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Abstract—Micro-Doppler (m-D) signals are susceptible to
interference from a large number of Doppler signals and
ambient noise, and the single use of m-D signatures (MDSs)
for the classification of small, slow, and low-speed targets
poses certain limitations. In this article, a dynamic multifea-
ture data fusion neural network (DMFFNNet) classification
method is proposed. First, K-band frequency-modulated
continuous-wave (FMCW) radar is used to collect echo
data from five types of rotor drones and bionic bird. After
preprocessing the data, 2-D range–period graphic and 2-D
time–frequency (TF) spectrograms are obtained. We investi-
gate the construction of new data representations in the range–periodic domain, designing networks to extract dynamic
time-varying features of the data. To be able to obtain accurate localized features, a local feature extraction module is
proposed to extract local features from the range–period graph, while a global feature extraction module is used to extract
global features from the TF spectrograms. To be able to extract dynamic information about the data, a 3-D network is used
to capture dynamic change feature in the 3-D range–period data. Finally, a feature fusion module is designed to integrate
the extracted features, and to be able to better extract the features of the target, an attention mechanism is added
to the fusion network to extract the temporal and spatial features in the spectrogram and fuse them to further improve
the overall performance of the model. Experimental results show that compared with single-channel CNN classification
methods, incorporating dynamic feature data enables the network to achieve better classification accuracy.

Index Terms— Classification, frequency-modulated continuous-wave (FMCW) radar, low and slow target, micro-
Doppler (m-D) features, neural networks.

I. INTRODUCTION

SMALL unmanned aerial vehicles (UAVs) have become
increasingly popular due to their compact size, low cost,

and ease of control. They have found widespread applications
in fields such as aerial photography, environmental monitoring,
and mobile communications [1]. While UAVs’ technology
offers many potential benefits, it also poses significant chal-
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lenges to air traffic management and security systems. Some
noncooperative UAVs will invade the privacy of individuals
or organizations, and their improper use in urban no-fly zones
can pose safety threats to citizens [2], [3]. Drones are now
considered a new threat to public safety, leading to a sharp
increase in the demand for their detection and removal. Due
to the similar size and speed of drones and birds, they
are easily confused in detection processes [4]. Furthermore,
different types of drones may present varying levels of threat,
necessitating their differentiation based on specific preventive
measures. The use of radar to differentiate between UAVs and
birds of prey is currently an effective tool, but there are still
significant challenges to more accurately differentiate between
low, slow, and small targets [3].

Radar cross sections (RCSs) already provide useful infor-
mation for target classification; however, the extremely low
radar scattering cross-sectional area and slow flight speed of
small UAVs increase the difficulty of target detection [5], [6],
[7], [8]. When two targets are similar in size or when the
target is small, the RCS cannot reliably distinguish between
the two targets. Moreover, RCS is influenced by the physical
material, size, and shape of the scatterer, which reduces the
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accuracy of target classification. Micro-Doppler (m-D) refers
to the Doppler frequency shift caused by small components of
target other than the main body and was first used by Luo et al.
[9] and Hanif et al. [10]. The UAVs’ blade and the wings of
bird generate Doppler effects in radar echoes. Micro-motion
features are closely related to target type and other factors,
making m-D an effective feature for classifying UAVs and
birds [11], [12], [13]. When analyzing m-D, the frequency in
the spectrogram is a crucial factor, as the micro-movements
of the target are repeatedly represented in the spectrogram.
By performing time–frequency (TF) transformation on the
micro-motion signals, the rotation frequency and blade length
of the drone’s rotor can be estimated, thereby distinguishing
the type of target [14]. However, due to the effect of TF
resolution, the phenomenon of overlapping UAVs’ rotor blades
occurs in actual measurements, making it difficult to clearly
observe the blinking of each blade, which in turn affects target
classification [15]. In addition, feature extraction, a key step,
requires a large amount of data, and most feature extraction
is manually designed, making it challenging to obtain essen-
tial features. To further analyze micro-motion features, the
cadence–velocity diagram (CVD) method was introduced. The
CVD is obtained by iteratively performing a Fourier transform
on each row of the spectrogram [16]. In the literature, CVD
has been considered an important feature for classification.
Given that MDS is a time-domain Doppler signal, while CVD
is a frequency-domain Doppler signal, the CVD method is also
effective for analyzing radar echo signals [17].

Radar target classification and recognition tasks have been
combined with deep learning to greatly improve target clas-
sification and recognition capabilities [18]. Deep learning
methods extract high-dimensional features, avoiding the lim-
itations of manual feature extraction [19], [20], [20], [21],
[22]. Xu et al. [23] proposed a target-aware recurrent atten-
tion network (TARAN) that leverages temporal dependencies
between range cells to recognize planar targets, while [24] pro-
posed a reused recursive long short-term memory (RLSTM)
network based on Doppler angular trajectories and frequency-
modulated continuous-wave (FMCW) to extract temporal and
spatial features of echo signal. For 3-D data analysis, 3D-CNN
and hybrid complex architectures such as 3D-CNN-LSTM
have been proposed, with experiments conducted on radar data
collected by ultrawideband (UWB) radar [25]. Rahman and
Robertson [26] used the GoogleNet framework to train a model
that distinguishes between drones and birds based on their m-D
features. Kim et al. [27] combined m-D features and CVD
features into a new image and used a CNN structure to improve
classification accuracy. Chen et al. [28] and Park et al. [29]
used FMCW radar to collect data on drones and birds, merging
range spectrogram and m-D features, and used a multichannel
DCNN for target classification, which improved the accuracy
of drone and bird classification. The existing CNN-based
object classification methods do not extract features from
the data itself, and there are certain limitations on object
classification due to the influence of noise and other factors
on micro-motion features.

In this article, a dynamic multifeature fusion network model
classification method based on FMCW radar is proposed. The
contributions of this article are given as follows.

1) We introduced a dynamic data representation in the
RP domain: RP sequence tensor data, which allows the
extraction of additional time-varying features from RP
data. We also constructed a 3-D distance–period dataset,
a 2-D distance–period graph dataset, and a 2-D spectrum
dataset.

2) We developed a deep learning network to extract fea-
tures from various data types and proposed a novel
feature fusion network. This network further extracts
features and performs feature fusion through an attention
mechanism, enabling the extraction and deep mining
of features from the data. The network model dynamic
multifeature data fusion neural network (DMFFNNet)
is designed for target classification, which improves the
classification accuracy compared with a single feature
extraction network.

3) Extensive experiments were conducted to evaluate the
effectiveness of the proposed framework for target
recognition. We explored the noise robustness of the
network classification using computational data with
different signal-to-noise ratio (SNR).

The rest of this article is organized as follows. The sig-
nal model of the target is described in Section II. The
principles of the proposed DMFFNNet are introduced in
Section III. The detailed target classification process and the
constructed dataset are presented in Section IV. Compre-
hensive experimental results and analysis of DMFFNNet are
given in Section V. Finally, the conclusions will be drawn in
Section VI.

II. SIGNAL MODEL

The FMCW radar echo model is introduced, and the signals
of UAVs and flying birds are modeled. An echo model for
FMCW radar signals is proposed, as shown in Fig. 1. From
this FMCW radar model, the individual signals of this signal
can be written as

Sk(tk) = Ake j (2π fc tk+πφtk 2) (1)

where Ak denotes the amplitude, tk denotes the fast time
referred to the time index within the mth chirp, fc denotes
the carrier frequency, and φ denotes the slope of the chirp
signal. The received echo signal [30] is expressed as

SR(tk) =

D∑
d=1

Ade j (2π fc(tk−τd,m )+πφ(tk−τd,m )2)
+n(tk) (2)

where D denotes the number of parts illuminated by radar, Ad

denotes the amplitude of signals reflected by different parts,
τd,m denotes the time delay between the mth transmitted signal
and the echo signal of the dth part, and n(tk) denotes the noise
signal.

A. Signal Model of Rotary Wing UAVs
The model of the radar acquisition UAVs is shown in

Fig. 2 Assuming that the velocity does not change during
Tc. Then, SReceive(tk) and STransmitting(tk) are fed into the mixer
simultaneously. The output from the mixer is represented as

SMulti(tk) = SReceive(tk) · conj(STransmitting(tk)) (3)
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Fig. 1. FMCW signal model.

and the intermediate frequency (IF) signal is obtained by
mixing signal through the low-pass filter, which is expressed
as

SIF(tk) =

D∑
d=1

Ak Ade− j (2πφτd,m tk+2π fcτd,m )
+ nIF(tk). (4)

Assuming that the main reflecting components of the UAVs
are the body and rotating blades, the IF signal is represented
as [31]

SIF(tk, ts) = Abody e− j
(

2π fR tk+
4π R0

λ +2π f body
d ts

)

+

I∑
i=1

C∑
c=1

Ai,c
blade e− j

(
2π fR tk+

4π R0
λ +2π

(
f blade
i,c + f body

d ts
))

+ nIF(tk, ts) (5)

where Abody denotes the amplitude of UAVs’ body, Ai,c
blade

denotes the amplitude of rotating blades, i denotes the number
of the rotors, c denotes the number of the blades per rotor, ts
denotes the slow-time, f body

d indicates the body Doppler of
the UAVs, and f blade

i,c indicates the m-D of rotor. FMCW radar
obtains an IF signal by mixing the received and transmitted
signals after low-frequency filtering, which is expressed as

sd( fR, ts) = Abodye− j
(

4π R0
λ +2π f body

d ts
)

+

I∑
i=1

C∑
c=1

Ai,c
bladee− j

(
4π R0

λ +2π
(

f blade
i,c + f body

d ts
))

+ nIF( fR, ts). (6)

B. Signal Model of Flying Birds
Assuming a bird is flying facing the radar, as shown in

Fig. 3, its flapping wings consist of a combination of upward
and downward movements. When birds approach the radar,
m-D is mainly generated by up and down beat of the wings,
and the echo signal of the target is expressed as [32]

Sd( fR, ts) = Abody e− j
(

4π R0
λ +2π f body

d ts
)

+ 2Awing e− j
(

4π R0
λ +2π

(
f wing
s + f body

d ts
))

+ nIF( fR, ts) (7)

where Awing denotes the amplitude of wing, and f wing
s denotes

the instantaneous m-D frequency at flapping wing, which is

Fig. 2. FMCW radar acquisition of UAVs’ echo models.

Fig. 3. FMCW radar acquisition bionic bird echo models.

expressed as

f wing
s = −

4lwingπ

λ
As fflap sin(2π fflapts) (8)

where As , lwing, and fflap denote the range of up and down
flapping motions, the length of the single wingspan, and the
flapping frequency, respectively. The instantaneous frequency
and amplitude of the m-D signal show periodic variations.
Doppler is affected by the rotational or beat frequency of each
rotor and the initial phase.

III. PRINCIPLE OF DMFFNET AND TARGET
CLASSIFICATION

A. Principle of Target Classification Based on DMFFNet
This article proposes a classification method for low, slow,

and small targets. First, the data are preprocessed and the
dataset is constructed. Then, a network branch is constructed
to extract features based on various features of the target echo
data. The structure of the target classification network model is
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shown in Fig. 4, where C1 represents the local feature extrac-
tion module, and C2 represents the global feature extraction
module. This network model includes feature extraction, fea-
ture fusion, and target classification. In the feature extraction
stage, the ResNet3D network module, local feature extraction
module, and global feature extraction module are used to
obtain features from different data. Finally, these extracted
features are fused through a feature fusion module to achieve
target classification.

B. Global Feature Extraction
The MDI spectrogram contains m-D information from rotor

drones, which is an important feature for target classification
tasks. The network can fully extract the m-D features of the
target while suppressing irrelevant features such as noise and
stationary clutter. In addition, due to the differences in rotor
speed and blade length among different types of drones, their
m-D features also vary. To ensure that the network focuses
on more comprehensive and discriminative m-D features, this
article introduces an attention module to extract global features
from an image in the TF spectrogram. In the global feature
extraction branch, a windows multihead self-attention (W-
MSA) module is introduced. W-MSA is a module in the
Swin Transformer [33] that has a computational complexity
that grows linearly with the size of the feature map and uses
the prior knowledge of image locality. However, there is a
lack of information interaction between windows, so the next
module introduces shifted window multihead self-attention
(SW-MSA). By shifting the windows toward the bottom-right
corner, SW-MSA enables pixel interaction between different
windows, allowing better capture of interwindow relationships.
This maps the features to a smaller size, which, compared with
the multihead self-attention module in transformers, effectively
reduces computational costs. The specific module structure is
shown in Fig. 5

�(MSA) = 4
⌢

h
⌢

w
⌢

C
2
+ 2(

⌢

h
⌢

w)
2 ⌢

C (9)

�(W-MSA) = 4
⌢

h
⌢

w
⌢

C
2
+ 2M2

⌢

h
⌢

w
⌢

C (10)

where
⌢

h denotes the height of the map,
⌢

w denotes the width
of the map,

⌢

C represents the depth of the feature map, and
M denotes the size of each window. At each stage, the
feature map passes through a LayerNorm layer and then into
a W-MSA followed by a linear layer with a GELU function.
This process is illustrated in the following equation:

G i = f (SW-MSA(LN( f (W-MSA(LN(G i−1))))

+ G i−1)) + f (W-MSA(LN(G i−1))) + G i−1 (11)

where G i represents the output of global features, f denotes
a convolution operation with a kernel size of 1 × 1, and
LN represents the LayerNorm operation. Finally, the global
features extracted from the TF spectrum are input into the
fusion module for feature fusion.

C. Local Feature Extraction
Some local features in feature images are also important.

The radar-collected echo data of a rotorcraft UAVs can yield

range profile data of the target after pulse compression. Due
to differences in the size of target and rotor length, the
range profiles of different targets also exhibit some variations.
Since these differences in the range profile only exist within
a certain range of a specific range unit, we aim to extract
these variations from the range profile by ensuring that the
network focuses only on local features [34]. By leveraging
layer normalization (LN) and GELU activation functions from
the transformer, good performance can be achieved across dif-
ferent scenarios. The specific local feature extraction module
is shown in Fig. 6. The local features extracted from the range
profile are input into the feature fusion module

L i = f2×2(LN(L i−1)) (12)

L̂ i = f ( f (LN( f7×7(L i )))) + L i (13)

where L i is the extracted local feature, and f2×2 and f7×7 rep-
resent a convolution operation with a kernel size of 2 × 2 and
7 × 7, respectively.

D. Dynamic Feature Extraction
This article introduces the ResNet3D model, as shown

in Fig. 7, which effectively captures dynamic changes and
spatial structures in radar data by performing convolution
operations in both the temporal and spatial dimensions, thereby
improving the processing efficiency of radar data. ResNet3D
[35] is designed for distance periodic sequence tensor data,
aiming to extract dynamic features from the data to improve
the classification accuracy. We train ResNet3D to extract
spatiotemporal variation features from tensor data. ResNet3D
has a specific structure similar to ResNet, but its convolu-
tion is extended to 3-D convolution to process tensor data.
Specifically, the input data dimension is (batch size, channels,
depth, height, width). Through a series of 3-D convolutional
layers, 3-D pooling layers, and residual connections, feature
representations for classification or regression are ultimately
obtained. The input of the network is a matrix that divides
continuous range periodic data into 16 frames, allowing the
network learn continuous relational features between frames
for better extraction of temporal and spatial features, which
is crucial for accurately identifying complex data. As shown
in Fig. 8, the 3-D convolution kernel slides on the tensor
data of the range–periodic sequence, which can capture the
long-term dependencies and related features between different
frame numbers in the sequence. The dataset is convolved to
obtain a 3-D feature map

F̄ i = MaxPool( f3×7×7(xi )) (14)
Stagei = {Block = {Conv}} (15)

where Maxpool() represents the maximum pooling layer,
f3×7×7 is the convolution operation with a convolution ker-
nel size of 3 × 7 × 7, Stagei denotes fourfold convolution
operations, and i denotes the number of stage.

E. Multichannel Feature Fusion
The feature fusion module can adaptively fuse different

levels of local and global features based on input features.
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Fig. 4. Multichannel dynamic feature classification model.

Fig. 5. Global feature extraction module.

This module combines the extracted local features from the
distance–periodic graph with the global features from the TF
spectrum, as shown in Fig. 9. Since the attention mechanism
in global features captures global spatiotemporal information,
to some extent, the input global features are captured by the
channel attention module (CAM), which uses the interdepen-
dence between channel mappings to further extract dependent
features. A portion of the features are input to the spatial
attention mechanism to enhance local details and suppress
irrelevant regions. Finally, feature fusion is performed by
splicing the features extracted for each attention. The attention
is expressed as

CA(x) = σ(MLP(AvgPool(x)) + MLP(MaxPool(x))) (16)
SA(x) = σ( f7×7(Concat[AvgPool(x), MaxPool(x)])) (17)

where σ is the Sigmoid function. The feature fusion operation
is denoted as

Ḡ i = CA(G i ) ⊗ G i (18)

L̄ i = SA(L i ) ⊗ L i (19)

T̂ i = f (Concat(Ti , G i , L i )) (20)

Fig. 6. Local feature extraction module.

Fi = LN(Concat(Ḡ i , L̄ i , T̂ i )) (21)

F̄ i = f 3×3(Fi ) + Fi (22)

F̂ i = f ( f (F̄ i )) + Ti (23)

where ⊗ denotes element-by-element multiplication, Ḡ i is
generated by the combination of channel attention, and L̄ i

is generated by the combination of spatial attention. F̂ i rep-
resents data output after feature fusion.

IV. TARGET CLASSIFICATION METHOD BASED ON
DMFFNET

The radar signal is preprocessed to remove the interfer-
ence in the signal, and the range–period information and TF
information in the echo signal are extracted, as shown in
Fig. 10. Then the dataset is constructed, and the dataset is
input to the designed multifeature extraction network to train
and optimize the network parameters, and finally the optimal
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Fig. 7. ResNet3D network framework.

Fig. 8. ResNet3D Convolutional Operation.

Fig. 9. Multifeature fusion module.

weight obtained by network training is used to complete the
task of target classification.

A. Introduction of Radar
The FMCW radar by transmitting continuous wave trans-

mits signal, through the radio frequency module to accept the

TABLE I
CONFIGURATION PARAMETERS OF FMCW RADAR

TABLE II
SAMPLE SIZE OF DATASET

echo signal, and signal mixing, filtering to get the IF signal, the
control module to receive the host computer to send parameter
commands, to produce the timing control signals required for
the transmission and reception, the acquisition module to use
multichannel synchronous acquisition of ADC to achieve the
collection of echo signals, and through the USB high-speed
interface chip, the acquired raw echo signals are transmitted to
the host computer for subsequent processing. Finally, through
the software module to complete the drive of the host computer
system, to ensure that the host computer and the acquisition
of normal communication between the card, and have control
and display functions, radar processing signal flow as shown
in Fig. 11.

This article collects data from various types of rotary wing
drones and simulated birds using a K-band FMCW radar,
as show in Fig. 12. The working frequency of the radar is
23.7 GHz, and the radar emission waveform is a triangular
wave. The specific radar parameters are shown in Table I.

B. Data Preprocessing
In this study, we collected the echo signals of targets using

K-band radar and carried out systematic preprocessing steps
to improve the accuracy of target detection.

Step 1: First, eliminate the negative frequency signal and
dc component in the radar echo data. Then, perform pulse
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Fig. 10. Classification flowchart of the proposed DMFFNet.

Fig. 11. Radar signal processing flowchart.

Fig. 12. K-band radar.

compression on the original data to obtain a range periodogram
containing clutter. Finally, perform moving target indicator
(MTI) processing on the data to filter out clutter and obtain
the range periodogram of the target.

Step 2: Divide the obtained distance–period data into several
data according to the time dimension, store these divided data
in a 3-D array, and save them as a mat file to form a 3-D
distance–period sequence data.

Step 3: Accurately extract the echo data of the target through
the distance–period graph. To further extract the micro-motion
features of the target, the short time Fourier transform (STFT)
[37] is used to obtain the TF spectrum of the target. Assuming
that the target signal obtained through the above steps is S(t),
its STFT is expressed as

STFT(t, ω) =

∫
+∞

−∞

S(t)g(u − t) exp(− jωt) d u (24)

where g(·) represents the sliding window, t represents the
time dimension, and ω represents the frequency dimension.
Construct a dataset of TF spectra of the obtained target.
The data matrix is obtained by performing STFT on the
preprocessed echo data, and the CFD spectrum [14] is obtained
by performing FFT along the time dimension on the TF
analysis results

CFD = Ft {STFT} (25)

where Ft represents performing FFT on the TF graph along
the time dimension. The CFD spectrum is equivalent to
performing Fourier transform on a series of periodic pulse
trains in a TF diagram. The Doppler information dimension in
the TF diagram remains unchanged, while the time information
is transformed into Cadence frequency information, which
represents the repetition frequency, shape, and size information
of each Doppler frequency component. Finally, the MDS
spectrogram and CFD spectrogram were horizontally spliced
to form the MDI spectrogram [27].

The MDI can be expressed as

yMDI = [xSTFT, xCFD] (26)

where yMDI denotes the spliced MDI spectrogram matrix,
xSTFT denotes the m-D spectrogram matrix, and xCFD denotes
the CFD spectrogram matrix.

C. Dataset Construction
In this article, the target echo data collected have been

published in Journal of Radars. The dataset [38] can be
found at https://radars.ac.cn/web/data/getData?dataType=LLS-
LFMCWR. The types of targets collected are shown in Fig. 13.
Five different types of rotary wing UAV data are collected
simultaneously using K-band and L-band FMCW radar. The
target is at the same altitude with the radar in the middle
and long distance, and the UAV is in hover state, collecting
the echo data of the target through the radar. The collected
echo data format is converted into mat format and the files are
named according to a rule containing the target distance and
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Fig. 13. Types of drones and bionic bird. (a) Fixed wing drone. (b) DJI
M350. (c) Hexacopter. (d) DJI Mavic2. (e) DJI Inspire2. (f) Bionic bird.

radar parameters. For different types of rotor UAVs, there are
some differences in their range–period graph, among which the
range–period echo characteristics are more obvious due to the
fact that the fixed wing is a single rotor and the rotational speed
is smaller than other types of UAVs, so there are differences
in the echo energy with the multirotor UAVs. For quadrotor
UAVs, the amplitude of the distance periodogram is different
due to the different rotor blade size and length and rotational
speed, so there are some differences in the range–period graph.

During the training process, the distance–period map is
obtained by preprocessing the radar echo signal, as shown in
Fig. 14, and used as a feature to construct a 2-D range–period
dataset. After extracting the target signal and performing
STFT, TF spectrograms of various types of UAVs are obtained,
as shown in Fig. 15. As analyzed in Section II, the bulk
Doppler of the target is more prominent than the m-D fre-
quency. There are differences in the MDSs of targets with
different micro-motion patterns, and even the MDSs of the
same target can vary. We can use these differences to achieve
classification and recognition of different targets. To visualize
the time-varying characteristics of miniature UAVs, the TF
spectrograms of various UAVs are analyzed while they are in
a hovering state. The bulk Doppler frequencies of different
UAVs are concentrated near zero velocity. By analyzing the
MDSs of different types of UAVs, it is observed that the
m-D of single-rotor UAVs is more distinct compared with
UAVs with different rotor configurations, making it easier to
distinguish them from other types of UAVs. Due to the high
number of rotors and rapid blade rotation in quadrotor and
hexacopter UAVs, the MDSs of the rotors overlap, making
it more challenging to differentiate between multirotor UAV
types.

Fig. 14. Range–period graph after MTI. (a) Range–period graph of fixed
wing drone. (b) Range–period graph of DJI M350. (c) Range–period
graph of hexacopter. (d) Range–period graph of DJI Mavic2.
(e) Range–period graph of DJI Inspire2. (f) Range–period graph of flying
birds.

Fig. 15. TF graph of UAVs. (a) TF graph of fixed wing drone. (b) TF
graph of DJI M350. (c) TF graph of hexacopter. (d) TF graph of DJI
Mavic2. (e) TF graph of DJI Inspire2. (f) TF graph of flying birds.

By calculating the time-domain Fourier transform, the
Cadence frequency diagram (CFD) spectrogram is obtained,
as shown in Fig. 16. The prominent portions represent the
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Fig. 16. CFD graph of UAV. (a) CFD graph of fixed wing drone. (b) CFD
graph of DJI M350. (c) CFD graph of hexacopter. (d) CFD graph of DJI
Mavic2. (e) CFD graph of DJI Inspire2. (f) CFD graph of bionic bird.

dominant components. It can be observed that the dominant
components of the CFD for different types of UAVs do not
overlap, which aids in distinguishing between different types
of UAVs. Since hexacopter UAVs are the largest in size,
their dominant components are more pronounced, while the
“Mavic” UAV, being the smallest in size, has less promi-
nent dominant components compared with other types of
UAVs. The CFD provides information about the shape and
frequency of curves in the TF characteristics caused by the
moving parts of the target. This method can be used to
measure the Doppler frequency repetition rate. Therefore, the
TF graph and CFD graph are concatenated together to form
an MDI spectrogram to obtain more features and form the
dataset. To obtain dynamic features of the data, multiple
frames of distance–periodic sequence data were constructed,
and dynamic changes in the time dimension were captured
through a 3-D network to improve the accuracy of target
classification. After preprocessing the collected raw echoes,
the IF signal is subjected to fast Fourier transform along the
time index to obtain range–period data, which is a covariance
matrix representing the distance sampling unit, the number
of periods, and the distance offset caused by the motion of
target. To extract the dynamic change characteristics of the
target [39], we obtain L frames of the range–period sequence
within a total imaging time, and then superimpose multiple
frames of distance–period sequence data along the slow-time
axis to form the range–period sequence tensor data, as shown
in Fig. 17.

We set the size of the MDI spectrum dataset to be the same
as that of the distance–period dataset. The specific dataset is
shown in Table II. We use the training dataset in the table to

Fig. 17. Flowchart of range–period sequence tensor data.

train the proposed network model and then use the test dataset
to test the performance of the trained model.

D. Model Training
This article uses widely used adaptive matrix estimation

(AdamW) [40] as the optimizer to adaptively normalize the
learning, with hyperparameters of β1 = 0.9 and β2 =

0.999. The initial learning rate is 3, batch size is set to 32,
and epoch is set to 60. This model is built using PyTorch
version 1.12.0 and Python version 3.9. The experiment was
implemented on a hardware platform: Intel1 Core2 i9-12900KF
CPU, 16-GB RAM, NVDIA GeForce RTX 3090 Ti GPU
combined with NVIDIA CUDA 12.0. During training, cross-
entropy loss is used to calculate the divergence between the
real label and the predicted label

Loss = −
1
N

N∑
n=1

k∑
i=1

yi log(pi ) (27)

where N represents the number of samples, k represents the
number of categories, yi represents the true label, and pi

represents the predicted label. This article uses classification
accuracy (ACC), precision, and average accuracy as classifi-
cation metrics. These indicators are all calculated based on
confusion matrices. The confusion matrix is represented as
follows:

ACC =
TP + TN

TP + TN + FP + FN
(28)

where TP stands for true positive, TN stands for true negative,
FP stands for false positive, and FN stands for false negative.

V. EXPERIMENTAL TEST AND RESULTS ANALYSIS

In this section, a large number of experiments were con-
ducted to validate and compare classification networks based
on dynamic multifeature fusion. Initial network: The number
of training set samples of range–period graph, m-D spectrum,
and dynamic data is the same, all set to 10 567. The dynamic
multifeature data fusion classification model proposed in this
article achieved low loss values and high accuracy on mea-
sured drone echo data, as shown in Fig. 18. After 60 target
classification tasks on the training and validation sets, the train-
ing and testing loss values were around 0.0145 and 0.0124,

1Registered trademark.
2Trademarked.
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Fig. 18. Accuracy and loss curves for LSS-target classification.
(a) Classification accuracy curve. (b) Classification loss curve.

Fig. 19. Classification confusion matrix of the network proposed in this
article.

respectively. The average accuracy of training and testing
was expressed as 98.9% and 99.2%, respectively. To quantify
the proposed framework, the confusion matrix for network
classification in this article is shown in Fig. 19.

Fig. 20. Accuracy rate of the proposed network under different SNRs.

Due to the use of FMCW radar, the detection range for low
altitude observation drones or birds is limited. To demonstrate
the universality of the proposed method and further general-
ize the obtained conclusions, we evaluated the classification
ability under different SNRs. The SNR is defined as the
average power ratio between the target distance unit and
the background unit in the distance–periodic data. Using a
dynamic multifeature data fusion model, low and slow small
target classification was performed under different SNRs. The
classification probability SNR line graph is shown in Fig. 20.
When the SNR is not less than 2 dB, the classification
probability remains stable at over 90%. To further illustrate
the effectiveness of the proposed method, we compared the
proposed network with the traditional target classification
network. As shown in Fig. 21, we can observe the training
loss trend of different networks and the proposed network and
the training accuracy of the network. In the initial training
stage, the loss value of DMFFNNet is 0.68, while the loss
values of other networks are less than 1.6, between 1.2 and 1.6.
The loss values of the network have significantly decreased
and remained stable. It can be inferred that after 60 epochs
of training, the network has almost reached a relatively ideal
state.

To compare the performance of using dynamic
distance–periodic data with other traditional classification
networks, we compared the performance of several commonly
used classification networks. The epoch is set to 60, and the
best model was selected based on its performance on the
test dataset. The results are shown in Table III. The accuracy
of the proposed network classification can be seen from the
training accuracy of different networks. After 10 epochs,
the accuracy of the network reached over 98.6%. Among
them, DMFFNNet-1 represents the network without dynamic
feature extraction branches. After adding dynamic feature
data, the accuracy of DMFFNNet-2 increased by an average
of 2.33%. Compared with other traditional classification
models, the dynamic feature network model in this article
has a higher classification accuracy of 99.56%, which is
higher than other classification models. The network, due to
its ability to extract more features, has faster convergence
and higher accuracy. In terms of parameters, the number of
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Fig. 21. Accuracy curve and loss curve of each network and
the proposed network classification. (a) Classification accuracy curve.
(b) Classification loss curve.

TABLE III
COMPARISON OF PERFORMANCE OF DIFFERENT NETWORKS

network parameters of DMFFNNet is 168.10 M, and the
value of FLOPs is the largest, which indicates the higher
complexity of this network.

VI. CONCLUSION

This article uses deep learning techniques to conduct
research on the classification of low, slow, and small targets,
proposing a dynamic feature fusion neural network classi-
fication model. Using real measured target signal data, the
performance of different feature extraction models and classi-
fiers is tested, improving the accuracy of target classification
by extracting dynamic data features from TF spectrograms and
range profiles. Data collection was conducted outdoors for five
types of rotorcraft UAVs and a bionic bird target, including
the DJI Mavic2, DJI Inspire 2, DJI M350, a hexacopter,

and a single-rotor fixed-wing UAV. Based on K-band FMCW
radar detection data, range profile datasets, MDI spectrograms
datasets, and range profile tensor datasets were constructed.
The multichannel network can extract global features from TF
spectrograms, local features, and long-term dynamic features
from range profile data. These extracted features are then
fused using the proposed dynamic multifeature fusion network
to classify different types of low, slow, and small targets,
thereby improving the classification accuracy. The choice of
training set has a significant impact on the performance of the
deep learning network. Compared with single-channel CNNs
and traditional image processing methods, the multichannel
dynamic feature fusion network demonstrates better feature
extraction and classification accuracy for target samples. Val-
idation with real measured data from different targets shows
that compared with traditional classification methods such as
the Swin Transformer, the proposed multichannel dynamic fea-
ture fusion network increases the average correct classification
accuracy for the six types of targets to 99.56%.
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