certification
challenges and are integrated into the industry for use in
humanoid robots, they will gather extensive datasets. Although
an AI application layer can be added to enhance functionality,
it is crucial that foundational sensor integration and data
processing are robust and reliable for mapping the space.
As computing power continues to advance, these foundational
sensor stacks will enable effective deployment and scaling of
AI-based foundational models for more sophisticated spatial
interpretations. In addition, multisensor detection systems can
be leveraged for dataset annotation, for instance, by aligning
thermal images with point clouds generated from depth maps
to accurately segment the human operator.

Finally, we recognize several legal and regulatory chal-
lenges, particularly regarding liability, that significantly impact
the certification and commercialization of robotics safety
systems. The robotics landscape progresses slowly, with
multi-sensor systems rarely commercialized, except by com-
panies like Neura Robotics.2 Therefore, researchers should
specify the operating modes of their systems. Throughout the
papers identified in the scoping review, this was often not
entirely clear. Furthermore, standardized benchmarks should
be established and linked to a robotics intelligence index
designed explicitly to assess robotic safety abilities, enabling
a consistent and comparative evaluation of future proposed
robotic safety, perception, and autonomy systems.

V. CONCLUSION

In conclusion, this PRISMA-ScR scoping review systemat-
ically evaluated sensor-enabled safety systems for HRC in the
manufacturing industry. For stakeholders in manufacturing and
robotics, our analysis provides a comprehensive, segmented
overview of ongoing developments and trends in this area.
It can also support design and decision-making processes
for integrating sensor technologies into robot safety systems.
We suggest prioritizing the development of advanced prox-
imity sensors with improved accuracy and range, as well
as exploring multisensor setups to enhance safety and func-
tionality. Furthermore, establishing standardized benchmarks
linked to a robotics intelligence index should be considered
for the consistent and comparative evaluation of future robotic
sensor-enabled safety and perception systems for HRC.
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